
IAML - Week 1

Antonio León Villares

September 2021

Contents

1 Maths and Probability 2
1.1 Probability in ML . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Conditional Probability and Bayes’ Rule . . . . . . . . . . . . . . 5
1.5 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Estimating a Distribution . . . . . . . . . . . . . . . . . . . . . . 10

2 Thinking About Data 14
2.1 Aims of Machine Learning . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Data as Attribute-Value Pairs . . . . . . . . . . . . . . . . . . . . 16
2.3 Picking Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Supervised vs Unsupervised Learning . . . . . . . . . . . . . . . . 20
2.5 Multi-class vs Binary Classification . . . . . . . . . . . . . . . . . 20
2.6 Accuracy and Unbalanced Classes . . . . . . . . . . . . . . . . . 21
2.7 Generative vs Discriminative . . . . . . . . . . . . . . . . . . . . 22
2.8 Data Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Naive Bayes 24
3.1 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Naive Bayes: Continuous Example . . . . . . . . . . . . . . . . . 25
3.4 Naive Bayes: Discrete Example . . . . . . . . . . . . . . . . . . . 28
3.5 Issues With Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Naive Bayes and Missing Data . . . . . . . . . . . . . . . . . . . 30

1



1 Maths and Probability

• Probability allows us to deal with uncertainty in ML models

• Bayes’ Theorem allows us to derive conditional probabilities from other
conditional probabilities

• We use the Maximum Likelihood Approach to estimate a distribution,
by considering which distribution is most likely to have produced some
observed data

1.1 Probability in ML

• What is probability?

– branch of maths concerned with describing the likelihood of events

– allows us to numerically manipulate and understand uncertainty

– uncertainty depends on what we know

• Why is probability used in machine learning?

– training data can have uncertainty (i.e sensors are unreliable)

– algorithms can be analysed or developed via probability theory

1.2 Random Variables

• What is the sample space?

– Experiment : a procedure that can be infinitely repeated, with a well-
defined set of outcomes

– Sample Space: the set of all possible outcomes of an experiment

– Event : a subset of the sample space, to which probabilities are as-
signed

• What do random variables represent?

– Random Variable: a variable whose possible values are numerical
outcomes of a random phenomenon

– in other words, a random variable maps the sample space to a set of
states, each of which corresponds to one event

– the set of states is mutually exclusive and collectively exhaus-
tive

– Example : if we toss a coin, let X be a random variable. Then, we
can assign X = 0 to the outcome “heads”, and X = 1 to the outcome
“tails”
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• What defines a discrete probability distribution?

– a probability mass function, which gives the probability of a discrete
random variable taking any particular value:

P (X = x)

– for a DRV X and a PMF P (X = x), we expect:∑
x

P (X = x) = 1

– Example : if we consider the roll of a die, any face is equally likely
to be the outcome of a throw. There are 6 sides, so:

P (X = x) =
1

6

is the PMF defining the outcomes of an experiment in which a die is
rolled

• What defines a continuous probability distribution?

– a probability density function, p(x), which gives the probability of a
continuous random variable taking some interval of values (if X
is a CRV, then P (X = x) = 0,∀x), such as:

P (a ≤ X ≤ b)

– to calculate probabilities with PDFs, we use integration:

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx

– we require a PDF which is always positive (p(x) > 0), and:∫
p(x)dx = 1

– Example : a uniform distribution. Consider a CRV X, defined
on the interval [0, N ]. Then, its PDF is:

p(x) =

{
1
N , x ∈ [0, N ]

0, otherwise

We can check that: ∫ N

0

1

N
dx =

[ x
N

]N
0

= 1
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• What is the mean and variance of a distribution?

