
IADS - Revision Semester 1

Antonio León Villares

May 2021

Contents

1 Week 2 - Asymptotics 4
1.1 Basics of Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Little o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Little omega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Big O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Big Omega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Big Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Asymptotics Summary . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Week 3 - Sorting Algorithms and Asymptotic Analysis 7
2.1 Analysing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Insert Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Overall Runtime Comparison: Insert vs Merge . . . . . . . . . . 12
2.5 Space Complexity Comparison: Insert vs Merge . . . . . . . . . . 12
2.6 Insert vs Merge Summary . . . . . . . . . . . . . . . . . . . . . . 12

3 Week 3 - Program Data in Memory 13
3.1 Memory Organisation . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Equality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Week 4 - Classic Data Structures 15
4.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Lists as Fixed-Size Arrays . . . . . . . . . . . . . . . . . . 15
4.1.2 Lists as Extensible Arrays . . . . . . . . . . . . . . . . . . 15
4.1.3 Lists as Linked Lists . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Summary of List Implementations . . . . . . . . . . . . . 17

4.2 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Actions on Stacks . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Stack Implementation: Array vs Linked List . . . . . . . . 18

4.3 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Actions on Queues . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Queues as Wraparound Arrays . . . . . . . . . . . . . . . 20

1



4.3.3 Queues as Linked Lists . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Comparison of Queue Implementations . . . . . . . . . . . 21

4.4 Sets and Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.1 Dealing with Clashes: Hash Buckets . . . . . . . . . . . . 22
4.5.2 Dealing with Clashes: Open Addressing and Probing . . . 23

5 Week 5 - Balanced Trees 24
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.4 Binary Trees Summary . . . . . . . . . . . . . . . . . . . 27

5.3 Red-Black Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 Insert and the Red-Uncle Rule . . . . . . . . . . . . . . . 29

5.4 Summary of Balanced Trees . . . . . . . . . . . . . . . . . . . . . 32
5.5 Data Structures Review . . . . . . . . . . . . . . . . . . . . . . . 32

6 Week 5 - Divide-Conquer-Combine and the Master Theorem 33
6.1 Runtime of Recursive Algorithms . . . . . . . . . . . . . . . . . . 33
6.2 The Master Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Week 7 - The Heap Data Structure 36
7.1 The Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Operations on Heaps . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2.1 Heap-Maximum . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.2 Max-Heapify . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.3 Heap-Extract-Max . . . . . . . . . . . . . . . . . . . . . . 39
7.2.4 Max-Heap-Insert . . . . . . . . . . . . . . . . . . . . . . . 39
7.2.5 Build-Max-Heap . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.6 Summary of Heap Operations . . . . . . . . . . . . . . . . 42

7.3 HeapSort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 Priority Queues as Heaps . . . . . . . . . . . . . . . . . . . . . . 44

8 Week 8 - Quicksort 45
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Quicksort Runtime Analysis . . . . . . . . . . . . . . . . . . . . . 51

9 Week 9 - Graphs: Representation and Searching 53
9.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Representing Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2.1 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . 54
9.2.2 Adjacency List . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.3 Graph Representation Comparison . . . . . . . . . . . . . 55
9.2.4 Sparse and Dense Graphs . . . . . . . . . . . . . . . . . . 56

2



9.3 Traversing Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.3.1 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . 56
9.3.2 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . 58
9.3.3 Recursive Depth-First Search . . . . . . . . . . . . . . . . 60
9.3.4 Runtime Analysis of Traversal Strategies . . . . . . . . . . 60

9.4 DFS Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.5 Topological Ordering and TopologicalSort . . . . . . . . . . . . . 61

9.5.1 Topological Order . . . . . . . . . . . . . . . . . . . . . . 61
9.5.2 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.5.3 Topological Sort . . . . . . . . . . . . . . . . . . . . . . . 63

9.6 Connected Components . . . . . . . . . . . . . . . . . . . . . . . 65

3



1 Week 2 - Asymptotics

1.1 Basics of Asymptotics

• Asymptotic Analysis: use of mathematical functions to make precise,
quantitative statements about the efficiency of an algorithm. We use sim-
ple functions to bound the runtime behaviour of algorithms.

• Simple Functions:

– Polynomial : 1, n, n2, · · ·
– Logarithmic: lg(n), nlg(n)

– Exponential : 2n

– Roots:
√
n

– Weird : 22
n

• Requirements for Asymptotics: consider 2 algorithms with runtime
given by T1(n) and T2(n), where n is the size of the input. Then, we want:

1. to capture that eventually one of the 2 is greater than the other

2. to gauge how much faster an algorithm is over the other

3. to ensure that independently of implementation detail, an algorithm
will always be better than the other

– no matter if the best programmer codes up and inefficient algo-
rithm in the best, fastest, machine, a more efficient algorithm
will eventually always fare better

1.2 Little o

• Definition of Little o: let f(n) and g(n) be functions. Then, we say that
f is o(g) if f grows slower (is asymptotically smaller) than g. Informally,
we expect:

lim
n→∞

g(n)

f(n)
=∞

Formally, f is o(g) if:

∀c > 0, ∃N : ∀n ≥ N, f(n) < c× g(n)

This is equivalent to saying:

“eventually, no matter how much we scale g, f will always be smaller than g”

• Meaning of Asymptotics: asymptotics actually represent a set, so say-
ing that f is o(g) is saying that f ∈ o(g), where:

o(g) = {f : N→ R≥0 | ∀c > 0, ∃N : ∀n ≥ N, f(n) < c× g(n)}
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• Reducing Clutter with o: we can heavily simplify complex expressions.
In particular, if f is o(g), it is unaffected by scaling (by definition), and
we can group them together. For example:

(3n+ 5
√
n+ 17lg(n))(4n+

√
n

lg(n)
+ 12)

= (3n+ o(n) + o(n))(4n+ o(n) + o(n))

= (3n+ o(n) + o(n))(4n+ o(n) + o(n))

= (3n+ o(n))(4n+ o(n))

= 12n2 + o(3n2) + o(4n2) + o(n2)

= 12n2 + o(n2)

1.3 Little omega

Let f(n) and g(n) be functions. Then, we say that f is ω(g) if f grows faster
(is asymptotically larger) than g. Informally, we expect:

lim
n→∞

f(n)

g(n)
=∞

Formally, f is ω(g) if:

∀C > 0, ∃N : ∀n ≥ N, C × g(n) < f(n)

This is equivalent to saying:

“eventually, no matter how much we scale g, f will always be larger than g”

Indeed, there is a sort of reciprocity between o and ω:

f ∈ o(g) ⇐⇒ g ∈ ω(f)

1.4 Big O

Let f(n) and g(n) be functions. Then, we say that f is O(g) if f grows no
faster than g. Informally, we expect:

Formally, f is O(g) if:

∃C > 0, ∃N : ∀n ≥ N, f(n) ≤ C × g(n)

This is equivalent to saying:

“eventually, no matter how much we scale g, f will always be at most as large as g”
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1.5 Big Omega

Let f(n) and g(n) be functions. Then, we say that f is Ω(g) if f grows at least
as fast as g. Informally, we expect:

Formally, f is Ω(g) if:

∃c > 0, ∃N : ∀n ≥ N, c× g(n) ≤ f(n)

