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1 Week 1 - Introduction to Dynamic Program-
ming
1.1 Motivation for Dynamic Programming
e Optimisation: finding the best possible solution to a problem
— we want to do so efficiently (polynomial time)

e Efficiency in Divide and Conquer: runtime heavily depends on the
number of problems, how they are combined, etc ...

— efficient for MergeSort, QuickSort

— can be inefficient if we have to to the same calculation many times

e Recursive Fibonacci: calculating Fibonacci recursively has exponential
runtime, as we are computing the same Fibonacci term an exponential
number of times

Algorithm Dyn-Fib(n)

1. Flol=0

2. Fl1]=1

3. fori+ 2tondo

4. Flil = Fli= 1+ F[i = 2]
5. return F[n]

Figure 1: We are calculating many terms many times (for example, F,,_4 needs
to be recalculated 4 times). Such an algorithm has runtime T'(n) = T'(n — 1) +
T(n—2)+06(1) > 1.6

¢ Dynamic Programming Fibonacci: instead of recalculating values,
just store previously calculated values in an array, and use these. This
allows ©(n) time:



Algorithm Rec-Fib(n)
1. if n=0 then
return 0
else if n =1 then
return 1
else

oo se W

return REC-F1B(n — 1)+REC-FIB(n — 2)

— this process is called memoisation

— it “turns recursion upside down”, building the recursion “from the
bottom up”

— in Python, we can use memoisation as a decorator, and apply it with
our standard recursive implementation

# The plain recursive implementation:
def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-1)+fib(n-2)

def memoize(f):
memo = {}
def check(s):
if s not in memo:
memo [s]=f (s)
return memo[s]
return check

Figure 2: The memoised function can then be run by fib = memoize(£fib)

1.2 Principles of Dynamic Programming

1.2.1 Principles Of Dynamic Programming
1. optimal solutions can be achieved by solving smaller subproblems
2. solution of problem can be expressed as a recurrence
3. solutions of subproblems can be stored in polynomial space

4. smaller subproblems are solved before larger ones



1.2.2 Applying DP: The Coin Changing Problem

e Problem Description: given an arbitrary set of coin denominations,
find a minimal collection of coins that add up to a value v € Ny

e Problem Solution: given a collection of k coins with values [¢1, ¢o, - -, ¢k,
an array S of length k, with S[i] indicating how many coins of value ¢; 41
are in the optimal solution

— we also use C(v) to denote the minimum number of coins required
to add up to v

e Developing Recurrence: it is easy to see that, if we have an optimal
solution, there exists a coin ¢; that must be part of this solution. So it
must be the case that:

Clv)=1+C(v—c)

Thus, for an optimal solution, we must have the following recurrence:

Cv) 1 v=c¢,1<i<k
V) =
1+min{Cv—¢)|1<i<k,c<v} otherwise

¢ Finding an Optimal Solution: from the above, if we can precompute
C(w)Vw € [1,v], then solving the recurrence is very easy. Thus, we get
the following “plan”:

1. create array C of length v+1, such that C[w] is the minimum number
of coins to obtain a value of w

2. we can compute solutions for C[0], C[1], - - - , C[v] using our recurrence
relation above

3. to reconstruct the sequence of coins required for an optimal solution,
store in an array P the value of a coin used to obtain the optimal
solution for w (store at P[w])

4. to build the list of coins, we just do:

— PJv] is optimal coin required to achieve v

— Plv — PJ[v]] is optimal coin required to achieve v — P[v]

— continue like this until we reach 0, at which point the sequence
Plv], Plv — P[v]],--- is the optimal sequence of coins we were
seeking

Looking online, most of the methods encountered use a matrix, but this
is much shorter and elegant.



Algorithm Dyn-Coins(v;cy,...,ck)

=

© NS s N

e
N o= o

13.

initialise array ¢ of length k to hold the ¢; values
initialise array S of length k (to 0s)
initialise arrays C, P of length v + 1 (to o)
Cl0] «0, C[1] «1 //We assume ¢; =1
for w—2tov //We work “bottom-up”
for i =1to k //We try all coin values
if (c[/] <w) and (Clw—c[ill+1 < Clw])
Clw] « 1+ Clw — clil]
Plw] « i
while v > 0 //Now we work back to build S
i — Plv]
Sl « Sl +1; v v—cli

return C[v] “is the number of coins. The solution is in array §”.

Figure 3: Lines 5 to 9 is the whole DP part, in which we compute the minimum
number of coins for each w on the way to v. In lines 7 to 9, we are constantly
rewriting the values of Cfw] and P[w] until we reach the minimum value. In
lines 10 to 12, we implement the rebuilding of the coin set required for the
optimal solution. Mary’s walkthrough is very thorough (Lecture 16, Part 4)

We consider v = 11, with coins 1,5,6 and 8.

C =10,0,0,0,0,0,0,0,0,0,0,0]

P =10,0,0,0,0,0,0,0,0,0,0,0]

. C[0] =0, P[0] = 0 trivially

C[1] = 1, P[1] = 0 trivially (the algorithm ignores there steps and sets
them up beforehand)

consider C'[2]

e the only values of the coins which are less than or equal to 2 is the
coin with value 1, so this will be the minimum value

Thus, C[2] =1+ C[2 —1] =1+ C[1] = 2. Moreover, P[2] =1, as 1 is the
only coin that can be used:

C =10,1,2,0,0,0,0,0,0,0,0,0]

P=10,1,1,0,0,0,0,0,0,0,0,0]


https://media.ed.ac.uk/playlist/dedicated/178337421/1_8a91ljg3/1_cthgnfd5

4. consider C[3]

e the only values of the coins which are less than or equal to 3 is the
coin with value 1, so this will be the minimum value

Thus, C[3] =1+ C[3 —1] =1+ C[2] = 3. Moreover, P[3] =1, as 1 is the
only coin that can be used:

¢ =10,1,2,3,0,0,0,0,0,0,0,0]
P=10,1,1,1,0,0,0,0,0,0,0,0]
5. consider C[4]

e the only values of the coins which are less than or equal to 4 is the
coin with value 1, so this will be the minimum value

Thus, C[4] =14 C[4 — 1] = 14 C[3] = 4. Moreover, P[4] =1, as 1 is the
only coin that can be used:

C =10,1,2,3,4,0,0,0,0,0,0,0]
P=10,1,1,1,1,0,0,0,0,0,0,0]
6. counsider C5]

e we now have 2 choices with values less than or equal to 5: the coin
of value 1, or the coin of value 5

Hence:
C[5] = 14+min{C[5-1], C[5—5]} = 1+min{C[4], C[0]} = 1+min{4,0} =1
Moreover, since we use the coin of value 5, P[5] = 5.
C=10,1,2,3,4,1,0,0,0,0,0,0]
P=10,1,1,1,1,5,0,0,0,0,0,0]
7. consider C[6]
e we now have the choice to use 3 coins (1,5,6)

Hence:
C[6] = 1+min{C[6—1],C[6—-5], C[6—6]} = 1+min{C[5], C[1],C[0]} = 1+min{1,1,0} =1
Moreover, since we use the coin of value 6, P[6] = 6.

C=100,1,2,3,4,1,1,0,0,0,0,0]

P=10,1,1,1,1,5,6,0,0,0,0,0]



8.

10.

11.

consider C[7]
e we now have the choice to use 3 coins (1,5,6)
Hence:
C[7] = 1+min{C[7-1],C[7-5], C[7—6]} = 1+min{C[6], C[2], C[1]} = 1+min{l,2,1} =2

By how the algorithm is constructed, the coin with value 6 would never
pass the if statement, so we have P[7] = 1. Thus:

c=10,1,2,3,4,1,1,2,0,0,0,0]
pP=10,1,1,1,1,5,6,1,0,0,0,0]
consider C'[8]
e we now have the choice to use all 4 coins
Hence:
C[8] = 1+min{C[8-1], C[8-5], C[8—6], C[8—8]} = 1+min{C[7],C[3], C[2],C[0]} = 1+min{2,3,2,0} =
Moreover, since we use the coin of value 8, P[8] = 8.
c=10,1,2,3,4,1,1,2,1,0,0,0]
pP=10,1,1,1,1,5,6,1,8,0,0,0]
consider C[9]
e we now have the choice to use all 4 coins
Hence:
C[9] = 1+min{C[9-1], C[9-5], C[9—6], C[9-38]} = 1+min{C[8], C[4], C[3],C[1]} = 1+min{1,4,3,1} =

By how the algorithm is constructed, the coin with value 8 would never
pass the if statement, so we have P[9] = 1. Thus:

C=100,1,2,3,4,1,1,2,1,2,0,0]
P=10,1,1,1,1,5,6,1,8,1,0,0]
consider C[10]
e we now have the choice to use all 4 coins
Hence:
C[10] = 14+min{C[10-1], C[10~5], C[L0—6], C[10—8]} = 1+min{C[9], C[5], C[4], C[2]} = 1+min{2, 1,4,
Moreover, since we use the coin of value 5, P[10] = 5.
C=100,1,2,3,4,1,1,2,1,2,2,0]
P=10,1,1,1,1,5,6,1,8,1,5,0]



12. consider C[11]
e we now have the choice to use all 4 coins

Hence:
C[11] = 1+min{C[11-1],C[11-5], C[11-6], C[11-8]} = 1+min{C[10], C[6], C[5], C[3]} = 1+min{2,1,1

By how the algorithm is constructed, the coin with value 6 would never
pass the if statement, so we have P[11] = 5. Thus:

C=100,1,2,3,4,1,1,2,1,2,2,2]
P=1[0,1,1,1,1,5,6,1,8,1,5,5]
Thus, we have found that C(11) = 2. To find which coins are required:
1. to get to 11, we had to use coin P[11] =5
2. to get to 11 - 5 = 6, we had to use coin P[6] = 6
3. 6-6 = 0, so we terminate, and the coins to use are 5,6

In the actual algorithm we would get an array S = [0,0,0,0,0,1,1,0,0,0,0,0],
corresponding to using one 5 coin, and one 6 coin

e Alternatives to DP:

— a recursive implementation would get stuck in the same problem
as Fibonacci, with redundant calculations occurring (for example,
constantly finding the best way to get value 5)

— agreedy implementation, by which we use the coins of greatest value
possible; a decent heuristic, but not optimal (for example, coins 1,5,7
and v = 18)

2 Week 1 - Seam-Carving

e Seam Carving: the process of removing/adding a “seam” of pixels to an
image to resize it without distorting the proportions of the objects in the
image

— we select a seam with the lowest energy



e Defining an Image: define as a matrix with m rows and n columns.
Objective is to turn an m X n image into an m’ x n’ image.

e Vertical Seam: a vertical collection of pixels in which any 2 consecutive
pixels differ horizontally by at most 1 pixel, and vertically by exactly 1
pixel

— if (4,7) is a pixel in the seam, then the only possible pixels below it
must be (i + 1,5 — 1) (below left), (i + 1,5) (below) or (i + 1,5 + 1)
(below right)

— can use j; to denote the column of a pixel in a vertical seam going
through row i

e Horizontal Seam: a horizontal collection of pixels in which any 2 con-
secutive pixels differ vertically by at most 1 pixel, and horizontally by
exactly 1 pixel

— if (¢,7) is a pixel in the seam, then the only possible pixels to its right
must be (i — 1,7 + 1) (right below), (i, + 1) (right) or (i 4+ 1,5 + 1)
(right above)

— can use i; to denote the row of a pixel in a horizontal seam going
through column j

e Energy of a Pixel: if (4,7) is a pixel, denote its energy by:
6[(7:, ])

— a classical example is a Sobel Operator. For a pixel (i, j),

0 0
eri,j) = |—1I +‘1
10:7) ‘&T i dy i
where:
-1 0 1
g: -2 0 2
u -1 0 1

10
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These operators are applied by convolving them on a 3 X 3 square
around (4, j) (we need to flip them on the axis of 0 to apply)

e Energy of a Seam: the sum of the energies of all pixels composing the
seams

e Recurrence for Optimal Seam: notice that if an optimal, vertical
seam ends at some pixel p, then all pixels above p must have conformed
an optimal seam of length m — 1

— if p = (m, jm), then the optimal seam of length m — 1 must have
ended at (m — 1, j,,,) (directly above), (m — 1, j,, — 1) (above to the
left) or (m — 1,7, + 1)

— the above are the only possibilities which allow for an existence of a
seam of ending at p that is optimal (if any of the 3 aren’t ends to an
optimal seam, the original seam of length m wouldn’t be optimal)

— but we have defined 3 new subproblems: what are the optimal seams
of length m — 1 that end at each of these pixels?

— in other words, an optimal seam of length m ending at a pixel (m, j,)
will have enrgy equal to the energy of this last pixel, plus the energy
of an optimal seam of length m — 1.