– Expected Value: the typical/average value that a RV takes

– Variance: a measure of how far away the values of RVs deviate from
their mean (expected value)

– for a RV X, its expected value is µX = E(X) and its variance is
σ2
X = V ar(X)

– for a DRV:
E(X) =

∑
x

x× P (X = x)

V ar(X) = E[(X − E(X))2]

= E(X2)− [E(X)]2

=
∑
x

(x− E(X))2P (X = x)

=

(∑
x

x2P (X = x)

)
− [E(X)]2

1.3 Joint Distributions

• What does a joint distribution represent?

– considers the outcome of 2 events occurring at the same time

– if X and Y are random variables, then their joint probability distri-
bution is given by:

P (X = x, Y = y)

and can be expressed by using a table:

X = sunny X = rainy
Y = ice cream 0.7 0.05
Y = hot cocoa 0.01 0.24

Table 1: The sum of all probabilities must be exactly 1

• How can you calculate P (X = x) using joint distributions?

– this is called a marginal probability :

P (X = x) =
∑
y

P (X = x, Y = y)

Thus:

P (Y = ice cream) = P (X = sunny, Y = ice cream)+P (X = rainy, Y = ice cream) = 0.75
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1.4 Conditional Probability and Bayes’ Rule

• How is conditional dependence between RVs defined?

– we can consider the effect of an event happening on the probability
of another event taking place

– this is encompassed by conditional probability:

P (X = x|Y = y)

– to calculate conditional probability:

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

– in general:

P (X1, X2, . . . , Xn|Y ) =
P (X1, X2, . . . Xn, Y )

P (Y )

• What are the product and chain rules in probability?

– the product rule allows us to compute full probabilities, based on
conditional probabilities:

P (X,Y ) = P (Y )× P (X|Y ) = P (X)× P (Y |X)

– more generally, we get the chain rule:

P (X1, X2, . . . Xn, Y ) = P (X1|X2, . . . Xn, Y )× P (X2, . . . Xn, Y )

=

n∏
i=1

P (Xi|Xi+1, . . . , Xn, Y )

• What does Bayes’ Theorem state?

– Bayes’ Theorem allows us to express conditional probabilities in terms
of each other:

P (Y |X) =
P (Y )× P (X|Y )

P (X)

– if P (X) is not known directly, then we can use marginal probabilities:

P (X) =
∑
y

P (X,Y ) =
∑
y

P (X|Y )× P (Y )

• What are the prior and posterior probabilities in the Bayes The-
orem formulation?
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– if we consider Y to be our current beliefs, and X some newly observed
data, then P (Y |X) can be thought as our uncertainty about our
current beliefs, given new data

– the prior distribution represents our current beliefs, P (Y )

– the posterior distribution represents our beliefs after seeing the data

– the likelihood (P (X|Y )) is how likely we are to observe our new data,
given our beliefs

– the normalising constant is P (X); notice, independently of any Y ,
P (X) will always be the denominator, which is why it is considered
a “constant”

• When are 2 RVs marginally independent?

– whenever an event happening doesn’t affect the probability of an-
other event happening. In other words, X and Y are marginally
independent iff:

P (X|Y ) = P (X)

– notice that this happens iff:

P (X,Y ) = P (X)P (Y )

• When are 2 RVs conditionally independent?

– whenever knowing Y is sufficient to understand what happens to X,
independently of some other observation Z:

P (X|Y,Z) = P (X|Y )

here we say “X is conditionally independent of Z given Y”

– conditional independence does not imply marginal independence an
viceversa

– Example : let S be the event that it is sunny, let B be the event
that you go to the beach, and let H be the event that you get a
heatstroke. Then:

∗ it is likely that B and H are not marginally independent:

P (B,H) > P (B)P (H)

since it is more likely that you get a heatstroke as a consequence
of going to the beach, than the heatstroke being caused by some
other external factor, at the same time as going to the beach

∗ if we know it is sunny, then it is perfectly likely that, as a conse-
quence, we go to the beach and get the heatstroke, so knowing
S is sufficient to explain H, without needed B:

P (B,H|S) = P (B|H)P (B|S)
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1.5 Gaussian Distribution

• What is the one-dimensional Gaussian Distribution?