This is equivalent to saying:

“eventually, no matter how much we scale g, f will always be at least as large as g”

Indeed, there is a sort of reciprocity between O and Ω:

f ∈ O(g) ⇐⇒ g ∈ Ω(f)

1.6 Big Theta

Let f(n) and g(n) be functions. Then, we say that f is Θ(g) if f grows at the
same rate as g. Informally, we expect:

Formally, f is Θ(g) if:

∃c1, c2 > 0, ∃N : ∀n ≥ N, c1 × g(n) ≤ f(n) ≤ c2 × g(n)

This is equivalent to saying:

“eventually, no matter how much we scale g, f will always be at tightly bound by g”

Indeed:
f ∈ Θ(g) ⇐⇒ f ∈ O(g) & f ∈ Ω(g)

1.7 Asymptotics Summary

• f ∈ o(g): f grows slower than g

• f ∈ ω(g): f grows faster than g

• f ∈ O(g): f grows at most as fast g

• f ∈ Ω(g): f grows at least as fast g

• f ∈ Θ(g): f grows at the same rate as g
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2 Week 3 - Sorting Algorithms and Asymptotic
Analysis

2.1 Analysing Algorithms

• Cost Model: a definition of how the cost of an algorithm is measured

– runtime, memory use, disk operations

• Runtime Cost: time necessary to execute an algorithm for any input of
size n

– can be measured in terms of comparsions, line executions or others

• Best, Worst, and Average Case: we can use our asymptotics to define
bounds on the best, worst and average runtime

– Tworst ∈ O(g): worst case runtime is at most as bad g (just say
runtime is O(g))

– Tworst ∈ Ω(g): worst case runtime is at least as bad as g

– Tworst ∈ Θ(g): worst case runtime is as bad as g

– Tbest ∈ O(g): best case runtime is at most as good g

– Tbest ∈ Ω(g): best case runtime is at least as good as g (just say
runtime is Ω(g))

– Tbest ∈ Θ(g): best case runtime is as good as g

2.2 Insert Sort

• How it Works: traverse through each element of the array, sorting all
the elements before it.

– get element x

– all elements before it have been sorted (by the previous executions
of the algorithm)

– check all elements before x. If y is larger than x, then y moves one
place up. Otherwise, x gets inserted after y.
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• Worked Example: consider [12, 11, 13, 5, 6]

1. i = 1: A[1] = 11. Since 12 > 11, put 12 in place of 11. Terminate
while, and insert 11 before 12.

– [11, 12, 13, 5, 6]

2. i = 2: A[2] = 13. Since 12 ¡ 13, the while loop doesn’t get executed.

– [11, 12, 13, 5, 6]

3. i = 3: A[3] = 5. Since all elements before 5 are bigger than 5, we
insert 5 at the beginning of the array.

– [5, 11, 12, 13, 6]

4. i = 4: A[4] = 6. Since all elements before 6 are bigger than 6, except
for 5, we insert 6 before 5.

– [5, 6, 11, 12, 13]

• Runtime Analysis: most of the work occurs during the comparison steps
(line 4), so we describe the runtime in terms of the number of calls.

– for each i, the while loop might be called at most i times (j begins
at i− 1 and potentially terminates at −1)

– there are a total of n− 1 i’s to consider

8



– since for each i we make at most i comparisons, and there are n− 1
such i’s, the total number of comparisons is:

n−1∑
i=1

i =
n(n− 1)

2
∈ O(n2)

• Worst Case: the worst case occurs when the array is sorted in reverse
order, as this will require that for each i, we make exactly i comparisons.
In this worst case, it is clear that the runtime is Ω(n2), so the worst case
is Θ(n2)

• Best Case: the best case occurs when only 1 comparison is made (so the
while loop is never entered). In this case, the total number of comparisons
will be precisely n− 1, so Θ(n) runtime

• Average Case: can be shown that, in the average case, runtime is Θ(n2)

• Insert Sort Summary:

– Worst Case: Θ(n2) (input in reverse order)

– Average Case: Θ(n2)

– Best Case: Θ(n) (input already sorted)
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2.3 Merge Sort

• How it Works: given any array, it splits it into 2, recursively applying
MergeSort on each of the halves. The returned arrays are then merged
and ordered using Merge. The base case occurs when the arrays to which
we apply merge sort contain a simple element, in which case they are
returned.
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• Runtime Analysis:

– Merge: if m = |B| + |C|, does at most m − 1 comparisons (one
comparison per for loop), and at least min(|B|, |C|) = m

2 − O(1).
Hence, Merge is Θ(m)

– MergeSort: during the whole MergeSort procedure in which Merge

is applied (red arrows), there are a total of n elements at each level.
From before, in merging all of these elements, we will do about n
comparisons (at most n−1, and at least n

2 −O(1)). The total number
of levels during which merging occurs will be (about) lg(n) (as we
are doubling the length of the array at each level). Thus, at most
the algorithm does O(nlg(n) work, and at least Ω(nlg(n)). Thus, the
general runtime of MergeSort is Θ(nlg(n))

• Merge Sort Summary: independent of input always does the same
amount of work:
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– Worst Case: Θ(nlg(n))

– Average Case: Θ(nlg(n))

– Best Case: Θ(nlg(n))

2.4 Overall Runtime Comparison: Insert vs Merge

We can consider overall runtime by consider that every line execution is done
in Θ(1) time. Following similar thinking we get the same results:

Algorithm Worst Average Best
Insert Sort Θ(n2) Θ(n2) Θ(n)
Merge Sort Θ(nlg(n)) Θ(nlg(n)) Θ(nlg(n))

2.5 Space Complexity Comparison: Insert vs Merge

• Space Complexity in Insert Sort: since it can be done in place, its
only memory requirements are in storing temporary variables, so Θ(1)
space

• Space Complexity in Merge Sort: naively might require Θ(nlg(n))
(total size of all elements within each generated array). However, if we
reclaim space occupied after we finish merging arrays, we can get Θ(n)
space

2.6 Insert vs Merge Summary

Algorithm Worst Average Best Space
Insert Sort Θ(n2) Θ(n2) Θ(n) Θ(1)
Merge Sort Θ(nlg(n)) Θ(nlg(n)) Θ(nlg(n)) Θ(n)
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3 Week 3 - Program Data in Memory

3.1 Memory Organisation

• The Stack: stores values of variables. Shrinks and grows as the number
of variables changes.

– items stored contiguously

– changes size as the number of variables changes

– items must have a constant size

– contains a value (Boolean, numerical, String), or a reference to an
item in the heap

• The Heap: stores objects, referenced by the stack

– may contain any object, of any size and even ereferences to other
heap objects

– heap objects might become unreachable (i.e a reference no longer
points at object), so memory manager (garbage collector) required

• Dereferncing: following a reference to an object in heap

– for example, X.age, we follow the pointer that goes from object X to
an element in the heap containing the value of age

– can lead to NullPointerException if pointer points to nothing

• Memory Operations: operations such as:

13



– reading and writing values of variables

– accessing/updating field through dereferencing

– accessing/updating object in array

– allocating a new object in memory (new Person(...))