Given the above, we can then define a recurrence for the optimal (vertical)
seam energy, from somewhere in the first row (m = 1) to pixel (4, j):

i=1

optr(t,7) =ezr(i,5)+
pii(i,g) = er(iJ) {min{optf(i —1,7—1),0ptr(i —1,5),0ptr(i — 1,5+ 1)} otherwise

11



where 1 <i<m, 1 <j5<n

— we require e (i,1) = er(1,n) = oo, to ensure that the left/right sides
are never selected as part of the seams

The opt Array: the purpose of seam carving is to find the optimal path.
This is the same as finding the optimal seam with the lowest energy ending
at any of the pixels at row m. To do this, we create an m x n array, such
that opt[i, j] denotes the optimal value of any seam running from m = 1

to pixel (i,7) (so optli, j] = optr(i, 7).

The e Table: will be used to store precomputed values of all energy
values of any pixel (so e[i, j| = er(i,j) and naturally e[i, 1] = e[i,n] = oo
to avoid sides). This helps us readily access the available energies.

The p Table: used to know which pixels are part of the seam. To do
this:

— pli,j] = =1 if opt; (i, j) was computed via opt;(i — 1,5 — 1)
— pli, j] = 0 if opt; (i, ) was computed via optr(i — 1, 75)
— pli,j] = 1 if opt;(i,5) was computed via optr(i — 1,5 + 1)

We can then easily reconstruct the seam.

The Seam Carving Algorithm: we use the above tables, alongside the
recursion to develop the algorithm. It will go through each pixel, using
previously calculated optimal path energies to fill in the opt and p tables.
At the end, we find the pixel (call it p*) in the last row with the lowest
value. This means that there is a seam starting at m = 1 and ending at
p*, such that this seam is the seam of lowest energy in the whole image.
We then use the p array to rebuild the seam (if p* = (m, j*), then the
pixel before it will be (m — 1, j* + p[m, j*]).

12



Algorithm Vertical-Seam(I, m, n)

1. forj«—1ton
2. fori—1ltom
3. eli,j] « “compute e(/, )" //©(1) time
4. opt[l,j] & ell,/], p[1,j] — O //Base case
"B fori«— ltom
6. forj—1ton
| 7. optli, jl — optli — 1,1, pli,jl — 0 //default case
8. if optli — 1, — 1] < optli,j] then O(mn)
9. optli,j] + optli—1,j—1], pli,jl + —1
10. if optli — 1,j+ 1] < optli,j] then
11. optli, ] + optli — 1,j + 1], pli,jl + +1
12. optli, j] « optli, jl + eli,j] //Always add e[i, ]

13.
14.
15.
16.

JjTe2
forj—1ton
if opt[m, ] < opt[m, "] then j* « j

O(n)

Print(“Best vertical seam ends at cell (m,;")").

Lines 1 - 4: initialise e (containing precomputed energies of each pixel);
the optimal values for the first row are precisely the energies of the pixels
in the first rows; initialise p array.

Lines 5 - 12: execute the whole DP procedure; for each pixel (i,7),
initialise opt[i, j] with the minimum from all optimal seam energies above
it; then, add the energy at pixel (i,7) to obtain the energy of the seam
ending at (i, j)

Lines 13 - 16: go through all entries of opt in its last row, to find the last
pixel of the optimal seam (that is, the value of j in opt[m, j], such that
opt[m, j] is the smallest of all elements in row m)

Seam Carving Runtime: since we iterate over all pixels doing constant
time work, this is an O(mn) operation (we also do the same work in
initialising e). In the last part, we do O(n) work, as we just need to
iterate over 1 row. Thus, the total runtime for Seam Carving is:

O(mn)

A great video by 3BluelBrown on seam carving

13


https://www.youtube.com/watch?v=rpB6zQNsbQU

3 Week 1 - Edit Distance

e Edit Distance: the process of finding the minimum number of operations
(out of insertion, deletion and substitution) required to transform a string
into another

INTE+«NTION
EEEEE RN,
*EXECUTION

ds s is

Figure 5: The edit distance between the strings “intention” and “execution” is
5: 1 deletion (I — -), 1 insertion (- — C) and 3 substitutions (N — E, T — X,
N — U)

e Alignment of Sequences: there are many ways to align 2 sequences
of characters, such that the resulting alignment contains 2 strings of the
same length, with no “-” in the same column:

AACCGGTATT CTCTAGSGASTUC
AACCTATCT - - T AGGAC

A CCGGTATU CCTAGGAUC
AACC- - TATZ CTTAGGAC

Figure 6: Two possible alginments for a sequence of characters. We can add
padding to make sure that both sequences have the same length, but have to
ensure that padding isn’t present within the same column.

e Score of an Alignment: the total number of operations required to
produce a valid alignment of 2 sequences. Let s and ¢ be 2 sequences. An
operation at index i (so at s; and t;) can be described as:

— insertion: s; = —, but ¢; is a character
— deletion: s; is a character, but t; = —
— substitution: s; and t; are characters, but s; # t;

e The Edit Distance: the minimum number of operations required to
produce a valid alignment of 2 sequences

e Recurrence for Edit Distance: if we have an optimal alignment of 2
strings (s of length m, and ¢ of length n), then the last column must have
been arranged in 1 of 4 ways:

— both characters coincided, so nothing happened

14



— characters differed, so a substitution was made
— an insertion was made

— a deletion was made

Since the alignment was optimal, the edit distance must be the cost of the

last operation performed (0, or 1 if we did an insertion/substitution/deletion)

plus the minimum edit distance of the optimal alignment of one of:

—s[l,--- ,m—1]and t[1,--- ,n—1] (if s,, and t,, were both characters)
— s[1,---,m] and t[1,--- ,n — 1 (if an insertion was made aka — — t,,
in which case we still have the whole of s to compare)

— s[1,---,m—1 and ¢[1,--- ,n] (if a deletion was made aka s,, — —,
in which case we still have the whole of ¢ to compare)

Thus, the edit distance for s and m can be described recursively by:

d(s[l,--- ,m—1],¢1,--- ,n—1])

1+ min{d(s[l,--- ,m —1],t[1,--- ,n —1]),
d(s[l,---,m],t[1,--- ,n—1]),

d(s[l,--- ,m—1],t[1,--- ,n])}

n =0 (t has no characters le
m =0 (s has no characters

Sm = tm

This is impossible to do recursively: the tree generated would have 3™ {m:n}—1

leaves, but we would only have m x n possible states

The d Table: an (m + 1) x (n+ 1) table used to store the edit distance
of all possible substrings of s and m

— d[i,j] = d(s[1,- - ,i],t[1, -, j] corresponds to calculating the edit
distance between s[1,--- ,4] and t[1,--- , j]

— we have d[i,0] = ¢ (a string of length ¢ can only match a string of
length 0 if it performs i deletions) and d[0, j] = j (a string of length
0 can only match a string of length j if it performs j insertions). By
ensuring these cases are covered, we ensure that we correctly define
our recurrence for DP.

The a Array: used to reconstruct the optimal alignment of the 2 strings.
At each entry ali, j], stores a quaternary flag (0,1,2,3) to denote that the
last character of the alignment of s[1,--- 4] and t[1,--- ,j] was achieved
via:

— no action (0)

— substitution (1)

— insertion (2)

15



— deletion (3)

e The Edit Distance Algorithm:

Algorithm Edit-Distance(s[1...m],t[1...n])

=

[ = Sy Sa—
Bp o

© e N e R W

fori—0tom
dli,0] « i, ali,0] « 3
forje—0ton
d0,j] «— j, al0,j] « 2
for i — 1 to mdo
for j«—1to ndo
if s; = t; then
dlii,jl —dli—1,j—1]
ali,j] <0
else
dli,jl &« 1+ min{d[i,j—1],d[i —1,/],d[i — 1, — 1]}
if d[i,jl =d[i—1,j—1]+1 then a[i,j] — 1
else if min = d[i,j — 1] + 1 then a[i,j] — 2
else ali,j] — 3

Lines 1-4: initialise d when we are computing edit distance for empty
strings; if the second string is empty, we perform deletions (3); if the first
string is empty we perform insertions (2)

Lines 5-14: iterates over all possible cases, for all possible substrings of s
and t. The desired edit distance will be stored at d[m,n]. Notice that, for
any d[i, j] we only need to look at 3 other cells: d[¢i — 1, j] (above), d[3, j]
(left upwards diagonal),d[i, j — 1] (above)

Edit Distance Runtime: we do O(m + n) work in lines 1 to 4, and we
do mn O(1) actions for the rest. Thus, the total runtime is:

O(mn)

Worked Example: lets find the edit distance of s = HYUNDAI and
t = HONDA (not sponsored). The initial table after executing lines 1
and 4:

16



1. Comparing H

the human way of looking at this is noticing that “H” will match
with any substring of “HYUNDAI” only once (with the initial
“H”) so the edit distance is just going to be len(substring) — 1

the algorithmic way of looking at this is by looking at the cells
above, to the left, and to the left-top diagonal. If the last char-
acter matches, then the value is the diagonal cell. Alternatively,
it is just the minimum of these 3 cells 4+ 1

for example, for “H” and “H” these 2 match. Looking at the
diagonal (d[0,0]) it is 0, so d[1,1] = 0.

for “HY” and “H”, “H” and “Y” don’t match, so

d[1,2] = 1 + min{d[0,2],d[1,1],d[0,1]} = 1 + min{2,0,1} = 1
for “HYU” and “H”, “H” and “U” don’t match, so
d[1,3] = 1 4+ min{d[0,3],d[1,2],d[0,2]} = 1 4+ min{3,1,2} =2

if we continue we thus get

e
|
o| 4
w|d
ol -] 2

NS )
o ~1| =

> O Z|O| T
ol | | |

2. Comparing HO
— for “H” and “HO”, “H” and “O” don’t match, so

d[2,1] = 1 + min{d[1,1],d[2,0],d[1,0]} = 1 + min{0,2,1} = 1

this corresponds with the alignment “HO” “H-”

— again, continuing like this:
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H| Y U N D A |I

1123|4567

0|1 2|3 ]|4]|51|6

111123 |4]|5]|6

3. Comparing HON

H Y U N D A |I
Hl 2134|567
H|{1|0|1]|2]|3|4]5]|6
O|2|1 1|2 |3 |4|5]|6
N |3 |2 |2 |2]|2]|3]|]4]5
D |4/ - S I A A A
A |5 | - - |- -

— here, when comparing “HYUN” and “HON” (entry (3,4)), we
get that d[3,4] = 2. This is because the “N” at the end of the
substrings coincided, so for the edit distance we just consider the
diagonal d[2, 3] = 2 (aka we only need to match “YU” with “O”,
which requires a substitution and a deletion)

4. Comparing HOND

H| Y U N D|A|I
| EAEARNEREANAN
H|{1|0|1|2]3]|]4]5]6
O |21 1 2 3 4 | 516
N|(3|2 |2 |2]|2]|3]4]5
D| 4|3 |3[3|3]|2]|3]4
A |5 -|-1|-1|- - -

5. Comparing HONDA

H| Y| U N D|A|I
R EARNEREANAN
H|{1|0|1|2]3]|4]5]6
O |21 1 2 3 4 | 516
N|(3|2 |2 |2]2]|3]4]5
D| 4|3 |33 |3]|2]|3]4
A|5| 44|44 3|23

18



Thus, the edit distance of “HONDA” and “HYUNDAI” is 3 (we need
to turn “O” into “YU” and insert “I”

6. The a Table: to get padded sequences back, we consider the a table,
which is:

w|wlw|w|oom
ol ol ol o o|
wlw| ||| o d
W~ ool Z2
e E=INEIN NN )
ol oo oo o P

DO DN DN DN DO DO e

To make sense of these numbers (normally these tables are filled in
step by step, but it is helpful to understand the numbers)

a[3,4] = 0 because “HON” matches with “HYUN” (same ending
letter N)

al4,4] = 1 because “HOND” and “HYUN” have a substitution
D — N available

al2,0] = 3 because the only way to match the last character
of “HO” with “——" is if we delete “O”; similarly a[5,2] = 3
because the only way to match the last character of “HONDA”
with “HY” is by deleting “A” (think of “HY” as “HY— — —7;
after deleting the “A” we get “HOND—", which will match with
CHY — — _77)

a[2,5] = 2 because the only way to match the last character of
“HO” with “HYUND” is by inserting a “D” (think of “HO” as
“HO— — —7; after inserting the “D” we get “HO——D” which
will match with “HYUND?”)