– if a random variable follows a Gaussian/Normal Distribution with
mean µ and variance σ2, then we say:

X ∼ N(µ, σ2)

– the PDF of a Normal Distribution is:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

– a standard normal distribution is one such that:

Z ∼ N(0, 1)

– any normal RV can be standardised via:

Z =
X − µ
σ

– µ defines the symmetry line of the normal distribution

– σ defines the width of the normal distribution

• What is a covariance matrix?

– a useful structure when dealing with distributions in higher dimen-
sions

– to compute the covariance matrix. if we have 2 RVs, X and Y :

Σ = E
[
(x− µ)(x− µ)T

]
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– indeed, if we compute this, we get:

Σ =

(
E
[
(x1 − µ1)2

]
E [(x1 − µ1)(x2 − µ2)]

E [(x1 − µ1)(x2 − µ2)] E
[
(x2 − µ2)2

] )
=

(
V ar(x1) Cov(x1, x2)

Cov(x1, x2) V ar(x2)

)
• What is the two-dimensional Gaussian Distribution?

– if X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), and they are independent,

then the two-dimensional Gaussian is determined by the product of
the PDFs:

p(x1, x2) =
1

2π
√
σ2
1σ

2
2

exp

(
−1

2

(
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

))
– this can also be expressed by using vectors:

x =

(
x1
x2

)

µ =

(
µ1

µ2

)
Σ =

(
σ2
1 0

0 σ2
2

)
where Σ is the covariance matrix

– using the vectorised form above:

x− µ =

(
x1 − µ1

x2 − µ2

)

Σ−1 =
1

σ2
1σ

2
2

(
σ2
2 0

0 σ2
1

)

Σ−1(x− µ) =

(
x1−µ1

σ2
1

x2−µ2

σ2
2

)

(x− µ)TΣ−1(x− µ) =
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

Thus:

p(x1, x2) =
1

2π
√
σ2
1σ

2
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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• What is the general, multivariate Gaussian Distribution?

– the multivariate Gaussian can be easily defined using the vector no-
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tation above, with x ∈ Rn:

p(x) =
1

(2π)
n
2

√∏n
i σ

2
i

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
– here x ∼ N(µ,Σ)

1.6 Estimating a Distribution

• How can we derive a distribution from data (as opposed to using
a distribution to produce data)?

– we aim at learning a distribution which could produce the data that
we observe

– the “best” distribution is that which is more probable to produce the
observed data

• How can we use a Maximum Likelihood Approach to estimate a
distribution?

– asking “is this distribution more likely to produce this data?” is
equivalent to maximising the probability density of observing the
data (D), given a distribution (M):

P (D|M) =

N∏
i=1

P (D = xi|M)

– for the above, we assume that each data point, xi is independently
generated, so we can simply multiply the probability of observing
each point, given the distribution

– this is the Maximum Likelihood Approach: selecting different models,
and seeing which one is more likely to have produced the data

– Example 1 : say we have the following data:

10010101000001011101

Since there are 2 outcomes, we consider a Bernoulli Distribution. To
sample from the distribution, we consider 3 models:

1. M = 1 (coin toss; H = 1, T = 1)

2. M = 2 (die throw; 1 = 1, 2,3,4,5,6 = 0)

3. M = 3 (double headed coin toss, H =1, T = 0)

Letting c be the number of 1s, and using the Maximum Likelihood
Approach:

P (D|M) =

N∏
i=1

P (D = xi|M) = P (D = 1|M)c × P (D = 0|M)20−c

Then:
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1. if M = 1, P (D = 1|M = 1) = 0.5 and P (D = 0|M = 1) = 0.5,
so the likelihood is:

0.520 ≈ 9.5× 10−7

2. if M = 2, P (D = 1|M = 2) = 1
6 and P (D = 0|M = 1) = 5

6 , so
the likelihood is:

511

620
≈ 1.3× 10−8

3. if M = 3, P (D = 1|M = 3) = 1 and P (D = 0|M = 3) = 0, so
the likelihood is 0

Thus, the most likely distribution is a fair coin toss. This can be

generalised. Say the optimal distribution is such that:

P (D = 1|M) = θ

Then,
P (D|M) = θc × (1− θ)n−c

Taking the log, and calling the result f(θ):

f(θ) = c ln(θ) + (n− c) ln(1− θ)

The max likelihood will be the value of θ, such that f ′(θ) = 0, so:

f ′(θ) =
c

θ
− n− c

1− θ

which means that:

c

θ
− n− c

1− θ
= 0

=⇒ c

θ
=
n− c
1− θ

=⇒ c− cθ = nθ − cθ

=⇒ θ =
c

n

which is an expected result

– Example 2 : we can also consider a model given by a Gaussian
Distribution. If we have data with points xi, then, lets assume that
the model is generated with mean µ and variance σ2. We seek to
find the values of these parameters. To do this, lets consider the log
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probability:

ln [P (D|M)] = ln

[
N∏
i=1

P (D = xi|µ, σ2)

]

=

N∑
i=1

ln
[
P (D = xi|µ, σ2)

]
=

N∑
i=1

ln

[
1√

2πσ2
e−

(xi−µ)
2

2σ2 )

]

=

N∑
i=1

ln

[
1√

2πσ2

]
− (xi − µ)2

2σ2

=

N∑
i=1

−1

2
ln
(
2πσ2

)
− (xi − µ)2

2σ2

= −N
2

ln
(
2πσ2

)
− 1

2σ2

N∑
i=1

(xi − µ)2

In order to get the max likelihood, we apply partial differentiation,
as to get µ and σ2.

∂

∂µ
(ln [P (D|M)]) =

∂

∂µ

(
−N

2
ln
(
2πσ2

)
− 1

2σ2

N∑
i=1

(xi − µ)2

)

=
1

σ2

N∑
i=1

(xi − µ)

Setting this equal to 0:

1

σ2

N∑
i=1

(xi − µ) = 0

=⇒
N∑
i=1

(xi − µ) = 0

=⇒
N∑
i=1

xi =

N∑
i=1

µ

=⇒ µ =

∑N
i=1 xi
N
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We proceed similarly with variance:

∂

∂σ
(ln [P (D|M)]) =

∂

∂σ

(
−N

2
ln
(
2πσ2

)
− 1

2σ2

N∑
i=1

(xi − µ)2

)

= −N
σ

+
1

σ3

N∑
i=1

(xi − µ)2

=
−Nσ2 +

∑N
i=1(xi − µ)2

σ3

Setting this equal to 0:

−Nσ2 +
∑N
i=1(xi − µ)2

σ3
= 0

=⇒ σ2 =

∑N
i=1(xi − µ)2

N

All of the above generalises to multivariate Gaussians:

µ =

∑N
i=1 xi

N

Σ =

∑N
i=1(xi − µ)(xi − µ)T )

N

Figure 1: Data
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Figure 2: Bivariate Gaussian fitted over data

2 Thinking About Data

• The main tasks of ML are classification, regression and clustering

• Attribute-value pairs allow us to encode features as numerical values,
which can be used by ML algorithms

• Models can be generative or discriminative, based on how the decision
boundary is constructed

2.1 Aims of Machine Learning

• What are learning algorithms in ML?

– ML seeks to learn from data, in order to make predictions

– to make predictions, a learning algorithm is used to train a predictor,
which is just a function

14



• What are the 3 main tasks of ML?