– allocating new array to the heap

all work in constant time

3.2 Equality Testing

Two objects can be equal in 2 ways:

• have the same reference to memory (is)

• have the same contents (==)

Let:

• L1 = [1,2,3]

• L2 = L1

• L3 = [L1,L1,L1]

• L4 = L1[:]

• L5 = L3[:]

• L6 = [L1[:],L1[:],L1[:]]

Then:

• L2 is L1 and L2 == L1 are both True, as L2 copies the reference in mem-
ory of L1, so then it will have the same contents and the same reference

• L4 is L1 is False, as L4 copies the contents of L1 (so L4 == L1 is True),
but they are stored at a different place in the heap

• L6 is L3 is False, since L6 constructs a completely new array, albeit with
the exact same elements as L3 (s o L6 == L3 is True)
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4 Week 4 - Classic Data Structures

4.1 Lists

• List: a collection of unordered items

• Actions on a List:

– get(i): get item at index i

– set(x,i): set item x at index i

– cons(x): insert item x at the start

– append(x): add item x at the end

– insert(x,i): add item x at index i

– delete(i): delete item at index i

– length: number of items

4.1.1 Lists as Fixed-Size Arrays

• Fixed-Size Arrays: array which can store at most m elements

– keeps track of current number of occupied entries with a number n
(gets updated whenever we insert/append)

– Θ(1): length, get, set, append

– Θ(n): cons, insert, delete [WORST CASE]

• Benefits and Weaknesses:

X fast get and set (keep array in stack)

X fixed size =⇒ good memory management (space reclaimed if in
stack)

× can’t cope with lists with length > m

× many lists of unpredictable sizes =⇒ under-cater or over-cater

– Conclusion: bad choice for general list

4.1.2 Lists as Extensible Arrays

• Extensible Array: if adding items to the array would cause it to over-
flow, create a new, bigger array to store items

– cheap if there is space in contiguous memory

– otherwise, need to generate a completely new array of length length×
r, r ∈ R>1, before appending the new element

– normal append is Θ(1), but if it requires expansion, becomes Θ(n)

15



• Amortized Cost Analysis: used to see behaviour of extensible arrays
over a long run of appends. We want to know whether the repeated
copying is cost-effective on average.

– array size changes: a, ar, ar2, ar3, · · ·
– size of array after n expansions: arn

– so to make m appends, require logr(
m
a ) total expansions

– since for each expansion we need to copy all items from one array
into the new one, the number of copyings can then be found via a
geometric series. Letting s = dlogr(ma )e

# copyings = a×
s∑
i=0

ri = a× rs − 1

r − 1

Now, notice that we must have:

ars−1 < m ≤ ars

So:
a× (rs − 1) = ars − a < ars = (ars−1)r < mr

Thus:
# copyings <

mr

r − 1

Since we copy at most m items, the number of copyings/appends per
item is at most:

r

r − 1

which is a real number

– thus, the amortized cost of append is O(1) per operation

• Extensible Arrays Operation Costs:

– Θ(n): cons, insert, delete (even amortized)

– append : Θ(1) best case, Θ(n) worst case, O(1) amortized cost

16



4.1.3 Lists as Linked Lists

• Linked List: has nodes which contain a key (value of item) and a refer-
ence to the next item in the list

– Θ(n): get, set, insert, delete [WORST CASE]

∗ insert and delete can be Θ(1) if we want to insert at cell i, and
we already have location of cell i− 1

– Θ(1): cons

– we can also share different parts of a list between linked lists, as we
only need references

4.1.4 Summary of List Implementations

We consider upper bounds on runtime for the list implementations:

Figure 1: Items with * are those that may fail for a fixed-length implementation
of an array, or those that trigger extension in extensible arrays
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4.2 Stacks

• Stack: a Last In First Out (LIFO) buffer. Items get “stacked”, so we
insert elements at the start, and we remove elements from the start

4.2.1 Actions on Stacks

• empty : check if stack is empty

• push(x): insert an element x in the stack

• peek : check on the first element of the stack (the one that would be
removed)

• pop: get the first element of the stack, removing it

4.2.2 Stack Implementation: Array vs Linked List

• Geeks for Geeks Implementation

• Stacks as Arrays: build stack by pushing and popping elements from
the end of the array

X easy to implement, no pointers required

× need extensible arrays, push can be O(n)

• Stacks as Linked Lists: just add a node at the start to push, and remove
it when popping

X dynamic, easy to push/pop

18
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× memory requirements from pointers

4.3 Queues

• Stack: a First in First Out (FIFO) buffer. Items get added at the
end, and removed from the start

4.3.1 Actions on Queues

• empty : check if stack is empty

• enqueue(x): insert an element x at the end of the queue

• peek : check on the first element of the stack (the one that would be
removed)

• dequeue: get the first element of the queue, removing it
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4.3.2 Queues as Wraparound Arrays

We keep track of the indices of the start (i) and the end (j ) of the queue. If we
add items, we increase j (modulo the length of the array); if we remove items,
we increase i (modulo the length of the array). An empty queue will be given
when i = j. A full queue will be given when j = i − 1. See this thorough
example.

The initial queue is [2, 3, 5, 7]. If we dequeue twice, we remove the first 2
elements, and advance the front index, from i = 0 to i = 2. The resulting queue
is [5, 7]. Then, apply enqueue(11) and enqueue(13) increases the end index,
from j = 3 to j = 5, resulting in the queue [5, 7, 11, 13]. Finally, we dequeue
(so i = 3) and then enqueue(17), enqueue(19) moves the end index further, but
we wrap around, such that we go from j = 5 to j = (5 + 2)mod 6 = 1. The
resulting queue thus becomes [7, 11, 13, 17, 19].

Figure 2: Enqueue in wraparound array queue implementation

4.3.3 Queues as Linked Lists

We have a linked lists with items in the queue. Keep pointers to the first and
the last item of the list. Call these start and end pointer respectively. To
dequeue, go to the node referenced by the start pointer, follow its reference to
the second item in the queue, and make the start pointer reference this second
item. Similarly, to enqueue, you create a new node that points nowhere, and
make the last node of the queue point to this new node. Then, change the end
pointer to point to the new node.

20
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(a) Nodes 2 and 3 are nodes that have
been dequeued from the LL

4.3.4 Comparison of Queue Implementations

4.4 Sets and Dictionaries

• Sets: finite, unordered collection of objects containing elements of the
same type. Any set should have the following actions:

– contains(x): check if x is in the set

– insert(x): insert x in the set

– delete(x): remove x from the set

– isEmpty : check if set has elements

• Dictionary: maps keys to values. Any dictionary should have the follow-
ing actions:

– lookup(x): given key x, returns corresponding value

– insert(x,y): insert key-value pair x, y in the dictionary

– delete(x): remove key (and corresponding value) x from dictionary

– isEmpty : check if dictionary has elements

• Aim of Sets and Dictionaries: should provide a fast way of checking
for the existence of a key (either contains or lookup)

• Naively Implementing Sets and Dictionaries: naively, can use a list
to implement sets and dictionaries:

names = [“James”, “Mary”, “Alex”]
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birthyear = [(“James”, 1969), (“Mary”, 1420), (“Alex”, 3141)]

Looking up values would be Θ(n). Even if we sort and use BinarySearch,
lookup time would be Θ(lg(n)). insert/delete will still take time

4.5 Hashing

• Hash Tables: given m key-value pairs, applies a hash function to the
key, converting it into an integer (hash code) between 0 and m− 1 (so key
s gets turned into #(s)). Then, can store the value associated with s at
index #(s) of an array of size m.