The algorithm for reconstructing the padded sequence is thus:

to reconstruct the best alignment, we start at a[m, n]
let b be an array to hold the padded s
let ¢ be an array to hold the padded ¢
if:
* ali, j] = 0,1: insert s; into b, and ¢; into c¢. Then consider
t—landj—1
* ali, j] = 2: insert — into b, and ¢; into c¢. Then consider ¢ and
j — 1 (if we put 2, then we chose an insertion, so the padded
version of s must have nothing at index 1)
% ali, j] = 3: insert s; into b, and — into ¢. Then consider i —1
and j (if we put 3, then we chose a deletion, so the padded
version of ¢ must have nothing at index i)
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— once either i = 0 or j = 0, we just have a run of insertion/deletions
untili =0=j

7. Reconstructing the Padded Sequences Using the above, we can
traverse the table. We indicate with colour the letters (i, j) which we
consider. We start at [m,n] = [5,7]

!

ol —ol | o

| eo| po| = =] o =
INEIETNIINIENI Y N
ol b wof kx| | | T
| | | ot o o B
| | ol o o ~a1| 1

>0 Z 0oz
G | || =

Since a[5, 7] = 2, this means that we had to make an insertion. Thus,
we go to cell [5,6]. We need to add - to b and a ¢7 to ¢ (since HONDA
has a space, which must turn into an I match the end of HYUNDAT)

b=
c =11

H Y U N D A |I

o123 |4|5]6 |7

H 1|0 1 2 3141|516

O 2|1 11213 ]4]5 1|6

N|{3|2 2|22 |3]|4]|5

D 4|3 |3 |3 |3]|]2]|3]4

A5 4414|4323

Since a[5,6] = 0, we have a match, so we can insert s5 = A into b
and tg = A into c¢. We also decrease, so that i =4, j = 5:
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N IS RN Rl B
| | po| | | ro| <
| ol po| o o] w|
| ol ho| wo| wol | Z
W] wo| || o D
| | x| ot et o> P
GO NI R RN RN BN

Since a[4,5] = 0, we have a match, so we can insert s4 = D into b
and t5 = D into c. We also decrease, so that i = 3,5 = 4:

b=[—,A, D]

c=1[I,A,D]
H Y U N D A |I
o123 |4|5]6 |7
H| 1]0|1]2]3]|]4]|5]6
O|2|1 11213 ]4]5 1|6
N|{3 |2 2|22 )|3]|4]|5
D 4|3 |3 |3 |3 |2]|3]|4
A5 4414|4323

Since a[3,4] = 0, we have a match, so we can insert s3 = N into b
and t4 = N into ¢. We also decrease, so that i =2, j = 3:

b=[—,A,D,N]

c=[I,A,D,N)]
H(Y[U[N|[D[A]TI
0| 1|23 4]5]6]7
H|[1|0]|1|2][3[4[5]6
O|2[1[1]|2]|3[4]5]6
N|(3 |2 222345
D|4|3 3|3 |3 [2]3]4
A[5|4 4443 2]3

Since a[2, 3] = 2, we must’ve had an insertion, so we add - to b, and
insert t3 = U into c¢. We now have, after decreasing j, 1 = 2,5 = 2:

b= [_7A7D7N7_]

¢=[I,A,D,N,U]
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N IS RN Rl B
| wo| po| | | ro| <
| ol po| o o] w|
| ol ho| wl wol | Z
W] wo| || o D
| | x| ot et o> P
ol x| ot | o ~3| -

Since a[2,2] = 1, we must’ve had a substitution, so we insert so = O
into b, and insert t = Y into c¢. Then, after decreasing, we have
i=1,7=1

b=[-,A,D,N,—, O]

¢c=[I,A,D,N,U,Y]

| ol |~ ol | o
| ol bo| = = po| <
| ol no| | o w| S
| ol D] wo wol | 2
o] wo| | | ot T
| wo| | | | | P>
||| oo~

Since a[l, 1] = 0, we must’ve had a match, so we insert s; = H into b,
and insert t; = H into c. Then, after decreasing, we havei =0,j =0

b=[-,A D,N,—,0,H]
c=[I,A,D,N,U,Y, H]

H| Y| U N D A|I
1123|4567
0|12 |3 ]|4]|5]|6
17112 |3|4]|5]6
2121212345
31313 |3]2]|3 4
4 (4414 ]3]2]3
Now, since ¢ = j = 0, we terminate. Thus, our sequence, after
reversing b and c, is:
HO-NDA -
HYUNDATI

which clearly has edit distance 3 (1 substitution, 2 insertion), as we
expected
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e A short video on finding edit distance

23


https://www.youtube.com/watch?v=We3YDTzNXEk

4 Week 2 - All Pairs Shortest Paths

e All Pairs Shortest Paths: given a weighted digraph (edges have “weights”,
corresponding to a “cost” of traversing through said edges), determine the
minimum path cost between any 2 nodes u,v € V'

— path cost is the sum of all weights for edges conforming the path

e Expected Solution: given a digraph with n nodes we want a matrix
D € R™*", we want D[i, j] to be the shortest path between node i and j

e Digraph Without Cycles: if a digraph of n nodes has no cycle of
negative cost, then the minimum cost path between any 2 nodes (assuming
any path exists) will contain at most n — 1 nodes

— if a path is a minimum cost path with more than n elements, then
some element must have been repeated, implying that there must be
a cycle. A cycle can only provide a minimum cost path if it reduces
the total cost aka it is negative

e The Floyd Warshall Algorithm: Idea: consider finding the shortest
path between 2 nodes i, j by using vertices for the path only in a restricted
set:

Vi ={0,1,--- ,k—1}

For example, with 1}, we can’t use any vertex in V, so the shortest path
will only exists if 3(¢,7) € E. If V4, then our path is allowed to use the
node 0.

e The Matrix D<F: a matrix, such that D<¥[i, j] contains the shortest
path between the nodes i, j, by using only Vi to construct said path

e Path Cost Conventions:

— the path cost between a node and itself is 0
— if no path exists between 2 nodes, the path cost is co

% this includes when we restrict paths to only contain vertices in
Vi

e Floyd Warshall: Recurrence: notice, to construct D<**1  we can do
so using only D*. The only difference is that, for D<K*1 k € V},, ;. Thus,
there are two possibilities for the value of D<F+1[i j]:

— the minimum cost path between ¢ and j does not contain k, in which

case:
D<M, j] = D<F[i, j]

— the minimum cost path between ¢ and j does contain k, in which

case:
D<Fi, j] = D<F[i, k] + D<"[k, 4]
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Thus, we obtain the following recursion:

D<k+1[i .]} — 0 i :.7
’ min{D<¥[i, j], D<F[i, k] + D<F[k,j]} otherwise

where we use the base case:
0 i=7
D=, j] = qw(i,j) i#j, (i,j)€E
o0 i# 3, (i,5) € B
e The Floyd Warshall Algorithm for All Pairs Shortest Paths

Algorithm FloydWarshall( G, w)

1. Initialise D=? using Base case details

2. fork=0ton—1do

3 fori=0ton—1do

4, for j=0to n—1do

5. D=, ] e D=*[j, ] //Default option

6 if j # i and (D=*[i, k] + D=¥[k,j]) < D=**1]i, ]
7 D=KtY(j j] & D=<k[i, k| + D=*k, j]

8.

return D="*1

Figure 7: In practice, we only need 2 matrices: D<* and D<**!. The all pairs
shortext paths matrix is D<"*!. Moreover, given that constatn time is done in
3 for-loops, runtime is O(n?)

e Getting the Shortest Path: to get the shortest path between 2 nodes,
we create a matrix II<*, such that IT<F[i,j] = p, where p is the node
before j in the shortest path:

— if the shortest path doesn’t include k, then TI<F*+1[i j] = IT<¥[i, j]
— otherwise, IT<F+1[i j] = IT<k[k, j]

5. D=K+1[j j] e D=[i, j] / /Default option

M<K+ j]  TT<[i, j] //Copy "predecessor” (of j) too
6. if j # i and (D<[i, k] + D<¥[k, jl) < D<¥*1[i,j]
7. D=k[i, j] « D=K[i, k] + D=¥[k, j]

n.::.& Tl ]'[.f,j] — n-c.‘k[k'j]
// "Predecessor” (of j) is from the D=¥[k, j| subpath
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e Walkthrough: Tutorial 6, Question 2

-k=0:
We initialise the matrix D<C. This is basically an adjacency matrix,
but instead of 0 or 1, we put in the weights:

0 1 2 3 4
0r0 2 4 oo 5
1 [co O 3 oo 2
2 oo 1 0 oo o
311 oo oo 0 2
4 loo o 2 o 0

—k=1
Now, we allow paths to go through the vertex 0. It would be tedious
to do it one by one, so we can use (Math Gods, please look away)
“matrix sum”: given a column and a row vector, we can create a
matrix given by a pairwise sum of the elements in each. For example:

1 11 12 1.3
2 +[01 02 03]= |21 22 23
3 32 32 33

For D<F*+1 we use D<F by considering its k" column (which includes
all distances from every vertex to k), and its k** row (which includes
all distances from k to every vertex). Thus, the “matrix sum” of C
and Ry will produce a matrix where the [7, j] entry will be the value
of D<F[i, k] + D<F[k, j]. Then, it is very easy to compare this matrix
with the original D<F matrix to see whether including k actually
provides an improvement. We must notice that in the “sum matrix”,
we omit the k" row and column, as they would be nonsensical (if
1 = k, we would be adding the distances of k to k, to the distance of
k to j, which is just going to be the distance of k to 7).
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Thus, the sum matrix of D<! will be given by:

0 or—- - - - -
o0 1 |— o0 oo oo oo
00 —1—[0 2 4 o 5} = 2 |- o0 o oo o
1 3 |— 3 5 o0 6
o0 4 [ o0 ™o oo oo

And now we compare D<Y to the sum matrix, to see if any “cell” has
a lower path cost:

0 1 2 3 4 0 1 2 3 4
0r10 2 4 o0 5 or- - - - =
1 [co O 3 oo 2 1 |— o0 o0 oo o
2 oo 1 0 oo oo 2 |— o0 o0 oo o™
3|1 oo oo 0 2 3 |[— 3 5 oo 6
4 loo oo 2 oo O 4 [ o0 oo oo oo

Some cells have changed, so some paths improve by including 0.
Thus:

0o 1 2 3 4

0ro 2 4 oo 5

1 oo 0 3 oo 2

D= 2 |loc 1 0 oo oo

3|11 3 5 0 2

4 oo o0 2 oo 0

-k=2
The sum matrix of D<? will be given by:

o 1 2 3 4
2 0 fco — 5 oo 4
0 1 |- - - - _
1|+fo0 03 c0 2]=2]cc — 4 oo 3
3 3 lcc = 6 oo 5
0 4 loo — o0 o0 00

And now we compare D<! to the sum matrix, to see if any “cell” has
a lower path cost:
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0 1 2 3 4 o 1 2 3 4
0ro 2 4 oo 5 0 [co — 5 oo 4
1 Jloo 0 3 o 2 1 /- - - - -
2 oo 1 0 o0 o 2 loo — 4 oo 3
3 |1 3 5 0 2 3 |lc — 6 oo 5
4 loo o0 2 o 0 4 oo = o o o0

Some cells have changed, so some paths improve by including 1.
Thus:

o 1 2 3 4

0ro 2 4 oo 4

1 Joo 0 3 oo 2

D?= 2 |cc 1 0 oo 3

311 3 5 0 2

4 loo o0 2 o0 O

-k=3
The sum matrix of D<3 will be given by:

0o 1 2 3 4
4 0 [co 5 — oo T
3 1 Joo 4 — oo 6
O +fcc 1 0 o0 3= 2 |- — — — ~—
5 3 o0 6 — oo 8
2 4 loco 3 — o0 b

And now we compare D<? to the sum matrix, to see if any “cell” has
a lower path cost:

0 1 2 3 4 0o 1 2 3 4
0ro 2 4 oo 4 0 [oo 5 — oo 7
1 [co 0 3 o0 2 1 oo 4 — o ©6
2 oo 1 0 oo 3 2 |- - - —
3 |1 3 5 0 2 3 oo 6 — oo 8
4 loo o0 2 oo O 4 loo 3 — o 5

Some cells have changed, so some paths improve by including 2.
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Thus:

o 1 2 3 4

0ro 2 4 oo 4

1 oo 0 3 oo 2

D= 2 |ec 1 0 oo 3
311 3 5 0 2

4 loo 3 2 o O

—k=4
Looking at the graph, no edge actually goes into node 3, so no path
can actually go through 3, so:

D<4 _ D<3
-k=5
(Last one!) The sum matrix of D<° will be given by:

o 1 2 3 4
4 0 [oo 6 6 oo —
2 1 oo 4 4 o0 -—
340 2 2 00 0= 2|0 5 5 o0 -—
2 3 oo 4 4 o0 -—
0 4 1= - - - _

And now we compare D<* to the sum matrix, to see if any “cell” has
a lower path cost:

W W O N =

N OO Wk N

8 o888 w

O N W N

=~ w N = O
8888°
=~ Ol i O =
=~ Ol i O N
8888w

|

0

0
00
00

1
00

= w N = O

Some cells have changed, so some paths improve by including 4.
Thus:

D<5 —

W Wk ON
N O W N
8 o8 88 w
O N W N

0

0
00
00

1
00

= w N = O

and this is our final, shortest path array.
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5 Week 2 - Probabilistic Finite State Machines
and the Viterbi Algorithm

6 Week 3 - Context Free Languages and Gram-
mars

6.1 Context Free Grammars and their Language

e Context Free Grammar: a CFG G is composed of:

terminals: a set ¥ of terminals represent concrete objects. For
example, “cat”, or “2”7. Allow us to form sentences with meaning.

non-terminals: a set N, disjoint from 3, they provide a structure
to the sentences we can form. For example, “2” is an instance of a
Number, and “2+2” is an instance of an Arithmetic-FExpression. We
can build Arithmetic-Ezpression by using Number.

productions: a finite set P, which allow us to “map” non-terminals
to non-terminals/terminals. That is:

X —a ae(ZUN)", XeN

is a production, which says “« is an instance of X”

start symbol: an element S € N, such that any sentence of the
grammar can be derived (by applying the productions of the gram-
mar) from it

CFG are context-free because a production allow us to always derive a
terminal, independently of any context. CFGs allow us to nest phrase
structures as much as possible (see below)
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Terminals: +,%,(,),x,y,2,0,...,9.
Non-terminals: Exp, Var, Num.