1. Classification: labelling data with a certain class. Usually done by
training and learning a decision boundary to split different classes up
(i.e determining whether an animal is a mammal, reptile or amphib-
ian)

2. Regression: assigning numerical values to new data (i.e predicting
age given other characteristics, such as gender and pictures)
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3. Clustering: discover underlying patterns which allow you to split
data into different clusters (i.e discovering structure in the disposition
of starts in the sky)

– classification and regression are supervised (require prior data labels),
whilst clustering is unsupervised

2.2 Data as Attribute-Value Pairs

• Why do we represent data as attribute-value pairs?

– since a predictor is a mathematical function, we need to be able to de-
scribe the object of our analysis (i.e a human) in more mathematical
terms

– objects can be described as an unordered bag of features (i.e eye
colour, height, occupation, etc ...)

– we consider 3 types of attributes:

1. Categorical
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2. Ordinal

3. Numeric

• How can we embed structure within attribute-value pairs?

– attribute-value pairs are in essence unordered, but sometimes struc-
ture is necessary

– embedding structure into the input can be done by treating attribute-
value pairs as a tree, with the attributes being given as a root-to-leaf
path:

– embedding structure into the output can be done by building a pre-
dictor which takes an input tree and an output tree as inputs, and
determines whether the provided output corresponds with the pro-
vided input. This now requires being able to search for plausible
outputs.

• What are the properties of categorical attributes?

– discrete

– finite

– unordered

– mutually exclusive (synonyms can be a problem)

– categories can be encoded as numbers (without meaning, only need
to be able to apply =, 6=)

– Example : classical, jazz, rock, techno
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• How do ordinal attributes differ from categorical attributes?

– ordinal categories have a natural ordering

– numerical encodings must preserve this natural ordering (only to
compare in size; no meaning to multiply/add/substract/...)

– Example: primary, secondary, undergraduate, postgraduate

– might be issues differentiating between categorical and ordinal (i.e
single, married, divorced)

• What are numerical attributes?

– real numbers

– all operations have meaning (summation, multiplication, mean, vari-
ance)

– numerical data is typically normalised, to ensure that scale does not
affect the learning process

∗ x ∈ [0, 1]

∗ µ = 0, σ = 1

• What are the main issues related to using numerical attributes?

1. Unusually Large/Small Values: these mess up normalisation (all
“normal” values will end up squashed up to one side of the scale upon
normalisation), so must handle beforehand

2. Skewed Distributions: caused by systematic, unusual values (i.e
personal wealth skews the distribution of wealth, but it can’t be treated
as an outlier, since it is a feature of the data). Deal by applying
log(x), arctan(x) and then normalise. Otherwise it can affect regres-
sion, KNN, Naive Bayes.

3. Non-Monotonic Attributes:

– monotone attribute: direct correlation between attribute and
value (i.e higher net worth means lower lending risk)

– non-monotone attribute: correlation between attribute and value
is not direct (i.e age vs change of winning marathon. Being
extremely young or old decreases chances of winning, need middle
age)

– quantisation fixes non-monotonicity. Split values into categories
(i.e instead of considering age, use < 20, 20 ≤ x < 50, ≥ 50)

– affects regression, Naive Bayes

2.3 Picking Attributes

• How should attributes be picked?
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– sometimes straightforward: for credit scoring, we want to know about
net worth, properties, job, age, etc...

– we should aim that similar objects have similar values associated with
their attributes

– in other cases, the straightforward idea is not always the best:

1. Digit Recognition

∗ can use pixels as attributes

∗ pixels can be normalised

∗ blurring image might improve performance (similar numbers
might blur similarly)

∗ this only works because we expect that numbers will have
coloured pixels in the same positions

2. Object Recognition

∗ pixels no longer work: a rotated zebra is still a zebra, so we
need to handle rotations, translations, lighting, obstructions,
etc ...