• Hash Functions: ideally want all hash codes to be equally likely.

× #(s) = s mod 2k: powers of two mean you will only consider last 2
characters of s

× #(s) = s mod 127: numbers close to powers of 2 hash anagrams to
the same hash code

X #(s) = s mod 97: primes far away from powers of 2 are good choices

• Clash in Hash Tables: it is possible that, if s, t are distinct keys, #(s) =
#(t). These clashes are quite likely, so we need to deal with them.

– can use perfect hashing if the keys don’t change, which removes
any possibility of collision

4.5.1 Dealing with Clashes: Hash Buckets

• Hash Buckets: we want to use m hash codes. We have n key-value pairs.
Create an array of size m. All values that hash into the same index of
the array are kept in a form of linked list, with each item referencing the
next. Then, the index of the array just holds a reference to the first of
these items. Hence, at each index, we store a “bucket” of values.

– if we have a set, we can just ignore the values
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• Load on Hash Table: a number given by:

α =
n

m

– we can maintain a stable load if n gets too large by simply increasing
the number of hash codes, and rehashing everything (good amortized
cost)

– the average number of key comparisons for an unsuccesful lookup is
precisely α, so Θ(α) time for unsuccessful lookup (can be shown we
get the same time for succesful lookup)

4.5.2 Dealing with Clashes: Open Addressing and Probing

• Open Addressing: store all items within the Hash Table (looking online,
unaware if this means that all key value pairs are stored within the array,
or just the values; from the lookup procedure it might seem that key value
pairs are stored)

• Probing: resolves clashes when we use open addressing. Redefine hash
function to #(k, i), i ∈ [0,m − 1], and choose as the hash code of k the
first hash such that said index in the array hasn’t yet been occupied.

– for inserting, if we have (k, v), and #(k, 0), #(k, 1) already contain
a value, but #(k, 2) is empty, then store v at index #(k, 2)

– for lookup, go through all possible hashing of k (#(k, 0), #(k, 1), etc
...) until an item is found which has key k

• Analysis of Probing:

X low expected number of probes for insert/lookup ( 1
1−α for unsucces-

ful, less if succesful)

X no need for pointers, can invest memory in additional hash codes
(faster lookup for same memory compared with buckets)

× deleting is hard

× designing probing function not straightforward
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5 Week 5 - Balanced Trees

5.1 Motivation

• Sets and Dictionaries Action Runtime: lookup/insert/delete is Θ(1)
on the average, but Θ(n) worst case

• List Action Runtime: many worst case actions run in Θ(1), but in-
sert/delete is Θ(n) average case

• Balanced Trees: data structures which allow us to obtain an average
case of Θ(lg(n)) for all operations

5.2 Binary Trees

• Binary Tree: tree structure, such that:

– every node x has a left (L(x)) and right (R(x)) subtree

– each node is labelled with a key

∗ if we implement a dictionary, each node contains a key and its
value

– for any node x:

∗ any child from its left subtree will have a smaller key than x

∀y ∈ L(x), y.key < x.key

∗ any child from its right subtree will have a larger key than x

∀z ∈ R(x), z.key > x.key
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Figure 4: Contains algorithm in a binary tree. Employs the structure of left
and right branches, alongside recursion to find a key within the tree

• Node Depth: number of edges from the root to the node

• Node Height: number of edges from the node to the deepest leaf

• Tree Depth: number of edges from root node to the deepest leaf

5.2.1 Contains

• Perfectly Balanced Tree: a tree of n nodes and depth d is perfectly
balanced only if n = 2d− 1 (all non-leaf nodes have 2 children, and all leaf
nodes are at depth d)
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• Contains Analysis: depending on the “type” of tree, contains has dif-
ferent performance:

– Perfectly Balanced Tree: by definition d = lg(n+ 1), so at most
contains will have to traverse the whole tree, so it is O(lg(n))

– Not-Too-Unbalanced Tree: trees with max depth ≤ 2dlg(n)e,
contains is also O(lg(n))

Figure 5: Not-Too-Unbalanced Tree. We have dmax = 5, and n = 13, so
dmax = 5 ≤ 8 = 2× dlg(13)e

– Worst Case: any tree in which all nodes are organised in a single
file (i.e every node is a left child of its parent). Then contains will
be Θ(n) in this worst case.

5.2.2 Insert

Figure 6: To insert a new key, just need recursively call insert on children nodes,
until we find a suitable place for the key which allows it to satisfy the binary
tree rules (right tree if bigger, left subtree if smaller)

• Balanced/Not-Too-Unbalanced Tree: O(lg(n)) by similar arguments
as before
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• Worst Case: Θ(n)

5.2.3 Delete

Let y be a node, and y.key = j. If we want to delete j, we consider 3 cases:

1. y is a leaf

• remove y

2. y has 1 child

• elide y (delete y by making the parent of y the parent of y ’s child

Figure 7: In removing y, we move its child w to occupy its place

3. y has 2 children

• let z be the leftmost node of R(y)

• make y.key = j = z.key

• apply delete to z

Figure 8: Here j = 7, and z.key = 11

Again, O(lg(n)) if tree is slightly unbalanced, but worst case Θ(n)

5.2.4 Binary Trees Summary

If the binary tree is only slightly unbalanced, then we can achieve an average case
O(lg(n)). The issue occurs when the tree becomes unbalanced as a consequence
of inserting and deleting.
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5.3 Red-Black Trees

• Red-Black Trees: a special type of tree, which uses a set of rules to
guarantee that, even after insert and delete, it remains relatively balanced.
Rebalaancing can be done in O(lg(n)), so even worst case actions will be
O(lg(n))

• Trivial Nodes: instead of having plain leaf nodes, red-black trees have
trivial nodes (leaf nodes point to trivial nodes, instead of just pointing to
null)

– remaining nodes are proper nodes

– resulting tree is an extended tree

• Red-Black Tree Rules: a red-black tree is an extended tree composed
of red and black nodes. Must satisfy the following rules:

1. root and trivial nodes are black

2. same number of black nodes along any path from root to leaf

3. no 2 consecutive red nodes along any path from root to leaf

• Depth of Red-Black Trees: if the number of black nodes along any
path is b, then:

– dmin = b (only black nodes)

– dmax = 2b− 1 (alternating black and red nodes)

• Balance of Red-Black Trees: it can be shown that b ≤ lg(n + 1) + 1.
Since dmax = 2b− 1, it follows that any path length is at most of length:

2lg(n+ 1) + 1

This means that we can guarantee O(lg(n)) operations given that the
rules are kept

• Contains in Red-Black Tree: worst case time is guaranteed Θ(lg(n))

• Delete in Red-Black Tree: we delete as normal. Complications arise
if the node to be deleted is black, as then a path will be one black short.
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– if the node that occupies the deleted node’s position is red, just turn
it black

– if deleting procedure reaches the root, delete root

– more complex, albeit fixable scenarios not covered

5.3.1 Insert and the Red-Uncle Rule

• Inserting in Red-Black Tree: we insert a node as with a binary tree.
Inserted node must be red, and have 2 trivial leaves. 2 problems:

– new node can have a red parent

– new node might be the root

• Red-Uncle Rule: used to guarantee that insertion preserves the Red-
Black Tree rules. If we insert a new node x, and both its parent and uncle
are red nodes, then make them black. Then, make the grandparent of x
red. We repeat this procedure until no longer applicable.