We designate the non-terminal Exp as the start symbol.

Rules:
Exp — Exp + Exp
Exp — Exp = Exp
Exp — Var | Num | ( Exp)
Var - x|y | z
Num — 0| 1|2 3] 4|
5|6 | 7|89

Figure 8: A CFG for arithmetic expressions. Since S = Fxp, this means that
any setnece that we derive from the grammar can ultimately be expressed as an
expression. We can derive sentences such as “0+(2*5)+y”

e Sentential Forms: in essence the sentences that we can derive from the
grammar. They are any sequence of terminals and non-terminals that can
be obtained from applying the rules of the grammar. For example:

5% (z + Exp)
is a sentential form of the above grammar
e Sentences: a sentential form consisting only of terminals

e Set of Sentential Forms Derivable from a Grammar: a set S(G) is
the smallest subset of (N U X)* such that:

— the start symbol is in S(G):
S eS9)

— if a sentential form containing a non-terminal is in S(G), then any
sentence derived from it via a production must also be in S(G):

aXpeSG), X »veP = ayBeS9)

e Language: a language associated with a grammar is the set of sentential
forms containing only terminals (aka the set of all sentences derivable from
the grammar). Symbolically,

L(G)=8(G)n¥”

e Context-Free Language: a language which can be derived from a CFG
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6.2

Syntax Trees

Syntax Trees: allow us to break down a sentence into its atoms, in order
to see if can be derived from a grammar. In essence, the grammar of
language defines all the syntax trees that are possible

Exp
Exp * Ex Exp = Exp=*Exp
| / | \ == MNum * Exp
Num = MNum * (Exp)
( Exp ) P
| / | \ =+ Num * (Exp + Exp)
5 Exp + Exp = 5= (Exp+ Exp)
| | = 5% (Exp+ Num)
\Var Num = &% (Var + Exp)
| | =+ 5= (x+ Exp)
X 3 = bB=(x+3)

The above tell us that the sentence 5*(x+3) is a derivable expression from
the grammar given above. Notice that the start symbol is what is used as
part of the root of the tree. A sentence can also be derived by considering
the sentential forms that can be derived form the start symbol.

Structural Ambiguity: do to the structure of some grammars, some
strings may be generate by more than one syntax tree (for example, 14243
can be thought of as 1+ (2 + 3) or (1 + 2) + 3). Because of this, we can
make 2 types of derivations: left and right derivations

— left derivation: read string from left to right. For example, for
Tr+T*x

FExp = FExp+ Exp
Var + Exp
x+ Fxp

x + Expx Exp
z+ Varx Exp
x4+ VarxVar
r+xx Fxp

Frreilil

T+ x*xx

— right derivation: read string from right to left. For example, for
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r+r*xx

Exp — Expx* Exp
Ezxp*xVar
FExpxx
Exp+ Fxpxx
Exzp+Varx*xzx
Var +Varxx
Var+xxzx

— T+ xr*x

7 Week 3 - The CYK Algorithm

7.1 Chomsky Normal Form

e The Parsing Problem: going from a string of terminals to a syntax tree

e Chomsky Normal Form: is a grammar is CNF, then there is an algo-
rithm (CYK) which allows us to parse any sentence.

— any CFG can be turned in to CNF, so CYK can help parse any CFG

e Structure of CNF: CNF specifies what the right side of a production
must be. Only allow RHS to have at most 2 symbols:

— either 2 non terminals

X—->YZ
— or 1 terminal
X =«
Terminals: book, orange, heavy, my, very

Non-terminals: NP, Nom, AP, A, Det, Adv
Start symbol: NP

NP — Det Nom

Nom — book | orange | AP Nom
AP — heavy | orange | Adv A
A — heavy | orange

Det — my

Adv — very

Figure 9: Notice that in making a grammar CNF, some redundancies might
arise. For example, we could simply define AP — A|AdvA, but this wouldn’t
be allowed by CNF.
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7.2 The CYK Algorithm

e CYK Algorithm: a dynamic programming algorithm used to recognise
whether a sentence can be derived from a grammar

e Recurrence in CYK: given a string, we can split it into substrings, by
including markers between words:

“my very heavy orange book — “0 my 1 very 2 heavy 3 orange 4 book 5”

For example (0,1) represents the substring “my”, and (2,5) represents
the substring “heavy orange book” The recurrence arises by acknowledg-
ing that any substring must be derived from others substrings, until we
eventually reach terminals

e The a Array: we store our results in a table. If a sentence has n words,
then a will be an n x n array. We index the entries by using 0 <¢<n-—1
and 1 < j < n, such that a[i, j] represents the non-terminal that would get
mapped to the substring (i,7). For example (2,5) (heavy orange book)
can be parsed as a Nom, so:

al2,5] = Nom
If there are multiple interpretations, store both.

— notice that we will only populate the upper right part of the table, as
we require i < j (otherwise we would be considering null substring)
— entries for which j = ¢ 4 1 refer to parsings of single words

— entries above the main diagonal mean that we are parsing a substring
containg at least 2 words

e The CYK Algorithm:
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CYK (s,G): # s=input string, G=CNF grammar
n = length(s)

allocate table|0,...,n—1][1,...,n]
forj=1ton # columns
for( X =>t)e G
if t = s[j—1]
add X to table[j—1,j] # diagonal cell
for i = j—2 downto 0 # rows
fork =i+1toj—1 # possible splits

for (X = YZ)e G
if Y € table[i,k] and Z € table [k,j]
add X to table[i,j] # non-diagonal cell
return table

Figure 10: Notice the importance of CNF: it allows us to check only 2 cases:
productions that end in terminals, and productions that end in 2 non-terminals

e Lines 1-2: create table a

e Lines 3-6: check, for each word in the sentence, whether there is a pro-
duction that derives said word. If so, fill in the appropriate diagonal.

e Lines 6-11: now, we look at the rows above the diagonal, checking if
there are non-terminals that derive the subexpression. For example, if
we have “heavy orange book”, we would check to see if there is any non
terminal that fits “heavy” + “orange book” or “heavy orange” 4+ “book”.
Naturally, these can be seen recursively from the table itself.

e CYK runtime analysis: due to the nested for loop, given a grammar of
m elements, the runtime will be ©(mn? (Theta(n?) if grammar is fixed).
Using CNF allows us to have a relatively low runtime (for example, if we

allowed ternary productions, X — ABC' this would increase the runtime
to O(nt))

e Example Walkthrough: want to know if
“my very heavy orange book — “0 my 1 very 2 heavy 3 orange 4 book 5”7

is part of the grammar
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Terminals: book, orange, heavy, my, very
Non-terminals: NP, Nom, AP, A, Det, Adv
Start symbol: NP

NP — Det Nom

Nom — book | orange | AP Nom
AP — heavy | orange | Adv A
A — heavy | orange

Det — my

Adv — very

Figure 11: See John’s walkthrough

We prepare the table:

1 2 3 4 5
orange

We will go left to right, down to up, just because it is easier to read and
understand

1.i=20
— this is easy to fill in: we just need to consider (0,1) = “my”
— checking the grammar, we see that the only possibility is Det

1 2 3 4 5
orange

orange

2.i=1
— we first check (1,2) = “very”. We see that this is a Adv
— next, we need to check whether (0,2) = “my very” can be con-

structed from any other subsentence. Notice: “my” has been
found to be a Det (see (0,1)), but “very” was found to be a Adv
(see (1,2)). There is no structure in the grammar of the form Det
Adv; hence, “my very” is not a valid sentence of the grammar
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— thus we get:

1 2
my | very

3 4 5
heavy | orange | book

very Adv

3.i=2

— we first check (2,3) = “heavy”. We see that it can be 2 things:
AP or A. We need to include both.

— next, we check whether (1,3) = “very heavy” can be constructed
from any other subsentence. Notice: “very” has been found to
be a Adv (see (1,2)), but “heavy” was found to be a AP or A
(see (2,3)). Thus, we need to check whether Adv AP or Adv A
are valid in our grammar. Indeed, we see that Adv A is of type
AP, so “very heavy” is of type AP

— lastly, we check whether (0,3) = “my very heavy” can be con-
structed from any other subsentence:

* consider “my very” + “heavy”. We saw “my very” is not
valid in the grammar ((0,2)), so this won’t work

* consider “my” 4+ “very heavy”. We saw “my” is a Det
((0,1)), and “very heavy” is AP. There is nothing in the
grammar of type Det AP, so this isn’t valid either.

— thus we get:

4.i=3

4 5
orange

— we first check (3,4) = “orange”. We see that it can be 3 things:
Nom or AP or A. We need to include the three.

— next, we check whether (2,4) = “heavy orange” can be con-
structed from any other subsentence. Notice: “heavy” can be A
or AP (see (2,3)), but “orange” was found to be a Nom or AP
or A (see (3,4)). Thus, we need to check whether there is any
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combination of these which are valid in our grammar. Indeed,
we see that the only valid combination is AP Nom, of type Nom,
so “heavy orange” is of type Nom

next, we check whether (1,4) = “very heavy orange” can be
constructed from any other subsentence:
* consider “very” + “heavy orange”. “very” is a Adv ((0,2)),
whilst “heavy orange” is a Nom. There is nothing of type
Adv Nom, so this is a no go

x consider “very heavy” + “orange”. “very heavy” is AP
((1,3)), whilst “orange” can be Nom, AP or A. Again, AP
Nom works (only such combination), so “very heavy orange”
is of type Nom

lastly, we check whether (0,4) = “my very heavy orange” can be
constructed from any other subsentence
* consider “my” + “very heavy orange”. “my” is Det ((0,1)),
whilst “very heavy orange we have found to be Nom ((1,4)).
Indeed, Det Nom is NP in our grammar, so this is valid
* consider “my very” + “heavy orange”. “my very” is not valid
((0,2)), so ignore
x consider “my very heavy” + “orange”.
not valid ((0, 3)), so ignore

“my very heavy” is

thus we get:

j 1 2 3 4 5
i my | very | heavy orange book
0 my Det NP -
1 very Adv AP Nom -
2 heavy A, AP Nom -
3 orange Nom, AP, A -
4 book -
i=4

— we first check (4,5) = “book”, which can only be a Nom

next, we check whether (3,5) = “orange book” can be con-
structed from any other subsentence. Notice: “orange” can be a
Nom or AP or A (see (3,4)), but “book” can only be a “Nom”.
Thus, we need to check whether there is any combination of these
which are valid in our grammar. Indeed, we see that the only
valid combination is AP Nom, of type Nom, so “orange book” is
of type Nom

next, we check whether (2,5) = “heavy orange book” can be
constructed from any other subsentence:
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x consider “heavy” 4 “orange book”. “heavy” is A or AP
((2,3)). “orange book” is Nom ((3,4)). Again, AP Nom is
the only valid combination, so it can be of type Nom

* consider “heavy orange” + “book”. “heavy orange” is a Nom
((2,4)). “book is a Nom ((4,5)). Nothing is of type Nom
Nom, so a no go

— next, we check whether (1,5) = “very heavy orange book” can
be constructed from any other subsentence:

x consider “very” 4 “heavy orange book”. “very” is an Adv
((1,2)), whilst “heavy orange book” is Nom ((2,5)). There
is nothing of type Adv Nom, so no go