∗ can use algorithms to segment image into regions, and then
use the properties of the regions (i.e perimeter, area, colour
frequency) to define attributes

∗ if errors occur during segmentation, hope they are systematic

3. Text Classification

∗ naively may use each word in the text as a value

∗ main issue is that removing any word would completley shift
the values that a machine receives (i.e [“hello”, “how”, “are”,
“you”] and [“hello”, “are”, “you”] would be perceived as ex-
tremely different)

∗ instead, create a vocabulary of all the words, and return a
binary string, with 1 if a word appears, and 0 if it doesn’t

4. Music Classification

∗ naively may use each point in the sound wave

∗ main issue is that properties like amplitude can change, with-
out necessarily changing the sound wave. Waves can be
shifted, and they would be perceived as different.
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∗ instead, use Fourier Transform, and use the weights as the
attributes

2.4 Supervised vs Unsupervised Learning

• What defines a supervised learning algorithm in ML?

– training data has labels

– use these labels to predict for new data

– can measure accuracy directly

• What are the differences between supervised and unsupervised
learning algorithms?

– rather than labelling, seeks to understand the (underlying) structure
of data

– labelling not required during training

– require indirect or qualitative (are these the results I wanted?) eval-
uation

• How does semi-supervised learning compare to supervised and
unsupervised learning?

– semi-supervised learning employs unsupervised learning to improve
supervised learning

– small number of labelled data + lots of unlabelled data

2.5 Multi-class vs Binary Classification

• What is multi-class classification?

– produce decision boundary to separate many classes

– classes are mutually exlusive and exhaustive
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– for example, Naive Bayes, KNN, decision tree, logistic (softmax ex-
tension)

• What is binary classification?

– one class vs the rest (class A vs class not A)

– classes can overlap (a region might be included within 2 decision
boundaries)

– SVM, logistic (basic), perceptron

2.6 Accuracy and Unbalanced Classes

• Is accuracy the best metric to measure ML success?

– a more accurate classifier may not always be a better classifier
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– if classes are very unbalanced, then a classifier can always guess the
same class, and have a high accuracy

– Example : predicting if a paper will win a Nobel prize. It is so rare,
that we can achieve more than 99% accuracy by simply labelling
every paper as “non-Nobel prize”

– might be smoothed by making the cost of a false negative bigger than
the cost of a false positive

2.7 Generative vs Discriminative

• What is a generative ML model?

– generates a region for a class

– in essence, constructs a probabilistic model to describe in what region
a class is most likely to appear

– lends itself to using unlabelled data

• What is a discriminative ML model

– focuses on deriving a decision boundary for classes

– requires many labelled examples

2.8 Data Outliers

• What are outliers?

– isolated instance of a class, different from all other instance
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– affects performance of ML models

• How do we deal with extreme outliers?

– easy to detect (i.e via confidence intervals)

– remove

– enforce a threshold for all the data

• How do we deal with “hidden” outliers?

– harder to detect

– might need to visualise to check
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3 Naive Bayes

• A Naive Bayes classifier is a Bayesian Classifier which assumes that data
features are conditionally independent, given a class

• In Gaussian Naive Bayes, we assume that each feature is modelled by its
own Gaussian Distribution

• Naive Bayes is hindered by data which is different but has the same dis-
tribution, the zero frequency problem and the assumption of conditional
independence. Nonetheless, it can cope with missing data.

3.1 Bayesian Classifiers

• What is a probabilistic classifier?

– classifier which aims to assign classes, based on which class y is most
likely to have produced the observed result x:

ŷ = arg max
y

P (Y = y|X = x)

(Here x represents all the observations made, so x = x1, x2, . . . , xn)

• What are the components of a Bayesian Classifier?

– a Bayesian Classifier is a probabilistic classifier which uses Bayes’
Theorem to compute the conditional probability:

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)
=

P (X = x|Y = y)P (Y = y)∑
y′ P (X = x|Y = y′)P (Y = y′)

– for classifiaction, the normalisation term is not necessary (it’ll be
constant ∀y). It is nonethless useful when comparing elements within
a class (i.e given x1 and x2, which of the 2 is most likely to be suffering
from a disease; outliers will tend to have much lower probabilities)

3.2 Naive Bayes

• What assumption defines a Naive Bayes Model?