• Steps After Red-Uncle Rule: after applying the red-uncle rule as much
as possible, we can be in 3 situations:

1. Legal Tree Reached

2. Root Becomes Red

– turn it black (preserves rules, as all paths increase number of
black nodes by 1)

3. No Red Uncle

– if we inserted x, then the grandparent of x must have 4 nearest
black descendants. Nodes can be shuffled, preserving rules.
See here.
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– shuffling can be done in O(1) time
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5.4 Summary of Balanced Trees

• Benefit of Balanced Trees: allow us to implement data structures with
worst-case operation runtime O(lg(n))

• Alternatives to Red-Black Trees: can also use AVL trees

– AVL more balanced (faster lookup)

– Red-Black Trees have faster insert/delete

5.5 Data Structures Review

• Abstract Data Structures: lists, stacks, queues, sets, dictionaries

• Concrete Implementations of Data Structures: Extensible Arrays,
Linked Lists, Hash Tables, Red-Black Trees
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6 Week 5 - Divide-Conquer-Combine and the
Master Theorem

6.1 Runtime of Recursive Algorithms

• Seen Recursive Algorithms:

– MergeSort: sorts an array by splitting it, sorting the halves, and
then merging the sorted halves

– insert: in binary trees, you apply insert in the subtree of a node
until an appropiate position is found

• Divide, Conquer and Combine: recursive algorithms can be broken
down into 3 parts:

– Divide problems into subproblems

∗ compute size of subarrays

– Conquer (aka solve) the subproblems

∗ recursively sort each subarray

– Combine results, to solve the main problem

∗ apply merge to combine the subarrays

• Recursive Runtime: since in recursion we apply the algorithm for
smaller subproblems, the runtime of such algorithms will be a recursive
formula.

– for MergeSort, let T (n) denote a worst case runtime. Then the
runtime will be:

T (n) =

{
C n = 1

T
(⌊
n
2

⌋)
+ T

(⌈
n
2

⌉)
+ F (n) n 6= 1

– C is just a constant (denoting time taken to MergeSort a unit list)

– F (n) is the time taken to Merge lists of combine length n

• Simplifying Recursive Runtime: we don’t care about the exact value
of T (n): we only want to know the order of growth. Thus, we can
use asymptotics to simplify the expression (can remove floors/ceilings,
as asymptotically don’t matter, can remove unwanted functions, etc...):

T (n) =

{
Θ(1) n = 1

2T
(
n
2

)
+ Θ(n) n 6= 1

– at this point, we can use techniques like mathematical induction to
solve for T (n) (see slides1)

1Week 5, Lecture 10, Slide 8
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6.2 The Master Theorem

• The Master Theorem: allows us to “solve” for runtime, given a recur-
sive runtime. If the runtime is of the form:

T (n) =

{
Θ(1) n ≤ n0
aT
(
n
b

)
+ Θ(nk) n > n0

then, by the Master Theorem, and letting e = logb(a),

T (n) =


Θ(ne) e > k

Θ(nk × lg(n)) e = k

Θ(nk) e < k

• Intuition Behind Master Theorem: comparing the constatns with
our recursion for MergeSort:

– a gives the number of subproblems

– b gives the size of each subproblem

– nk time required to solve subproblem

– e = k: basically means a = bk

∗ increasing a increases the work required as we descend the tree
(more subproblems to solve)

∗ increasing b decreases the size of the subproblem by factor b, so
work required to divide/combine will decrease by bk

∗ if a = bk, the amount of work balances out, so it will be similar
across all levels. There are lg(n) levels, and the total work to be
done at the top level if F (n) = nk, so, if a = bk:

T (n) = nk × lg(n)

– e > k: basically means a > bk

∗ the number of subproblems increases faster than the rate at
which subproblems decrease in size

∗ as we go down the tree, we expect more work, so the total cost
is dominated by the cost of solving base cases

∗ at the top level, merging all the branches is Θ(nk) work

∗ there are a total of about logb(n) levels (b is size of subproblem,
so n ≈ bd for a tree of depth d)

∗ let r = a
bk

. At the bottom level, the proportion of bottom level
work to top level work is:

rlogb(n) = blogb(r) logb(n) = blogb(n) logb(
a

bk
) = nlogb(a)−logb(b

k) = ne−k
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∗ thus, the total work done at the bottom level is:

Θ(nk)×Θ(ne−k) = Θ(ne)

– e < k: basically means a < bk

∗ the work in merging subproblems is greater than the work for
solving the subproblems

∗ thus, most of the work will be done when merging all these big
subproblems at the top, rather than in solving them at the bot-
tom

∗ at the top we do Θ(nk) work

∗ if r = a
bk

, then work decreases by factor r as we go down the
tree, wit proportion of work at the bottom to work at the top
being roughly:

1 + r + r2 + · · · ≤ 1

1− r
∈ R

∗ so total work in the end will be roughly:

1

1− r
×Θ(nk) = Θ(nk)
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7 Week 7 - The Heap Data Structure

7.1 The Heap

• Nearly Complete Binary Tree: a binary tree of depth h, such that:

– ∀d ∈ [0, h− 1], every level has 2d nodes (so every level is completely
filled)

– all leaf nodes (d = h) are as far left as possible

• The Heap Data Structure: a nearly complete binary tree, where every
parent node is greater than or equal to each of its child nodes

– can be easily stored in an array

– no total ordering of items in array

– ideal for quickly finding maximum value of an array

• Heaps as Arrays: a heap with n elements can be stored by reading
indices left-to-right from the heap. Mathematically, the index in the array
of the jth item in the ith row is:

index = (2i − 1) + j − 1

– 2i − 1 are all the items in the level above

– there are j − 1 items before item j
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Figure 9: We can label nodes by reading left to right in the order that they
appear.

• Height of Heap: all leaf nodes are at height h − 1 or h (root node is
h = 0). Thus, any heap of n nodes must satisfy:

2h ≤ n < 2h+1 − 1 =⇒ h ≤ lg(n) < h+ 1

But then it follows that:

lg(n)− 1 < h ≤ lg(n)

Any operation that depends on the height of the heap will probably have
operations with runtime Θ(lg(n))

7.2 Operations on Heaps

7.2.1 Heap-Maximum

Returns the maximum value of a heap, which can be easily done in Θ(1) time

7.2.2 Max-Heapify

• Max-Heapify: if a node at index i violates the heap property, use
Max-Heapify to restore the heap property

– in essence, compares i with its 2 children. Select the largest of the
children, call it x, and then swap i and x. Now, i is a child of x. Call
Max-Heapify on i.
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Figure 10: L(i) and R(i) respectively correspond to the index of the left and
right child of i. largest contains the index of the biggest key out of i, L(i) and
R(i)