* consider “very heavy” + “ orange book”. “very heavy” is
a AP ((1,3)). “orange book” is Nom ((3,5)). AP Nom is
valid in the grammar, so the sentence can be a Nom

* consider “very heavy orange” 4 “book”. “very heavy or-
ange” is a Nom ((1,4)), whilst “book” is a Nom. Nom Nom
is not valid in the grammar so no go

Thus, “very heavy orange book” is a Nom
— lastly, we check whether (0,5) = “my very heavy orange book”
can be constructed from any other subsentence

* consider “my” 4+ “very heavy orange book”. “my” is Det
((0,1)), whilst “very heavy orange book” was have found to
be Nom ((1,5)). Indeed, Det Nom is NP in our grammar,
so this is valid

x consider “my very” + “heavy orange book”. “my very” is
not valid ((0, 2)), so ignore

* consider “my very heavy” + “orange book”. “my very heavy”
is not valid ((0,3)), so ignore

x consider “my very heavy orange” 4+ “book”. “my very heavy
orange” is NP ((0,4)). “book” is “Nom”. Nothing in the
grammar is of type NP Nom, so a no go

Thus, “my very heavy orange book” is NP
— thus we get:

j 1 2 3 4 5
i my | very | heavy | orange | book
0 my Det NP NP
1 very Adv AP Nom | Nom
2 heavy A, AP | Nom | Nom
3 orange Nom | Nom
4 book Nom

Since al0, 5] is NP, which is the start symbol of the grammar, “my
very heavy orange book” is valid in the grammar
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e Constructing Syntax Tree from CYK: we know if a sentence is valid
in a grammar, but not how to break it down. To do so, we just need to
keep pointers to the substructures that allowed us to determine the value
of any entry (i,7). For example, to determine that (1,4) = “very heavy

orange” was a Nom, we used the fact that a[l,2] = “very” is a Adv, and
a[2,4] = “heavy orange” is a Nom. Thus, in a separate table b, we could
let:

b[174] = [(17 2)7 (2’4)]

which gives us pointers to the component elements of any subsentence.

jl|1 2 3 4 5
i my | very | heavy | orange book
0 my | Det< NP NP
1 very Advc{-AP< | Nom Nom
2 heavy A AP | Nom Ngm
3 orange Nom,A AR { Nom
4 book Nom

Figure 12: |Notice, rotating your head 45° allows you to “see” the syntax tree.
See John doing this.

By how the CYK executes, it will find all possible syntax trees for any
given expression.
7.3 Converting to Chomsky Normal Form

e Converting CFG to CNF: ig G is a CFG, then we have an algorithm
which allows us to develop a CNF equivalent G’

— it might be inequivalent only if G allows the possibility of an empty
string, but this can be easily added after the algorithm is done

e The Algorithm: we use an example grammar to illustrate the algorithm:
S—=TT | [5] T—el|(T)
where:

— [,,(;) represent terminals
— T, S are non-terminals

— € represents an empty string

1. Identify Non-Terminals Which can Derive the Empty String

— we store these in a set F
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— these can be terminals which lead to e directly (as is the case for
T, as T — € is a valid production), or indirectly (as if the case
of S, as S — TT is a valid production, and it can be the case
that, if T =€, then S — ee =€)
— thus, we would have:
E= {Sv T}
2. Remove all € Productions

— if there is an element in the RHS of a production, and said ele-
ment is in F, then we can create a new production which doesn’t
include this element:

X —-aYpB and Y € E then add X — af

— this makes sense, as those elements in E are those that lead to €
so they can be “ignored”

— for S:
x* S—=TT: T e FE, soif we remove a T, we get the production:

S—T

It would be non-sensical if both were €, as then we would be
adding a production S — € when what we are trying to do
is remove €

x S — [S]: S € E, so we remove S from RHS, and get the
production
S =1
— for T

* T — e this is exactly what we want to eliminate, so just
remove this production

* T — (T): T € E, so just remove the T from RHS to get the
production:
T — ()

Thus, our grammar now becomes:
S=>TT|T[SII] T—@]0

3. Remove Unit Production
— if Y = a,and X — Y, then the production Y — « is redundant,
and can be included directly as part of X

— after removing these unit productions, all the RHS of the pro-
ductions will either be a single terminal, or a bunch of symbols

— the only unit production is S — T. Adding its effects to the
RHS of S, the new grammar is:

S=TT[(M[OISIT  T=MI0
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4. Remove Terminals

— we can create new productions/non-terminals whose only pur-
pose is to produce terminals

— this makes it so that the RHS of productions only contain either
non-terminals or terminals:

and we have added:
Zc=>( 2= ( Z1—=[ 2 -]

5. Replace Productions With More Than 3 Non-Terminals in
RHS

— the last step is to ensure that every RHS of non-terminals only
contain 2 non-terminals

— this can be done by “grouping” the non-terminals. If X —
Y1Y5---Y,, then create new non-terminals Ws,--- , W, 1, such
that:

X — Y1W27 ceey Who1 = Yn_1Ya,

— for example, for the production S — Z;SZ; | Z(T Z), then we can
define:
W — T2 V —=T2Z

such that S — Z;SZ) | Z(TZ) becomes:
S—ZV|zZw

e Worked Example:

5 — NPVP PP — Pre NP

5 — IVPPP Vo = ate
NP — DetN Det — the|a
VP —  afe NP N = fork | salad
VP = ¥V Pre — with

We now convert the above CFG to a CNF. Since there are no ¢, we don’t
have a set F, so we can omit steps 1 and 2

— Remove Unit Production
There is only 1 unit production, namely VP — V. Since V — ate,
we introduce:
VP — ate
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— Remove Terminals
We need to create non-terminals for I, ate, the, a, fork, salad, with,
which we do by capitalising their first letter:

I—1T Ate — ate The — the

A—=a Fork — fork Salad — salad With — with

We then introduce these new non-terminals into the RHS with more
than 1 term:

S—IVPPP VP — Ate NP

— Replace Productions With too Many Non-Terminals
We can see that S has 3 terms, so introduce a production :

X —->VPPP

such that:
S—1X

Then, after removing unused values (such as V', and any non-terminal
production for terminals), we get:

5 — NPVP I — I
PP — Pre NP Ate —  ate
5 = 1IX Det — the|a
X —= VPPP N —  fork | salad
NP — DetDN Pre — aith
VP —  Ate NP
VP —  ate

After this transformation we then need to transfer back to the toriginal
CFG.

8 Week 4 - The LL(1) Algorithm and Predictive
Parsing

8.1 Predictive Parsing
e Token: a character from an input string

e Predictive Parsing: a ©(n) method for parsing a string of length n.
Given a CFG, and a token from a string, it tries to derive a non-terminal
that should be expanded in the next step of the parsing.
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stmt
if-stmt
while-stmt
begin-stmt
stmt-list
assg-stmt
bool-expr

compare-op

N 2R

if-stmt | while-stmt | begin-stmt | assg-stmt
if bool-expr then stmt else stmt

while bool-expr do stmt

begin stmt-list end

stmt | stmt ; stmt-list

var := arith-expr

arith-expr compare-op arith-expr
<|>|<=|>=|=|1=

Figure 13: For the above grammar, if we get a token begin and we know that
the start symbol is stmt, then we predict that we will be given a begin-stmit.
Thus, we expect that the sentence we have been given is of the form begin
stmit-list end. Thus, our non-terminal to expand will now be stmt-list end.
Here we are being lax: what we are predicting is the production that we will
use next. For example, we know that stmt — begin — stmt, and given the
begin, we know that stmr — beginstmt — listend

8.2 LL(1)

e LL(1) Grammar: a grammar, such that given a current token, and a
non-terminal to be expanded, we can always predict the next production
that we must use

— LL(1) stands for: build input from left, build leftmost derivation and
look only 1 token ahead

— the above grammar is not LL(1), as there is still some ambiguity.
For example, stmt-list can have production stmt — list — stmt or
stmit — list — stmt; stmt — list no matter what token we read next.

— this can be fixed by:

stmt — list — stmt stmt — tail

stmt — tail — € | ; stmt stmt — tail

which eliminates all redundancy
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From the if, now see that the next two rules must be:
stmt-list — stmt stmt-tail
stmt — if-stmt
if-stmt — if bool-expr then stmt else stmt
The whole derivation so far:
stmt — begin-stmt
begin stmt-list end
begin stmt stmt-tail end
begin if-stmt stmt-tail end

L1l

begin if bool-expr then stmt else stmt stmt-tail end
Figure 14: With the LL(1) grammar, if the next token is an if, this is the

derivation we can make

8.2.1 Parse Table

e Parse Tables: given a token and a non-terminal, allow us to determine
which production to apply next

— if a grammar is not LL(1), then such parse tables can’t be built

— if a sentence is not part of the grammar, then parsing via parse tables
will fail

¢ Example Grammar and Parse Table: consider the grammar:
S—el|TS T — (5)

This has parse table:

L ) $
S| 5—2TS S—e¢ S—e¢

T | T—=(S)

Figure 15: The blank entries indicate situations that should never arise with
legal input; if they arise, the sentence is invalid in the grammar

For example, if we get a token “(”, and our non-terminal symbol to expand
is 9, then the appropriate production for the grammar will be S — T'S;
that is, we expect T'S after the “(”.

e End of Input Marker: the $ symbol allows us to know when the string
ends
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8.2.2 LL(1) Parsing
For parsing, we use a table with 3 columns:

e Operation: whether we use a token and a non-terminal to find the pre-

dicted production (from the parse table), or whether the token matches
with what is predicted

e Remaining Input: the sentence to parse. Tokens get removed if there is
a match with the predicted sentence. For example, if our sentence is abe,
and we predict something of the form aX, we would seek to parse bc

e Stack State: used to store the predicted form for the remaining input.
As we parse tokens, non-terminals get added (lookup) or removed (match)

This seems abstract, so we work through an example (see John’s walk-
throughl). We consider the string (()), with start state S

Operation | Remaining Input | Stack State

- (0)$ S

We have token “(” and non-terminal state S. We do a Lookup on the table,

and we predict a production S — T'S. Thus, we add this information to the
table:

Operation | Remaining Input | Stack State

- ()3 S
Lookup (, S ()8 TS

Table 1: Notice that we have changed the S by T'S, as per the production. The
input doesn’t change, as we haven’t been able to match.

Again, token “(”, but non-terminal T, which yields production T" — (.5):

Operation | Remaining Input | Stack State
- (0)$ S
Lookup (, S (0)% TS
Lookup (, T ()% (S)S

Now, we get token “(”, and a matching terminal from the stack “(”, so we
can change the remaining input entry:

Operation | Remaining Input | Stack State

(0)$ S

LOOkL;p (,S ()% TS
Lookup (, T ()% (S)S
Match ( 0))$ S)S
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‘We continue as above:

Operation | Remaining Input | Stack State
- ()3 S
Lookup (, S ()8 TS
Lookup (, T ()3 (S)S
Match ( )% S)S
Lookup (,S ())$ TS)S
Lookup (,T ()8 (S)S)S
Match ( ))$ S)S)S
Lookup ),S ))$ )S)S
Match ) )$ S)S
Lookup ), S )$ )S
Match ) $ S
Lookup $, S $ -

Thus, since we reach an empty stack, (()) is part of the grammar!
Notice, failure can arise:

e if the stack empties, but there is still input left (excluding $)

e token and terminal can’t be matched (i.e “(” is token, but we were ex-

pecting “)”)
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8.2.3

There is also an algorithm for building parse tables, but this is not covered in

The LL(1) Algorithm

LL1_Parse (tableS,input)
pos =0
initialize stack with single entry S
while stack not empty
x = stack.peek()

if x is non-terminal # Lookup case
case table[x,input[pos]] of
blank: error
rule x — 3:

stack.pop()
push symbols of 3 onto stack
(backwards!)
else # Match case
if x = input[pos]
stack.pop()
pos +=1
else error
if input[pos] = $
return Success
else error IADS | artur

this course.