– Naive Bayes assumes that each of the x1, x2, . . . , xn are condition-
ally independent given y

– this allows us to create a simplified model, which is less computa-
tionally expensive (i.e consider computing the probability of seeing
a specific pixel being turned on or off across a single 20 × 20 im-
age. This has 2400 possibilities. We would then need to go through
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all 20 × 20 images, and consider the probability of one of these 2400

pixels being turned on or off for a specific class guess)

– in order to calculate P (Y = y|X = x), we need to first calculate
P (X = x|Y = y). By the definition of conditional probability:

P (x1, x2, . . . , xn|y) =
P (x1, x2, . . . , xn, y)

P (y)

Using the Chain Rule (1.4), we know that:

P (x1, x2, . . . , xn, y) =

n∏
i=1

P (xi|xi+1, . . . , xn, y)

But since we are assuming conditional independence, this reduces to:

P (y)×
n∏
i=1

P (xi|y)

So:

P (x1, x2, . . . , xn|y) =

n∏
i=1

P (xi|y)

Overall, our Naive Bayes model becomes:

P (Y = y|X = x) =
P (Y = y)×

∏n
i=1 P (xi|y)∑

y′ P (X = x|Y = y′)P (Y = y′)

– conditional independence is justified by the fact that the class y must
be the underlying cause for each of the attribute values, and further,
a attribute value xi should have nothing to do with the value of x2
(i.e drawing a 3 in a bitmap image, it is the “threeness” that puts the
pixels into the disposition)

• Is Naive Bayes generative or discriminative?

– we are creating a probabilistic model (distribution) for each class, so
Naive Bayes is generative

– in particular, this allows us to create synthetic class instances

3.3 Naive Bayes: Continuous Example

We aim to use Naive Bayes to classify an individual (as adult or child), based
on weight and height. Our data is given by the following:

• hi: the height of the individual [numerical]

• wi: the weight of the individual [numerical]
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• yi: a (adult) or c (child) [categorical]

There are 4 adults and 12 children. Recall our Naive Bayes model:

P (Y = y|X = x) =
P (Y = y)×

∏n
i=1 P (xi|y)∑

y′ P (X = x|Y = y′)P (Y = y′)

Thus, we have the following components:

• P (Y = a)

• P (Y = c)

• P (wi|yi)

• P (hi|yi)

• P (wi, hi|yi)× P (Y = yi) = P (wi|yi)× P (hi|yi)× P (Y = yi)

The first 2 are straightforward:

P (a) =
4

4 + 12
=

1

4

P (c) =
12

4 + 12
=

3

4

For the remaining, we need to choose a model. Since we are dealing with
weights and heights, it makes sense to consider a Gaussian Distribution for each.
Thus, for adults:

µh,a =
1

4
×
∑
i,yi=a

hi

σ2
h,a =

1

4
×
∑
i,yi=a

(hi − µh,a)2

µw,a =
1

4
×
∑
i,yi=a

wi

σ2
w,a =

1

4
×
∑
i,yi=a

(wi − µw,a)2

and for children:

µh,c =
1

12
×
∑
i,yi=c

hi

σ2
h,c =

1

12
×
∑
i,yi=c

(hi − µh,c)2
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µw,c =
1

12
×
∑
i,yi=c

wi

σ2
w,c =

1

12
×
∑
i,yi=c

(wi − µw,c)2

Then the properties for our model can be easily computed. Define:

Gaussian(x, µ, σ2)

as the Gaussian for the parameters. Then:

P (wi|a) = Gaussian(wi, µw,a, σ
2w, a)

P (hi|a) = Gaussian(hi, µh,a, σ
2h, a)

P (wi|c) = Gaussian(wi, µw,c, σ
2w, c)

P (hi|c) = Gaussian(hi, µh,c, σ
2h, c)

P (wi, hi|a) = P (wi|a)× P (hi|a)× P (a)

P (wi, hi|c) = P (wi|c)× P (hi|c)× P (c)

So for example:

P (a|wi, hi) =
P (a)× P (wi|a)× P (hi|a)

P (wi|a)× P (hi|a)× P (a) + P (wi|c)× P (hi|c)× P (c)

The above model can result in the following:
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Figure 3: If we want to classify the X, notice its height is normal for a child, but
the individual is overweight. ON the other hand, it has the right weight for an
adult, but it is not as tall as expected. We would need to calculate probabilities
in order to make a sensible decision.