• Max-Heapify Runtime Analysis: intuitively, we expect that in the
worst case, we have to traverse all of the height of the tree, at each step
doing 2 comparison and 1 swap. Thus, we execute Θ(1) operations at
most/least h times, so we expect runtime to be:

h×Θ(1) = Θ(h) = Θ(lg(n))
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– more formally, we have a recursive formula:

TMax−Heapify(h) ≤

{
TMax−Heapify(h− 1) +O(1) h ≥ 1

O(1) h = 0

(formula is identical for Ω)

– it then follows that, since h ≤ lg(n):

TMax−Heapify(h) ≤ (h+1)O(1) =⇒ TMax−Heapify(h) ∈ O(h) = O(lg(n))

– similarly, since h ≥ lg(n)− 1, and we do Ω(1) work at each step for
h comparisons:

TMax−Heapify(h) = hΩ(1) =⇒ TMax−Heapify(h) ∈ Ω(h) = Ω(lg(n))

– thus, the runtime of Max-Heapify is:

Θ(lg(n))

7.2.3 Heap-Extract-Max

• Heap-Extract-Max: like pop, returns (and in the process removes) the
largest value of the heap

– we can get the max element in Θ(1) time

– swap the max element (A[0]), with the last element of the heap
(A[A.length− 1])

– remove the last element of the heap (A.length− = 1)

– call Max-Heapify(0) (so we heapify at the root, to ensure that the
resulting object maintains the Heap property)

– most of the work is done by Max-Heapify, so the runtime for Heap-Extract-Max
is:

Θ(lg(n))

7.2.4 Max-Heap-Insert

• Max-Heap-Insert: insert new item within heap (preserving heap prop-
erty)

– in essence, inserts element at the end of the heap. Then, “bubble”
the item up, by swapping it with its parent if the parent is smaller
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• Max-Heap-Insert Runtime Analysis: it is easy to see that, in a worst
case, we insert an item larger than every other element of the heap. Then
we need to compare and swap this item with all of its parents, so the
runtime for Max-Heap-Insert is:

Θ(lg(n))
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7.2.5 Build-Max-Heap

• Build-Max-Heap: builds a heap from an unsorted array

– in essence, we want to go over every non-leaf node, from bottom to
the top, applying Max-Heapify. This will ensure that we preserve
the Heap property from bottom up.

– good video on Build-Max-Heap

Figure 11: Since about half of the nodes will be leaf nodes, we only need to
iterate over bA.heap size/2c items
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• Build-Max-Heap Runtime Analysis: notice that we call Max-Heapify
a different number of times depending on the height: 1 time when at the
root (height h), 2 times when height is h−1, 4 times when height is h−2.
In general, at height l ∈ [1, h], we call Max-Heapify:⌈ n

21+l

⌉
times. Moreover, we know that, at height l, Max-Heapify has a runtime
of O(l). Thus, the total runtime is:

blg(n)c∑
l=1

⌈ n

21+l

⌉
×O(l) = O(n)

(we have used identity A.8 from CLRS at the end)

7.2.6 Summary of Heap Operations

Also, go here for all the pesudocode.
Lastly, Heap-Increase-Key(A,i,k) basically changes the key stored at A[i]

by k (assuming k > A[i]. Very similar to Max-Heap-Insert in terms of func-
tioning.

7.3 HeapSort

• HeapSort: allows us to extract a total ordering of the elements in the
heap

– we extract the largest item of the heap, and swap it with the last
element of the array. Then, decrement the size of the heap (so now
it contains every element except the original largest element). Apply
Max-Heapify (if we use Heap-Extract-Max, in removing the max
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element we preserve the heap property already). Repeat until size of
the heap is 0.

– this (Brilliant) and this (HappyCoders) are great articles on HeapSort
(and the Heap in general)

Figure 12: We swap the max and the last item in the array, and stop considering
the max element as part of the heap

Figure 13: After, apply Max-Heapify to obtain a legal max heap

• Heapsort Runtime Analysis: most of the work comes from using
Heap-Extract-Max, which for a heap of m nodes has runtime O(lg(m)).
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Since we apply it a total of n times, the runtime is:

O(

n∑
m=1

lg(m))

= O

(
lg

(
n∏

m=1

m

))
= O(lg(n!))

It is easy to show that n
n
2 ≤ n! ≤ nn, so taking logs, this allows us to

justify that HeapSort is O(nlg(n)) and Ω(nlg(n)) (achieved if input array
is reversed) algorithm

– created (alongside Heap) by J.W.J Williams

– in place algorithm

– it is unstable: keys that appear in an order within the original
array are not guaranteed to have this order preserved after HeapSort
is applied

7.4 Priority Queues as Heaps

• Priority Queue: collection in which items have an associated key (larger
key = more priority)

– you remove those items with highest priority

– used when resources need to be managed (i,e printing), and priorities
should be given to users

44



8 Week 8 - Quicksort

8.1 Overview

• Quicksort: a divide and conquer algorithm for sorting, developed by
Tony Hoare

– the base case is an array of length 2, for which nothing is done. Oth-
erwise, select a pivot p, with which the array is partitioned into 2
subarrays: one containg elements less than p, and the other con-
taining elements larger than p. Then, apply QuickSort ont hese 2
subarrays.

– an integral part of the algorithm is the Partition step. We let the
pivot be the last element of the array (say at index r), and we keep
track of 2 constants, i and j. At each step, we will be increasing j by
1, until it eventually reaches j = r−1. If we find that A[j] is less than
or equal to the pivot, we then increase i by 1, and swap A[i] and A[j].
If i = j, this changes nothing. However, if i < j, then this means
that when j advanced, i didn’t move, meaning that j encountered
an element greater than the pivot. Hence, by swapping, we ensure
that elements smaller than the pivot stay to the left, and elements
greater than the pivot stay to the right. Once j = r− 1, we can just
place the pivot at index i+ 1 (by exchanging A[i+ 1 and A[r]). This
means that we will have all elements to the left of the pivot being less
than or equal to it, and all of the elements to its right will be greater
than it. Partition will then return the index i+ 1, so that we know
where to divide the arrays for the next iteration of QuickSort

– it is important to note that in all sources I found online, the Partition
is a bit different, with the pivot being anywhere in the array, and with
i and j being Left and Right pointers that begin at either end of
the array. If interested, see:

∗ pythonds, gives overview, has an interactive animation, and even
has some testing. Contains Python implementation.

∗ a good article, works through an example, and even has a video.
Contains JavaScript implementation.
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Figure 14: Here p represents the left index from which we will apply QuickSort.
Indeed, the subarray that we will partition will be the part of teh arry that goes
form index p to index r. If we want to QuickSort the whole array, p = 0 and
r = A.size. split is the index of the pivot resulting from applying partition; it
tells us how to split A into 2 subarrays.

Figure 15: Check the slides (Lecture 13, Slide 7) to check for correctness of
Partition

Figure 16: Array after using Partition with pivot 54. We would then apply
quicksort to both of the arrays at either side of 54
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2 9 19 8 20 5 16

i j

We begin with pivot 16,
and j = p = 0.

Iteration 1 (j = 0)

2 9 19 8 20 5 16

i j

Since A[j = 0] = 2 ≤ 16,
we increase the counter
of i (i = 0), and swap
A[i = 0] with A[j = 0].