8.2.4 Further Remarks on LL(1)

e a top-down parser (build syntax tree from root)

— CYK is bottom up (build syntax tree from its leaves aka terminals)
LL(1) parser runs in ©(n) for LL(1) grammar

used for example for command languages, where CYK is impractical (pro-
grams can be very long, so ©(n?®) not appropriate)

for large scale languages use LR(1) (more flexible but complex than LL(1))

in real world, parsers are built by defining a CFG, and then a parser
generator is used

48



9 Week 5-P and NP

9.1 Decision Problems

e Polynomial Time Algorithms: consider a problem (for example, find-
ing the all paris shortest paths of graphs). Let Z be a particular instance
of the problem (for example, a graph of 5 nodes labelled 1,2,3.4,5, with a
specific set of edges). An algorithm A solves the problem in polynomial
time, if for any instance I, the algorithm runs in time at most:

o(z|"), reRr
and provides a correct solution for said 7

e Decision Problem: a computational problem, which can be posed as a
“yes-or-no question”, and whose output is a single boolean value

— more formally, a problem @ defined in terms of set of possible solu-
tions S to the problem

— if an instance Z can be solved by a solution in S, then we say:

QZ) =1
Otherwise, if no solution solves Z, then:
Q(IZ) =0

— decision problems can be described as languages, such that if Lg is a
language, an instance Z of @) is in Lg if and only if 7 has a solution:

ITelyp <= QI)=1

9.2 Complexity Classes: P and NP

e Complexity Class: a set of computational problems of related resource-
based complexity (for example, time, or memory usage)

e The Complexity Class P: set of decision problems which can be solved
with a polynomial time algorithm

— informally may contain non-decision problems, such as sorting or edit
distance

— basically, problems for which there is a known efficient (polynomial)
way of finding a solution to any instance of the problem

e Verifier Algorithm: an algorithm A, such that, if Q) is a decision prob-
lem, and S is its set of solutions, A is a verifier for @ if and only if, for all
instances Z of @:

QI)=1 <<= FyeS:AZ,y =1
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— if we are given a “guess solution” y, then A is a verifier if it can check
whether y is a solution to a particular instance of a problem

— if the guess y turns out to be a solution, it is called a certificate

e The Complexity Class NP: set of decision problems for which there is
a verifier which runs in polynomial time for any instance Z of the problem

— basically, problems for which we can check whether something is a
solution in polynomial time

— every P problem is also NP, as we can always check whether some
input is a valid in polynomial time (for example, solving the problem
and comparing obtained solution with given solution)

e Euler vs Hamilton; P vs NP:

— Euler Tour: is there a cycle in the graph which traverses every edge
ezxactly once?
* this is a problem in P, as given any graph, we can apply DFS to
check that the graph is connected, which runs in ©(m + n) time
x Euler proved that a conencted graph vertices of even degree have
an Euler Tour
* we can check for evenness in polynomial time (O(m + n))
* thus, verifying if an Euler Tour exists can be done in polynomial
time
— Hamilton Cycle: is there a cycle in the graph which traverses every
edge exactly once?

% this is a problem in NP, and in fact is NP-Complete

* guessing a solution would involve checking all n! possible solu-
tions; however, if we are given a solution, it is easy to check
whether a given node is traversed less/more than once

9.3 Reductions and NP-Completeness

¢ Reductions Between Decision Problems: a problem A4 is reducible/reduces
to B if there is a polynomial time computable function f which, for any

instance Z of A:
AD)=1 <= B(f(@) =1

— we can “transform” any problem instance of A into an equivalent
problem instance of B in polynomial time

thus, solving A is no harder (in terms of runtime) than solving B
— thus, solving A is at most as hard (in terms of runtime) as solving B

— alternatively, solving B is at least as hard as solving A
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— if A reduces to B, then:

A<p B

Here the P subscript indicates that the reduction is done in polyno-
mial time

¢ NP-Complete Problems: a decision problem () such that:

1. Q isin NP
2. any other problem H in NP can be reduced to Q:

HeNP — H<pQ

In essence, if @ is NP-Complete, no other NP problem is harder than @

— any problem A which satsifies condiiton 2 (aka any NP problem re-
duces to A) is said to be NP-Hard

— thus, an NP-Complete problem is any problem which is in NP, and
is also NP-Hard

e Consequences of Decision Problem Reductions: assume we have 2
problems, such that A <p B. Then:

— if B is in P, clearly A is no harder than B ,so A must also be in P

*

*

this follows from the fact that, given any problem instance Z of
A, we can do polynomial work to turn it into f(Z), which will
then be solved in B in polynomial time. This produces an answer
in polynomial time

thus, we can answer Z in polynomial time, so A must be in P

— if A is in NP-Complete, then clearly B is at least as hard as A. But
A being NP-Complete means that it is the hardest possible problem,
so B must also be NP-Complete

*

consider any NP problem C. Since A is NP-Complete, we can
find a function g such that C reduces to A:

C<pA

since A <p B, then there is a function f which reduces A to B
but then this means that the function f o g reduces C to Bj; in
other words:

C<pB
for any NP problem C

so by definition, since f o g will be polynomial, B must be NP-
Complete
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9.3.1 SAT Problem

e Satisfiability: given a CNF (Conjunctive Normal Form), the problem of
satisfiability is that of finding an assignment of literals which satisfies the
CNF (makes it evaluate to true)

a CNF is a conjunction of disjunctions of literals:
CiNCyN---NCy

where:
Ci = Tj,1 \/.Z‘i72 VeV Li,k

if a CNF has n literals, then there are 2" possible value assignments
— a CNF is true if at least one literal in a clause (disjunction) is true
— literals can be positive (z) or negative (Z)

e Cook-Levin Theorem: showed that the SAT problem is NP-Complete
— this had huge implications: it means that SAT must reduce to any

other NP-Complete problem

— in other words, if we can find a polynomial algorithm which turns
any instance of SAT into any instance of some other probelm, we can
show that the other problem must be NP-Complete

e Proving NP-Completeness: if H is an NP problem , H can be shown
to be NP-Complete if we can construct a CNF, such that whenever the
CNF is satisfiable, there is a certificate for some instance of H

— this is like turning the SAT verifier into a verifier for H via a polyno-
mial function

9.3.2 Independent Sets

e Independent Sets: an independent set of a undirected graph is a set of
vertices which share no edges

e Decision Problem: Maximum Independent Set: does a graph have
an independent set of size at least ¢
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Figure 16: For the above graph, it is easy to see that the size of the max
independent set is 3. One such example is {b, e, d}

e 3-SAT: satisfiability problem for a 3-CNF. It is NP-Complete

— a 3-CNF is a CNF in which each clause has exactly 3 literals

— to show NP-Complete, we can show that SAT reduces to 3-SAT (see
here). The idea is that we can pad clauses with less than 3 literals,
and combine literals in clauses with more than 3 literals.

e Maximum Independent Set is NP-Complete:

1. Maximum Independent Set is NP
This is easy to see. If we are given a set of vertices .S with n elements:
— O(n?) to check that no edge exists between each vertex (2 for
loops)
— verify that n > ¢ (O(n) time)
Thus, verifying a solution can be carried out in polynomial time, so
the problem is NP
2. Maximum Independent Set is NP-Hard

— we show that 3-SAT reduces to MIS. Since 3-SAT is NP-Complete,

it is NP-Hard, so if it reduces to MIS, then MIS is also NP-Hard

* teachnically, since 3-SAT is NP-Complete, by work above, if

it reduces to MIS, then MIS is NP-Complete, but this is more
“rigorous”

— to do this, we need 2 things: find a polynomial algorithm to turn
any 3-SAT problem into a MIS problem; show that the 3-SAT
problem is satisfiable if and only if the independent set of the
resulting problem has at least m elements, where m is the number
of literals in the 3-SAT
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— 3-SAT to MIS
* we give a procedure to convert any 3-CNF into a graph
x let @ be a CNF with k clauses

x construct the graph representing literals as nodes, and con-
necting any 2 nodes if and only if: they represent literals in
the same clause, or they represent complementary literals:

(avbve)A(bvevdIa(@vevd)A(avbvd)

* the resulting graph will have 3k nodes
* this procedure runs in polynomial time. Let m be the number
of literals in the 3-CNF (so m = 3k)

- connecting nodes if in the same clause: O(m) (just iterate
over each literal, and make connections when we finish
reading clause)

- connecting nodes if they represent complementary literals:
O(m?) (naively iterate over each literal using nested for
loop, and produce edge where necessary)

Thus, constructing the graph can be done in polynomial time

— Satsifiability in 3-SAT if and only if Maximum Indepen-
dent Set of Cardinality at least m in MIS

* suppose P is satisfiable, and take any such satisfying assign-

ment of literals. According to this assignment, at least one

literal in every clause of ® is T. Create a set S to contain

the vertices corresponding to these true literals, but choos-

ing only one from each clause. Thus, our set S will have m

vertices.

- no 2 vertices in S are joined by a triangle edge, since we
are only taking 1 vertex from each triangle (aka 1 literal
from each clause)

- no 2 vertices in S are joined by a complementary edge,
since if © was chosen as part of the satsifying literals, x =
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T, so £ = F and thus would never be chosen as a vertex
to be added to S. Similarly, if z =T, then z = F, and =
wouldn’t have been added to S

Thus, all vertices are independent. Moreover, S is of max-
imum size, as you can at most select 1 vertex from each
triangle for an independent set. Thus, if ® is satisfiable, the
maximum independet set is of size m

x suppose the graph has an independent set S of size m. Assign
T to every literal corresponding to the vertices in S (this will
be consistent, as S is an independent set, so complementary
nodes won’t be part of §). If a literal (or its complement)
are not part of S, assign a random value. Then, since S is
a maximum independent set, it must contain a vertex cor-
responding to a literal in every clause of a 3-CNF. By our
assignment, each clause of the 3-CNF will contain at least 1
true literal, so the 3-CNF will be satisfied.

Thus, we have shown that:
Independent Set of Size m <= 3-CNF is Satisfiable

In particular, this means that we have an independent set of size at
least m if and only if a CNF of m clauses is satisfiable, as required,
so MIS is NP-Complete
9.4 Additional Resources
e How to Prove That a Problem Is NP-Complete?
e Mary explains how to derive NP-Completeness for MIS
e Short website on problem reduction

e A very funny book, giving more details on P, NP, proofs, etc ...

10 Week 6 - Approximation Algorithms for NP-
Complete

10.1 Approximation Algorithms

e Solving NP-Completeness: we don’t expect polynomial time algorithm
for solving NP-Complete problems. Instead:
— heuristics
— algorithm for approximate solutions

— brute-force (exponential)

recursive backtracking
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e Approximation Algorithm: let OPT be an optimisation problem, in
which an instance Z has optimal solution OPT(Z). An algorithm A is an
a-approximation algorithm if:

A(T) = <axOPT(Z) OPT is a minimisation problem
> é x OPT(Z) OPT is a mazimisation problem

— either A gets a larger value than optimal in minimisation problem
(approximate cost $2 optimal cost $1), or a lower value than optimal
in maximisation problem (approximate sell price $10, optimal sell
price $20)

— in either of the above cases, the algorithm would be 2-approximate
— « is known as an approximation ratio

— « is typically not preserved when we reduce an NP — Complete
problem to another

10.2 Minimising Vertex Cover

e Vertex Cover: given an undirected graph, a vertex cover V' is a set of
vertices, such that every edge of the graph has at least one endpoint in V'

e Minimum Vertex Cover: problem of finding the vertex cover of mini-
mum cardinality for any graph

— NP-Complete problem

Figure 17: A minimal vertex cover for the above would be {c,d,a, f}, or
{c, g,b,e}. Either way, the minimum vertex cover will have cardinality 4.

e The Approximate Vertex Cover Algorithm: we approximate the
vertex cover by:
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get an edge of the graph
add its 2 vertices u, v to the vertex cover set

remove any edge which has u or v as an endpoint

L s

repeat until there are no edges left

Algorithm Approx-Vertex-Cover(G = (V, E))

1. C«0

2. E'—E

3. while E' £ )

4, do take any edge (u,v) € E’

5. C e« CU{u, v} // add both v and v to the cover
6. Remove every edge g with u or v endpoint from E’

7. Print(“There is a VC of size ", |C|)

Figure 18: The pink edges are those selected by line 4, with the pink nodes
representing the vertices for these edges. The algorithm approximates a vertex
cover of cardinality 6.

e Approximate Vertex Cover: Analysis: Approx-Vertex-Cover is a
2-approximation
— let F' be the set of vertices selected by line 4
* in the above example, these would be the edges {(a,b), (c,d),
(e.f)}
— notice that these edges will share no endpoints

x after an edge is selected, all edges connected to any of the vertices
is removed, so any edge that remains in the graph must not have
been connected to these vertices

— if C* is a minimum vertex set, then C* must contain at least 1 vertex
from the endpoints in F
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* being a vertex cover, every edge must have at least one endpoint
in C*
x F is just a subset of the edges, so every edge in F' must have an
endpoint in C*
so it follows that:
| = |F|

— the guess for the vertex cover C contains all the vertices from the
edges in F', so:
|C| = 2|F]|

— but then

C]

Cl=2F|, [c"21F] = |2 = 2c72 (]

— in other words, it is a 2-approximation

10.3 Max 3-SAT

e Max 3-SAT: given a 3-CNF, find the maximum number of clauses k,
such that there is an assignment of binary variables which satsifies these
k clauses

— basically, given a CNF, find an assignment which satisfies the largest
number of clauses