3.4 Naive Bayes: Discrete Example

Naive Bayes can also be employed in discrete examples. For example, consider
a spam classifier. The following is our data:

send us your password spam
send us your review ham

review your password ham
review us spam

send your password spam
send us your account spam

Using attributes as words, we can obtain the following table of probabilities:
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word P (word|spam) P (word|ham)
- 4/6 2/6

password 2/4 1/2
review 1/4 2/2
send 3/4 1/2
us 3/4 1/2

your 3/4 1/2
account 1/4 0/2

Say we get the message:
review us now

Firstly, since “now” is not part of our vocabulary, we just ignore it (see
further on whether this affects results).

Thus, we need only consider the phrase “review us”. Whenever we see
“review” or “us”, we use P (word|spam/ham), but for all the other words in the
vocabulary, we consider 1− P (word|spam/ham):

P (review us|spam) =

(
1− 2

4

)(
1

4

)(
1− 3

4

)(
3

4

)(
1− 3

4

)(
1− 1

4

)
= 0.0044

P (review us|ham) =

(
1− 1

2

)(
2

2

)(
1− 1

4

)(
1

2

)(
1− 1

2

)(
1− 0

2

)
= 0.0625

Hence, the probability that “review us now” is ham, given all the above data
is:

P (ham|review us now) =
P (review us|ham)× P (ham)

P (review us|ham)× P (ham) + P (review us|spam)× P (spam)

=
0.0625× 2

6

0.0625× 2
6 + 0.0044× 4

6

= 0.87

But notice: the message “review us” was spam in the data, but NB labels it
as ham. This is a consequence of the independence assumption.

3.5 Issues With Naive Bayes

• What 3 issues affect Naive Bayes?

1. Equal Distributions, Different Data

– it is well known that different data can have identical summary
statistics
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– thus, NB won’t work on data that is inherently different, but
have the same mean and variance

2. Zero-Frequency Problem

– it is possible that we encounter new words that are not in our
vocabulary (by Zipf’s Law, 50% of words will be new)

– this can lead to issues, particularly that some probabilities will
be set to 0 (for example, “account” did not appear in any ham
sentence)

– apply Laplace smoothing (add small quantity to all counts)

3. Conditional Independence

– in some cases, this is not a valid assumption

– for example, in sentences, word often times go together

– we can fool a NB classifier by including lots of instances of one
class

– Example : in the above discrete case, “review us” was flagged
as ham because “review” appears in all of the ham instances

3.6 Naive Bayes and Missing Data

• Is Naive Bayes reliable, even if data is missing?

– Yes! If data is missing in Naive Bayes, the strategy is to simply ignore
it in the computation (as we did with “now” in the discrete example)
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– say you have data, but the value of Xj is missing:

X1 = x1, . . . , Xj =??, . . . Xn = xn

But then the probability of the event is going to be:∑
xj

P (x1, . . . , xj , . . . , xn)

– if we apply the idea above to Naive Bayes:

P (x1, . . . , xj =?, . . . , xn|y) =
∑
xj

(
n∏
i=1

P (xi|y)

)

= P (x1|y)× . . .×

∑
xj

P (xj |y)

× . . .× P (xn|y)

= P (x1|y)× . . .× 1× . . .× P (xn|y)

=

n∏
i=1,i6=j

P (xi|y)

which is the same as if we had completely ignored xj
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