2 9 19 8 20 5 16

i j

Increase j (j = 1)

Iteration 2 (j = 1)

47



2 9 19 8 20 5 16

i j

Since A[j = 1] = 9 ≤ 16,
we increase the counter
of i (i = 1), and swap
A[i = 1] with A[j = 1].

2 9 19 8 20 5 16

i j

Increase j (j = 2)

Iteration 3 (j = 2)

2 9 19 8 20 5 16

i j

Since A[j = 2] = 19 > 16,
we do nothing.
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2 9 19 8 20 5 16

i j

Increase j (j = 3)

Iteration 4 (j = 3)

2 9 19 8 20 5 16

i j

Since A[j = 3] = 8 ≤ 16,
we increase the counter
of i (i = 2), and swap
A[i = 2] with A[j = 3].

2 9 8 19 20 5 16

i j

Increase j (j = 4)

Iteration 5 (j = 4)
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2 9 8 19 20 5 16

i j

Since A[j = 4] = 20 > 16,
we do nothing.

2 9 8 19 20 5 16

i j

Increase j (j = 5)

Iteration 6 (j = 5)

2 9 8 19 20 5 16

i j

Since A[j = 5] = 5 ≤ 16,
we increase the counter
of i (i = 3), and swap
A[i = 3] with A[j = 5].
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2 9 8 5 20 19 16

i j

Since in the previous iter-
ation we reached j = 5,
the for loop terminates

Final Swap

2 9 8 5 20 19 16

i j

We swap A[i+ 1 = 4] and
A[r = 6], and we have
partitioned the array suc-
cesfully!

2 9 8 5 16 19 20

Result

.

8.2 Quicksort Runtime Analysis

• Runtime Intuition:

1. at the top level, no matter what, we will do Θ(n) work (this is work
in partitioning the whole array, analogous to merging in MergeSort)

2. how Partition splits the array can heavily influence the runtime:
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(a) if Partition places the pivot close to the centre of its subarray,
then QuickSort behaves like MergeSort (constantly halving the
array to sort), so we expect a runtime of Θ(nlg(n))

– if the sides ar ebalanced we get a runtime equation:

T (n) = 2T (
n

2
) + Θ(n)

(b) alternatively, Partition can be heavily unbalanced (for exam-
ple, 90% of array is to the left of the pivot). In this case, we have
to do a lot of work to reduce the size of the array (think that in
each iteration of partition the subarray to sort becomes shorter
by 1 or 2 elements)

(c) naturally, anything else can happen in between of these 2 “ex-
treme” cases

• QuickSort Runtime: a more detailed analysis of runtime can be found
here (or in the slides, Lecture 13, Slide 9). In summary:

– Worst Case Runtime: Θ(n2)

– Average Case Runtime: Θ(nlg(n))

– Best Case Runtime: Θ(nlg(n)

• Consequences of Runtime on QuickSort: QuickSort is very fast (has
a smaller constant than MergeSort), but suffers in worst case scenarios
(for example, if the array is already sorted, or nearly so)

• Improving QuickSort:

– pick random pivot (RandomQuickSort)

– better partitioning

– InsertSort for smaller/sorted arrays
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9 Week 9 - Graphs: Representation and Search-
ing

9.1 Graphs

• Graph: structure composed by a set of vertices V and a set of edges E

– edges join vertices, so E ⊆ V × V
– a graph G can be described by G = (V,E)

– we will use the convention that n = |V | and m = |E|

• Directed Graph: edges go from one vertex to another one (i.e can go
from v to w, but not the other way)

• Undirected Graph: edges, such that:

(v, w) ∈ E ⇐⇒ (w, v) ∈ E

Figure 17: Directed graph
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Figure 18: Undirected graph

• Degree of a Vertex: if v is a vertex,

– in(v) denotes the in-degree of v (number of edges that end in v)

– out(v) denotes the out-degree of v (number of edges stemming from
v

9.2 Representing Graphs

9.2.1 Adjacency Matrix

Given n vertices, create an n× n matrix A, such that, for any 2 vertices i, j:

• if (i, j) is an edge, Aij = 1

• Aij = 0 otherwise

If G is an undirected graph, the adjacency matrix fo G will be symmetric.
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9.2.2 Adjacency List

An array of length n, such that each entry corresponds to a vertex v, and
within each entry there is a list containing all of the vertices adjacent to v (aka
all vertices that contribute to out(v)).

9.2.3 Graph Representation Comparison

• Checking if w is adjacent to v:

– Adjacency Matrix: just check if A[v][w] is 1

– Adjacency List: need to go over all vertices which are adjacent to
v; there are exactly out(v) of them

• Visit all w adjacent to v:

– Adjacency Matrix: need to go over all elements in the row A[v].
There are exactly n of them
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– Adjacency List: need to go over all vertices which are adjacent to
v; there are exactly out(v) of them

• Visit all edges:

– Adjacency Matrix: need to go through the whole matrix, which
has size n2

– Adjacency List: there are a total of n + m elements stored in the
list, which are all the vertices and all of their connections

9.2.4 Sparse and Dense Graphs

It must be the case that for a graph G:

m ≤ n2

• G is dense if m ≈ n2

• G is sparse if m <<< n2

9.3 Traversing Graphs

• Graph Traversal: visiting all edges of the graph

• General Traversal Strategy: for any vertex v, visit all vertices reach-
able from v. Repeat for all unvisited vertices, until every single vertex has
been visited

9.3.1 Breadth-First Search

• Breadth-First Search: traverse the graph in “layers”: visit v, visit
neighbours(v), visit neighbours(neighbours(v)), etc ...

– we keep track of all visited nodes with a visited array

– for every node v ∈ V , ensure that it hasn’t yet been visited

– then, execute a breadth-first search strategy from v

∗ mark v as visited

∗ add v to a queue

∗ while the queue is non-empty, remove the first element, and add
their neighbours to the queue (marking them as visited)

∗ by using the queue, we ensure to investigate all neighbours of a
vertex before going deeper into the graph
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Figure 19: For a live demo, see Mary’s videos (Week 9, Lecture 14, Part 3),
they are really good
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9.3.2 Depth-First Search

• Depth-First Search: traverse the graph by going as “deep” as possible:
visit v, visit a neighbour w of v, visit a neighbour x of w, etc ...

– we keep track of all visited nodes witha visited array

– for every node v ∈ V , ensure that it hasn’t yet been visited

– then, execute a depth-first search strategy from v

∗ add v to a stack

∗ while the stack isn’t empty, remove the first item, and label it as
visited. Then, add all of its adjacent nodes to the stack.