— an NP-Complete problem (think of this as a generalised 3-SAT, for
which k = |®| for a 3-CNF &

e A Search Problem: for a 3-CNF with m clauses, we are guaranteed

to be able to find an assignment that satisfies %m of these clauses. We

want to be able to find an algorithm which guarantees this bound

— in other words, we want to prove that we have an algorithm which is
a %—approximation

— if we are trying to maximise the number of clauses, we know we are
guaranteed %m to be satisfied, but we are more interested in finding
the assignment that guarantees these number of clauses

— we assume that in each clause, each variable is independent

10.3.1 Randomised Max 3-SAT
¢ Expected Number of Satisfied Clauses: consider a 3-CNF:

O=CiANCoN---NC,
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Let Y; be a random variable, such that Y; = 1 whenever Cj is satisfied.
The number of satisfied clauses is:

Y:in
j=1

By linearity of expectation, the expected number of clauses satisfied by an
assignment of variables is:

B -2 (Y] =Y B
j=1 j=1

But since each Y; is identically distributed:
E(Y) = mE(YJ)7 J€ [LmH

Expected Value of Satisfying a Clause: since E(Y) gets reduced to
finding the expected value of satisfying a clause, consider a clause:

Cj=1jaVijaVije

We can model each variable as a uniform random variable, with P(l =
1) = 0.5 (each variable has probability % or being 1 or 0). The probability
that C is satisfied is:

Thus,

7
E(Y;) = P(Y; = 0) x 0+ P(Y; = 1) x 1 = 2

Randomised Max 3-SAT: from the above, the expected number of
satisfied clauses will be:

EY)=mE(Y;) = gm

The key is that, since the variables are uniformly distributed, the expected
value is actually the average value over all possible assignment. In other
words, over all possible assignments, there must exist at least one assign-
ment which guarantees:

E(Y) =

|

m

— think that if all assignments satisfied less than ém clauses, the aver-

age number of satisfied clauses could never be gm

Thus, a randomised algorithm to get an approximation to Max 3-SAT
would involve generating random assignments to the variables until we
achieve at least %m satisfied clauses

— this is very naive, producing many assignments that aren’t even close
to the approximation
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10.3.2 De-Randomised Max 3-SAT

e De-Randomising Max 3-SAT: a key observation is that:

2 2
since in half of the assignments, z; = 0, so the expected value of satisfied
clauses can be conditioned on z; (or any other variableﬂ Roughly, we

are using the fact that E(Y") is an average, and we can break it down as
the average when x7; = 0 and when x; = 1.

By = 2

— since E(Y) > %, this must then mean that either E(Y|zy = 0) > %
or BE(Y[z; =1) > I
— otherwise, the average of the two could never be greater than %

e Deterministic Max 3-SAT: the above allows us to be deterministic
about finding an assignment:

— compute E(Y|zy = 0) and E(Y|z1 = 1), and then create a partial
assignment so that x; provides the maximum expectation

— repeat, but this time by considering different x5, and with our pre-
viously calculate x1. Thus, we compute:

E(Y|a:1 = bl,l'g = O)
E(Yl(El = bhxg = 1)

— for any xz;, we will have created a partial assignment by,bo, -+ ,b;_1,
and we will just have to consider:

Expo = E(Y|x1 =b1,20 =bo, -+ ,2; =0)
E‘rpl = E(Y|£L‘1 - bl,l’g = b27"' , Ly = 1)

Algorithm Greedy-3-SAT (¢, n, m)
1. fori=1,...,n

2 Compute Expp — E[Y | x1 = b1...x-1 = bi—1,x = 0]

3. Compute Exp:1 «— E[Y | xa = b1...x-1 = bi—1,x = 1]

4. if Exps > Exp

5 then b; — 0; Update ¢ by fixing x; =0

6 else b; «— 1; Update ¢ by fixing x; =1

7.

return b

Figure 19: By picking variables 1 by 1 in a deterministic manner, we are ensuring
that the expected number of satisfied clauses will always be at least %m

IMary explains it more eloquently
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Analysis of Greedy-3-SAT: by definition, this will be a %—approximation
algorithm. Moreover, since we iterate over each of the n literals, and we
do O(1) work at each of the m clauses, the runtime is:

O(mn)
— if P £ NP, this is the best possible approximation

Walkthrough and Actually Computing the Expectation: a sort of
important part of this algorithm is actually finding Fxpg and Exp;. This
is best done via an example, so consider the 3-CNF:

(.’ﬂl\/QC_Q\/lLTg)/\($1\/.’£2\/(E_3)/\(£LT1\/fg\/xg)/\(fl\/ZL’Q\/xg)
/\(xlV$2Vf4)/\(1‘1Vf2V$4)A($2Vf3VlT4)

- x
If 1 = 1, there are clauses which get automatically satisfied if they
contain x;. Otherwise, since @7 will never satisfy the clause, we
will consider the probability that the remaining variables allow us to
satisfy the clause. If x7 or 7 don’t appear, we computer a similar
probability. The above CNF goes from:

(21 V@3 Va@z) A (1 Vo Vas)A(@ ViyVas) A (5 Vas Vas)

Alxy V zg V @y) A (1 V @2 V xg4) AN (2 V 23 V 2y)

to:
(@2 V x3) A (22 V x3) A (22 V T3 V @y)

x the probability of (#3 V x3) being satisfied is:
1 3

224
* the probability of (x2 V x3) being satisfied is:
1 3

22 4
* the probability of (x2 V #3 V ) being satisfied is:
1 7

23 8
* the probability of the clauses containing x; of being satisfied is
1 (there are 4 of these)

Thus, and by using linearity of expectation:

1
Emn:EWh1:U:4x1+2xZ+1x%:%—
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Similarly x; = 0, we do the same, but “removing” the clauses which
contain 7, and removing x; whenever it appears. The CNF goes
from:

(1‘1\/fg\/l‘%)/\(ﬂ?l\/l‘g\/fg)/\(fl\/.fg\/l‘g)/\(fl\/.rg\/xg)

AN(xy Voo V dEg) A (21 V @2 V xg) A (22 V &3 V Ty)

to:
(SC_Q \Y 1'_3) A\ ((EQ V fg) A\ ((EQ V ZLT4) A\ (fQ V 1’4) A\ ((ﬂz \Y ZLT3 \Y £L'_4)
x for the clauses with 2 literals, the probability of satisfiability is:
1 3

S22
there are 4 such clauses
x the probability of (xo V @3 V @) being satisfied is:

1 7

288
* the probability of the clauses containing #; of being satisfied is
1 (there are 2 of these)

Thus, and by using linearity of expectation:

3 T 47
EmpozE(Y|m1:0):2><1—|—4><Z—i—lx§:§

Hence, since Exp; > Expg, we let by = 1.
T2
Since now we have an assignment with z; = 1, we need only consider:

(@2 V x3) A (2 V 23) A (22 V T3 V 1Y)

where we have removed those clauses with 1 = 1, and reduced the
size of clauses wtih ;. (The clauses with z; must still be used for
the expectation calculation, but we know that there were 4 clauses
satisfied, so we can use this for the final expectation calculation.) If

x9 = 1, the CNF goes from:
(ZLTQ \Y Ig) N (LQ \Y 1‘3)/\ ({L’Q V ZL'_3 V f4)

to:
(z3)
x there are 4 clauses with 1 = 1 (probability of satisfiability 1)

* the probability of the clauses containing x5 of being satisfied is
1 (there were 2)
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* the probability of (x3) being satisfied is:

1
2
Thus, and by using linearity of expectation:
1 13
Ea:pl:E(Y|x1:1,x2:1):4x1—|—2x1—|—§ xl:?:6.5

If x5 = 0, the CNF goes from:

(172 \ .Tg) A (QL'Q \Y 333)/\ ((L’Q \Y LL'_3 vV 117_4)

to:
(z3) N (3 V 24)
* there are 4 clauses with x; = 1 (probability of satisfiability 1)
* the probability of the clauses containing =5 of being satisfied is
1 (there was only 1)

* the probability of (x3) being satisfied is:

1

2
* the probability of (£3 V 24) being satisfied is:

13

224

Thus, and by using linearity of expectation:
1 3 25
Expy= E(Y|x; =1,29 =0) = 4X1+1X1+§X1+ZX1 =7 = 6.25

Hence, since Exp, > Expg, we let by =1

— x3 It is easy to see that, since we have 1 = 1,22 = 1, our CNF
reduces to:
(23)

since the other 6 clauses are satisfied by the assignment. This CNF
is satisfiable with probability 1 if z3 = 1, and satisfiable with proba-
bility 0 if x5 = 0. In other words,

Expy=E({Y|z;=1lzeo=1l,2535=1)=6x1+1x1=7
Expo=E(Y|x1=1,20=1,23=0)=6x1+1x0=6

Hence, since Ezp; > Expg, we let bs = 1.

— x4
This is not necessary, as:

{.Tl 21,332 21,1‘3 = 1}

already satisfies the whole CNF, so we can assign any value to 4.
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11 Week 7 - Recursive Backtracking for NP-
Completeness

11.1 Dealing with NP-Completeness: Recursive Backtrack-
ing

e Brute Force Method: given an NP-Complete problem, we can try all
possibilities, until we find a solution

— this typically requires exponential runtime

for example, if we have a CNF, there are 2" possible assignments for
n literals

— checking the validity of the whole CNF takes time O(|®| for each
assignment

— so finding satisfiability of CNF via brute force has runtime:
o(2"|2|)

e Recursive Backtracking for CNF': we basically assign values to vari-
ables, recursively calling the function. If eventually some assignment leads
to an empty clause, we go back an reassign values. The algorithm termi-
nates if the whole CNF evaluates to true with the current assignment
(namely every clause disappears as they are satisfied), or if eventually we
just reach empty clauses (unsatisfiable)

Algorithm SAT-backtrack(® = G A ... N Cyp, T, b)

1. if (m=0) then return T
2. else if ® contains an empty clause then return F
3. else choose an unassigned variable x; (i € [n] \ J) how?

4, O/ O(x+ 0)
(simplifying ®' based on this new assignment)

5. if SAT-backtrack(®’,JU{i},b-0)
6 then return T
else @' — D(x; «— 1)
(simplifying ®' based on this new assignment)
8. return SAT-backtrack(®’,JU {i},b - 1)

Figure 20: b is the current partial assignment, given in reference to the instance
T (for every index ¢ in the instance, b contains the assignment b; corresponding
to variable x;). If the initial assignment (x; < 0) leads to unsatisfiability (Line
5), the next assignment is considered (Line 7). Satisfiability is reached when
the number of remaining clauses m is 0.
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11.2 Dealing with NP-Completeness: DPLL
e Unit Clause: a clause containing a single literal

e Pure Literal: a literal which is always positive/negative throughout the
CNF

e PDDL: a method to determine satisfiability, by refining backtracking
search. Uses 2 heuristics:

— Unit Clause Heuristic: if there is a unit clause, then make its
literal positive (x; =1 or &; = 0)
— Pure Literal Heuristic: set pure literal to its polarity (z; = 1 or

By applying these heursitics, we can greatly improve the practical runtime
of backtracking search:
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Algorithm DPLL(® = G; A... A Cy)

=

if every literal in © is “pure” then return T
else if @ contains an empty clause then return F
else
while we have some “unit clause” (£) in @
if (€is x;) then @ — O(x; + 1)
else if (£ is x;) then ® « O(x; « 0)
while we have some “pure literal” £ in ®@
if (€is x;) then @ — O(x; « 1)
else if (¢ is x;) then ® « O(x; « 0)
Choose a undetermined variable x; of © how?
11. return (DPLL(®(x « 0)) or DPLL{D(x; « 1)))

o o N o Ok W

H
o

Figure 21: Notice in line 11, we are considering both possible assignments of x;.
This is called splitting.

e Choosing the Next Variable: to choose the next variable, we use
heurstics, which work better depending on the problem:
— any variable in an unsatisfied clause
— variable appearing the most
— variable which occurs in one polarity the most
— literal in the shortest clause
— variable with highest weighted sum of clause size

e Runtime of DPLL: runtime is stil €\|&|, but in practice is much better
than this

— depending on which heurstic, behaviour of DPLL varies, so can be
considered as a collection of algorithms
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(pvgurvs)a(—pyvgv—r)a(—gv-rvs)a(pvogurys)
algvrv—os)a(—pyorvs)a(—pv—s)a(py—g)

(1) No unit or pure elimination possible.
(2) We have four s-Literals, and two —s: Split using s
Remove clauses: (—pvgv—r)a algvorvas)a(—pv—s)a(pvog)
Remove —s: (—pvgv—r)a algyv—-r)a(—p)a(pv—g)
(3) Unit propagation with —p: (gv—r) «(—q)
Unit propagation with —q: (—r)
Unit propagation with —r gives the empty formula, return true
(1) No unit or pure elimination possible.
(2) Split using —r
Remove clauses: (pvgvrvs)a(pvogurvs)a(—pv—s)alpvog)
Remove r: (pvgvs)a(pvogvs)a(—pv—s)a(pvog)
(3) No Unit propagation possible
No pure literal
(4) Split using —q
Remove clauses: (pvgvs)a(—pv—s)
Remove g: (pvs)a(—pv-s)
(5) No Unit propagation possible
No pure literal
(6) Split using p
Remove clauses: (—pv—s)
Remove —p: (—s)

(7) No Unit propagation —s gives the empty formula, return true

Figure 22: Taken from Cornell notes. Notice that the choice of literal heavy
affects the runtime.

Week 8 - Introduction to Computability The-
ory

12.1 Register Machines for Computability Theory

e Computability Theory: seeks to understand:

1. what does it mean for a function to be computable?

2. if a function is non-computable, can we place it within a hirearchy of
non-computable functions?

We seek to shed light on these concepts
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e Computability Theory Motivation:

— if we use comparisons to sort an array, we can never do better than
O(nlg(n))
— we believe that any NP-Complete problem can’t be solved in O(n?), d €

R. However, this is reliant on P # N P: for all we know, it could be
possible to solve 3-SAT in O(n) time

— is it possible for a problem to exist, such that no algorithm ever
solves it, independent of time or space requirements? (i.e if we had
infinite time, infinite memory, is there a problem that could never be
solved)

e Register Machines: credited to Marvin Minsky, these are simple ma-
chines which can be composed to create more complex machines. They
contain registers, which can hold natural numbers.

— we can think of registers as being in a table or a space in memory

— register machines have basic actions available:

* add 1 to a given register
* substract 1 from a register (except if the register is 0)
* test whether the contents of a register are 0

plugging these trivial components, more complex machines are built

see here for a representation of register machines

1LY

Add1 Seblfom Testif 0. Plumbing
dj;,h,- na.sur
(ﬁ'sﬂﬂﬂ

Figure 23: The basic building blocks to create more complex register machines
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Figure 24: Adds the contents of register B to register A, in the process making
B contain 0. At each cycle, checks if B is 0. If it is, then the machine terminates.
If it isn’t, it reduces B by 1, and increases A by 1.

A?
A

SetA 0O
(Ae0)

Figure 25: By checking if A is 0 at each cycle, it reduces A to 0 by decrementing
the register.

L'Ol'l'-a A)'

Figure 26: Creates 2 empty registers B, C. Then it cycles until termination. If
A is 0, the machine terminates. Otherwise, increases B and C, and decrements
A.
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Figure 27: Multiplies the contents of register A and B. Create an empty register
C. Then it cycles until termination. If A is 0, the machine terminates. Other-
wise, use the machine above to populate 2 registers D,E with the value of B. B
is now 0. Repopulate B, by using the first machine, to transfer the contents of
E to B. Now, B nad D have the value of the original B, and E is empty. Add D
to C. Now, B and C contain the original value of B, whilst D and E are empty.
Decrement A. In the next iteration, C = 2B, B = B, C = D = 0. After that,
C =3B,B =B, C =D = 0. By the time the machine terminates, C = AB,
which is what we wanted.

e Register Machines as Functions: notice, the above register machines
can be considered as mathematical functions: given a set of natural num-
bers (stored in the registers), it returns a set of natural numbers at some
registers

e Functions Computable by Register Machines: we make the above
statement more precise. We say a register machine M computes a partial
function:

f*NxN — N
if Ym,n € N, we set up registers A =m,B=n,C =D =--- =0, and
then run M on these registers:

— the computation terminates if and only if f(m,n) is defined
— if the function is defined, then the value stored at register A will

correspond with the value of f(m,n)

¢ RM-Computability: a function f: N x N — N is RM-Computable
(register machine computable) if and only if there exists a register ma-
chine which can compute f

— from the above RMs, we can see that addition and multiplication are
RM-Computable

— this also applies to functions that take one argument, but in the
context of computability, it is most useful to consider functions of 2
arguments
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12.2 The Church-Turing Thesis: CT Computable Func-
tions

¢ RM-Computable Functions are not Alone: the class of RM-Computable
functions is equivalent to:

— lfunctions definable in A-calculus
— functions computable by Turing Machines

— functions in any programming language

In fact, any of these formalisms can be used to simulate any of the others
(for example, building an interpreter for RMs in Python).

e CT-Computable Functions: refers to the class of functions defined
above (since they are all the same). Stands for “Church-Turing Com-
putable Functions”

e Church-Turing Thesis: given any function on the natural numbers, the
class of CT-Computable functions coincides with the class of algorithm-
computable functions

— a function on the natural numbers can be calculated via an algorithm
if and only if it can be computed via RMs/Turing Machines/Lambda
Calculus (the original paper only uses Turing Machines)

— what we mean with an algorithm here is an effective method: that
if we are given a problem and a procedure, then given an infinite
amount of paper and time, we can mechanically follow the procedure
and solve the problem

e Feasibility of Church-Turing Thesis: not proven (not amenable to
mathematical proof), but points in favour include:

1. no mechanical algorithm has been created which has been outside of
this class

2. many ways of defining “computable functions”, but they always ends
up referring to the CT-Computable Functions - suggests this is the
true class of computable functions

3. Turing Machines can model a human calculator (and human calcu-
lators will solve a problem by following an algorithm)

12.3 Universal Machines

e Everything is a Number: since register machines operate on natural
numbers, if we can encode structures as natural numbers, we could con-
struct register machines which operate on these structures:
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— a set of registers can be encoded perfectly as a natural number
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might be coded as

— a register machine itself can be coded up as a natural number
<Ak
E.g. our adding machine ¥ B- might be coded as

(details unimportant).

e Universal Machine: create a machine, which given 2 natural numbers
m,n:
— reconstructs a machine M encoded in m
— reconstructs the register values R on which M is applied using n
Then, the machine executes by simulating the execution of M on R. Since

the reconstruction of M and R, alongside their execution, is purely algo-
rithmic, we can construct such a machine!

— this basically means that any machine can be simulated by only 1
machine
— this is the essence of modern computers: we write a piece of software,
and our computer executes it
e Beyond Computability:
— by the above, our current computers bear no hope in breakin gthe
computability barrier

— quantum computers offer improvements in practice (better perfor-
mance, break really hard problems), but in terms of computability
they are equally limited

— black hole computers: a crazy idea, use the gravity of black holes,
to essentially break time, and solve computation problem

13 Week 9 - Unsolvable Problems

13.1 The Halting Problem

e Defining Functions: we have talked about functions being RM-Computable,
but we haven’t really specified what we mean with a function:
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1. for CS oriented, a function can be defined using keywords like, def
or public static int, followed by code

2. during the 18th century, a function was thought as a formula which
accepted and spitted out numbers (f(z) = 2% + 22 —7)

3. after the 18th century, Dirichlet coined the use of functions as an
assignment of values (for example, a lookup table), without the need
for an explicit formula

Our notion of computable functions is better adapted to work with Dirich-
let’s view

Computation Halting: a RM computation is said to halt if it eventually
terminates

The Halting Problem: is there any way (aka does a machine exist) such
that for an arbitrary machine M, and any input n we know exactly if M
will halt when given the input n?

— for example, a while loop of the form while(True) — print(“Neverhalting!”)
will never halt, no matter what

— however, the function f(z) — 2?2 will eventually halt, no matter how
big the input =

Unsolvability of Halting Problem: long story short, no halting tester
can exist. That is, there can be no register machine H, such that given 2
inputs m,n (m encodes another machine, n is the input for the machine),
H determines if m halts on n. Thus, the Halting Problem is RM-
Unsolvable

— in other words, no function:

h(m,n) = 0 m halts on n
)1 m doesn’t halt on n

can exist, so h is not RM-Computable

Proof of the Unsolvability of Halting Problem: lets assume that a
halting tester exists. Call it H. H takes an encoded machine m and an
input n. H tells us whether m will halt when applied to n. The proof
relies on 4 keys:

1. Applying a Machine to Itself

— machines can be encoded as natural numbers; machines also ac-
cept natural numbers as inputs. Thus, machines can accept other
machines and inputs ... even themselves

— informally, if we think of a machine X as a function, applying X
to itself is given by the result of X (X)
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— in terms of register machines, if we have a machine encoded as
m, we can think of applying m to itself as applying m on an
initial state given by registers:

A=m, B=C=---=0

2. The Self-App Machine

— the SELF-APP machine sets us up for applying a machine to itself.
SELF-APP is applied on registers:

A=m, B=C=---=0

where m is an encoded machine. SELF-APP then returns the
following register states:

A=m, B=n, C=D=-.--=0

where n corresponds to an encoding of the initial state of the
registers of SELF-APP

n =encode(A=m, B=C=---=0)

In other words, SELF-APP gets m, and returns m, alongside a
complete description of itself (namely n)

3. The P Machine: this is a machine designed to determine whether
a machine will halt on itself, given itself as an input (bear with me!).
We construct P as follows.

— at the top level, we have SELF-APP, which takes a machine m
as input. As output, we get both m, and a complete (encoded)
description of m, called n.

— at the bottom level, we have a modified version of H. Recall, H
takes a machine and an input (registers), and determines whether
the machine halts or not on the input. Our modified H (call it
H') is such that it will halt if the machine will never halt on
the current input (so H' halts if the inputs to H get stuck in an
infinite loop). Alternatively, if the machine halts on the input,
then H’ will run on an infinite loop, never halting

— the output of SELF-APP (m and n) are then passed as the inputs
of H'

Overall, what P does is to determine whether a machine m will halt
when it is applied to itself. P halts whenever m applied to itself gets
stuck. P gets stuck whenever m applied to itself halts. In a way, P
reverse H
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Figure 28: The machine P

4. A Contradiction

now, consider applying P to itself (so P(P))

as inputs to H’', we get P and its description

assume that H’ determines that P halts when running itself.
Notice that P running on itself is our original call. If H’ finds
that P applied on itself halts, then it well tell P to get stuck on
an infinite loop. But this contradicts the fact that H' knew that
P would halt.

alternatively, if H' determines that P gets stuck, then H’ tells
P to halt. But this contradicts the fact that H’ knew that P
would get stuck when run on itself

we reach a contradiction no matter what. Thus, our assumption
that a machine such as H existed must have been false, so no
register machine can solve the halting problem

All of the above is quite mind boggling. These 2 resources really helped

me:

— |a very nice, short video. It isn’t as “formal”, but it is a lot easier to
understand

— la very nice explanation, which uses code to better understand how
the condtradiction arises

Note that the Halting Problem is the OG of undecidability. It is analogous
to SAT for NP-Hard/Complete problems.

e Russel’s Paradox: R is the set of all sets that don’t contain themselves.
Is it the case that R € R?

— if R € R, then R contains itself, so R can’t be in itself

— if R is not part of itself, it satisfies the criteria of R, so we must have
ReR
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— analogy: the village barber is a man who only shaves men in the
village who don’t shave themselves. Does the barber shave himself?
If he did shave himself, the barber wouldn’t shave him, but he is the
barber, so he wouldn’t shave himself. If he didn’t shave himself, he
would be a man in the village who doesn’t shave himself, so he would
have to be shaved by the barber, who is himself.

13.2 The World of Unsolvability

e Diophantine Equations: unsolvable; no computer program can take a
Diophantine Equation and determine if it has a solution

— recall, a Diophantine Equation is a multivariable, polynomial equa-
tion with integer coefficients for which we require integer solutions:

2?2+ y? 42 =26
2y — 2025 4+ zay® —v =12

e Post’s Word Problem: given 2 sets of strings S, T', decide whether there
is a string that can be formed by:

— concatenating elements in S

— concatenating elements in T

Again, unsolvable.

S = {a, ab, bba}, T = {baa,aa, bb}
Then the answer is YES, because:

bba.ab.bba.a = bbaabbbaa — bb.aa.bb.baa

13.3 Food for Thought

e Godel’s Dichotomy: there are undecidable problems, so there are prob-
lems which machines can’t give a yes/no. Since machines can imitate
human thought, does this means that there must be mathematical ques-
tions which we humans can’t answer? This is the essence of Goédel’s
Dichotomy:

Either the human mind can infinitely surpass the power of finite machines in mathematics, or there exis

e Godel’s Incompleteness Theorem showed that any system for formal math-
ematical proof will leave questions unresolved

e Godel believed that human reason was unlimited, so no mathematical
questions were absolutely unsolvable
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e If a question is absolutely unsolvable, can we say that the question has a
definite answer?

e Which mathematical statements have a definite meaning? How much is
just human convention? answer to
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