∗ by using the stack, we ensure that the next item that we visit is
the latest element that we added
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Figure 20: For a live demo, see Mary’s videos (Week 9, Lecture 14, Part 5),
they are really good

For the above graph:

∗ S = [a]

∗ visit a, S = [e,b] (we add in lexicographic order, so b is added
first)

∗ visit e, S = [g,f,a,b] (DFS doesn’t worry about whether an item
has been previously visited)

∗ visit g, S = [h,e,d,c,f,a,b]

∗ visit h, S = [g,c,e,d,c,f,a,b]

∗ g has already been visited, so just remove it; S = [c,e,d,c,f,a,b]

∗ visit c, S = [h,g,f,d,b,e,d,c,f,a,b]

∗ h has already been visited, so just remove it; S = [g,f,d,b,e,d,c,f,a,b]

∗ g has already been visited, so just remove it; S = [f,d,b,e,d,c,f,a,b]

∗ visit f, S = [e,c,b,d,b,e,d,c,f,a,b]

∗ e has already been visited, so just remove it; S = [c,b,d,b,e,d,c,f,a,b]

∗ c has already been visited, so just remove it; S = [b,d,b,e,d,c,f,a,b]

∗ visit b, S = [f,c,a,b,d,b,e,d,c,f,a,b]

∗ f has already been visited, so just remove it; S = [c,a,b,d,b,e,d,c,f,a,b]

∗ c has already been visited, so just remove it; S = [a,b,d,b,e,d,c,f,a,b]

∗ a has already been visited, so just remove it; S = [b,d,b,e,d,c,f,a,b]
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∗ b has already been visited, so just remove it; S = [d,b,e,d,c,f,a,b]

∗ visit d, S = [g,c,b,e,d,c,f,a,b]

∗ by this time, all elements have been visited, so we will just pop
all items and get an empty stack, so DFS terminates

9.3.3 Recursive Depth-First Search

• Recursive Depth-First Search: DFS is well suited for recursion, as at
each node we just want to go as deep as possible. We can thus adapt DFS
to be recursive, and not require a stack.

9.3.4 Runtime Analysis of Traversal Strategies

Recursive DFS allows us to derive a runtime for DFS. Moreover, the runtime
of DFS and BFS will be identical (think that we are traversing the same nodes,
but in different order; there can be additional work depending on the graph,
but that will just be Θ(1))

• dfsFromVertex is Called Only Once: it is called at least once:

– either it is called in recursive step, which eventually sets visited(v)
= TRUE

– or it is called after the for loop if visited(v) = FALSE

and it is called at most once, as once visited(v) = TRUE, dfsFromVertex
can never be called again on v

• if a graph is directed,
∑
v∈V out(v) = m

• if a graph is undirected,
∑
v∈V out(v) = 2m

• Runtime of Recursive DFS: dfs iterates over all vertices, which takes
Θ(n) time. Then, in calling dfsFromVertex, for each vertex v it does

60



Θ(out(v)) work, assuming that we use an adjacency list (eventually visits
all adjacent nodes, and excluding recursion). Thus, runtime is:

T (m,n) = Θ(n) +
∑
v∈V

Θ(out(v))

= Θ(n+m)

• Recursive DFS vs Iterative DFS: these 2 methods are essentially
identical, with iterative using a stack and while loop. But the work with
the stack is bounded by n, so the runtime will be identical (see Lecture
15, Slide 7)

9.4 DFS Forests

• Tree: an undirected graph, in which any 2 vertices are connected by at
most 1 edge

• Forest: a collection of trees

• DFS Forest: traversing a graph via DFS can build up a forest

– w is a child of v in a DFS forest if after calling dfsFromVertex(G,v)

we call dfsFromVertex(G,v)

Figure 21: DFS Forests will vary depending on the start element with which we
begin dfs

9.5 Topological Ordering and TopologicalSort

9.5.1 Topological Order

• ≺: used to define an ordering of 2 elements

– for example, if Task 0 must be completed before Task 2, we could
write 0 ≺ 2
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• Total Order of a Set: given a set, every element is related to some other
element via ≺

• Topological Order of a Graph: given a directed graph, its topolog-
ical order is a total ordering of V, such that, for any edge (v, w) ∈ E,
v ≺ w

– if there is an edge going from v to w, then any topological ordering
must ensure that v ≺ w (i.e v is traversed before w)

Figure 22: A potential topological ordering for this graph is 8 ≺ 6 ≺ 7 ≺ 9 ≺
5 ≺ 4 ≺ 2 ≺ 0 ≺ 1 ≺ 3

9.5.2 Theorems

Recursive DFS can be used to determine a potential topological order for a
graph. For that, we develop the following theorems and notation.

• Directed Acyclic Graph: a digraph (directed graph) without cycles

• A digraph has a topological order if and only if it is a DAG

• Finished Vertex: v is finished if dfsFromVertex(G,v) has finished re-
cursing

• Vertex Classification From Recursive DFS:

– white: vertex which hasn’t been visited

– grey : vertex which has been visited but isn’t finished

– black : vertex which is finished
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• Let v be a vertex, and we have began executing dfsFromVertex(G,v). For
any vertex w:

– if a vertex w is white and reachable from v, then w will be black before
v

∗ we require dfsFromVertex(G, w) to terminate in order for dfsFromVertex(G,v)
to terminate

– if w is grey, v is reachable from w

∗ w being grey before dfsFromVertex(G,v) was called means that
there has been a previous call which reached w. Since w is
not yet black, this call must still be going, so in particular,
dfsFromVertex(G,w) must have been called, and this must have
happened before dfsFromVertex(G,v). In other words, if we
find a grey node, there must be a cycle, so no topological order
is possible.

• define an order :

v ≺ w ⇐⇒ w is black before v

if G is a DAG, ≺ defines a topological order for G

– to see this, consider calling dfsFromVertex(G,v), and let (v, w) ∈ E.
Then:

∗ w already black means v ≺ w
∗ w is white, but by above we know that eventually w will be black

before v

∗ w is grey, but this implies that G has a cycle (by above), so
contradiction

9.5.3 Topological Sort

• Topological Sort: a use of DFS to derive a topological sorting for a
graph

– all vertices begin coloured as white

– for any vertex v, label it grey and apply sortFromVertex (basically
recursive DFS) to all of its adjacent vertices which are white

– when we finish iterating over all adjacents, label v as black

– in essence, when going depth first, we eventually reach a node which
has no neighbours, and we label it as black
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Figure 23: Again, Mary’s lecture is really amazing for this (Lecture 15, Part 4

• For the above DAG:
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– we start at 0, it is white, so sortFroMVertex(G,0)

∗ make 0 grey

∗ only 1 is adjacent, so use sortFromVertex(G,1

∗ make 1 grey

∗ only 3 is adjacent, so use sortFromVertex(G,3)

∗ make 3 grey

∗ since 3 has no adjacent nodes, we miss the for loop, and make 3
black

∗ we have now recursed over all adjacent nodes to 1, so we exit the
for loop, and make 1 black

∗ we have now recursed over all adjacent nodes to 0, so we exit the
for loop, and make 0 black

– the above would give us a (partial) ordering of 0 ≺ 1 ≺ 3

– then we do the same, but for the remaining nodes

• TopSort Runtime: since it is essentially DFS, TopSort has Θ(n + m)
runtime

9.6 Connected Components

• Connected Vertices: a subset C ⊆ V is connected if ∀v, w ∈ C, we can
find a path from v to w

– strongly connected if the graph is directed

• Connected Component of a Graph: maximum connected subset C of
V (a subgraph in which every node is connected)

• Connected Graph: a graph with only 1 connected component (all ver-
tices are connected by a path)

• Connected Components in Undirected Graphs:

– a vertex v is in the connected component of all the nodes reachable
from v

– each vertex v is in exactly one connected component (connected com-
ponents are disjoint)

– dfsFromVertex or bfsFromVertex visit all elements in the connected
component of a given vertex
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Figure 24: The algorithm is essentially Recursive DFS
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