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1 Wave Equation in 2 Dimensions

1.1 Bessel’s Equation

• What is Bessel’s Equation?

– a second order, non-linear, homogeneous ODE:

x2y′′ + xy′ + (x2 − ν2)y = 0

where ν is a constant

• What is Bessel’s Equation of Order 0?

– Bessel’s Equation with ν = 0:
x2y′′ + xy′ + x2y = 0

• What is the general solution to Bessel’s Equation of ORder 0?

– in order to derive a solution, we employ power series

– the general solution is given by:
y = c1J0(x) + c2Y0(x)

where J0(x) is known as the Bessel function of the first kind of order zero, whilst Y0(x) is
known as the Bessel function of the second kind of order zero

• What are J0 and Y0

– both are constructed as power series:

J0(x) = 1 +

∞∑
n=1

(−1)nx2n

22n(n!)2

Y0(x) =
2

π

[(
γ + ln

x

2

)
J0(x) +

∞∑
n=1

(−1)n+1x2nHn

22n(n!)2

]
where:

∗ Hn denotes the nth partial sum of the harmonic series:

Hn = 1 +
1

2
+ . . .+

1

n

∗ γ is the Euler-Mascheroni Constant:

γ = lim
n→∞

(Hn − lnn)

We will now consider the wave equation in 2 dimensions, given by:

utt = α2∇2u = α2(uxx + uyy)

1.2 Rectangular Membrane

For the rectangular membrane, we consider the following initial/boundary conditions:

• u(0, y, t) = u(a, y, t) = 0

• u(x, 0, t) = u(x, b, t) = 0

• u(x, y, 0) = f(x, y)

• ut(x, y, 0) = 0

In other words, we consider a rectangular membrane, taut at the ends of a rectangle, with initial displacement
f(x, y) and 0 initial velocity.
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1.2.1 Separation of Variables

We assume:
u(x, y, t) = X(x)Y (y)T (t)

Plugging into the ODE:
XY T ′′ = α2(X ′′Y T +XY ′′T )

Dividing through by XY T :
1

α2

T ′′

T
=
X ′′

X
+
Y ′′

Y

The RHS is a function of x, y, whilst the LHS is a function of t. This can only be possible if each of the
ratios is constant. In other words:

X ′′ = λX

Y ′′ = µY

T ′′ = α2(µ+ λ)T

1.2.2 Solving for X(x)

Consider:
X ′′ = λX

Notice, we are subject to the boundary conditions:

u(0, y, t) = u(a, y, t) = 0

So:
X(0)Y (y)T (t) = X(a)Y (y)T (t) = 0 ⇐⇒ X(0) = X(a) = 0

As we saw in Week 7, X ′′ = λX has non-trivial solutions satisfying the boundary conditions if and only
if λ < 0, in which case:

X(x) = A cos(
√
λx) +B sin(

√
λx)

After applying the boundary conditions, we can solve the eigenvalue problem, and obtain:

λn =
n2π2

a2

Xn(x) = sin
(nπx

a

)
for n ≥ 1.

1.2.3 Solving for Y (y)

Consider:
Y ′′ = µY

In the same way as above, the boundary conditions require Y (0) = Y (b) = 0, and the eigenvalue problem is
solved via:

λm =
m2π2

b2

Ym(y) = sin
(mπy

b

)
for m ≥ 1.
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1.2.4 Solving for T (t)

Consider:

T ′′ = α2(λ+ µ)T = α2

(
n2π2

a2
+
m2π2

b2

)
T

Lets denote:

ω2
m,n = α2

(
n2π2

a2
+
m2π2

b2

)
We end up with the same ODEs as above, with general solutions:

Tm,n(t) = Am,n cos(ωm,nt) +Bm,n sin(ωm,nt)

1.2.5 Solving the PDE

We employ the principle of superposition to see that:

u(x, y, t) =

∞∑
n=1

∞∑
m=1

(Am,n cos(ωm,nt) +Bm,n sin(ωm,nt))× sin
(nπx

a

)
× sin

(mπy
b

)

Firstly, recall one of the initial conditions:

ut(x, y, 0) = 0

In particular this implies that:

d

dt
Am,n cos(ωm,nt) +Bm,n sin(ωm,nt) = −Cm,n sin(ωm,nt) +Dm,n cos(ωm,nt) = 0

Which implies:
Dm,n cos(ωm,n0) = 0 ⇐⇒ Dm,n ⇐⇒ Bm,n = 0

Hence, the general solution becomes:

u(x, y, t) =

∞∑
n=1

∞∑
m=1

Am,n cos(ωm,nt)× sin
(nπx

a

)
× sin

(mπy
b

)

If we now consider the final initial condition:

u(x, y, 0) = f(x, y)

we get:

u(x, y, 0) = f(x, y) =

∞∑
n=1

∞∑
m=1

Am,n × sin
(nπx

a

)
× sin

(mπy
b

)
This is like a Fourier Problem in 2D, and we can find Am,n analogously:

Am,n =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
(nπx

a

)
× sin

(mπy
b

)
dydx

(see here for more)

This explains why a drum doesn’t sound harmonic: the fundamental frequencies in the solution are not
multiples of each other.
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1.3 Circular Membrane

Perhaps reading this is more clear; it also contains the solution to Bessel’s Equation

We now consider a circular membrane. We change to polar coordinates:

utt = α2

(
urr +

1

r
ur +

1

r2
uθθ

)
given the following initial/boundary conditions:

• u(1, θ, t) = 0

• ut(r, θ, 0) = 0

• u(r, θ, 0) = f(r, θ)

1.3.1 Separation of Variables

Taking u(r, θ, t) = R(r)Θ(θ)T (θ):

RΘT ′′ = α2(R′′ΘT +
1

r
R′ΘT +

1

r2
RΘ′′T

Dividing through by RΘT :

1

α2

T ′′

T
=
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
=

(rR′)′

rR
+

1

r2

Θ′′

Θ

Notice, the LHS is a function of t, and we can make the RHS a function of r enforcing that Θ′′

Θ = −m2.
Then, all the ratios must be constants, so:

Θ′′ = −m2Θ

(rR)′ = (−µ2r +
m2

r
)R

(notice a factor of r cancels)
T ′′ = −µ2α2T

1.3.2 Solving for Θ(θ)

We enforce that Θ be 2π periodic in θ. The ODE Θ′′ = −m2Θ is the same as above, which we know has
solution:

Θ = A cos(mθ) +B sin(mθ)

for m ≥ 0.

1.3.3 Solving for R(r)

Notice, we will require that u be bounded, so in particular R must be bounded as r → 0+, and R(1) = 0
(the latter condition is derived from the initial condition u(1, θ, t)). The ODE can be written as:

R′′ +
1

r
R′ + (µ2 − m2

r2
)R = 0

If we make a change of variables t = µr, we have R
(
t
µ

)
so:

dR

dr
=
dR

dt
× dt

dr
=
dR

dt
× µ
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d2R

dr2
= µ2 d

2R

dt2

Hence, the ODE becomes:

µ2 d
2R

dt2
+
µ

t

dR

dt
× µ+

(
µ2 − µ2m2

t2

)
R

(
t

µ

)
= 0

Dividing through by µ2:
d2R

dt2
+

1

t

dR

dt
× µ+

(
1− m2

t2

)
R

(
t

µ

)
= 0

Multiplying by t2 shows us that this is a Bessel Equation of order m (if m = 0, then we’d get the equation
shown at the very top), and so, it follows that, going from t to r coordinates:

R(r) = AJm(µr) +BYm(µr)

Ym is an unbounded term, but R must be bounded, so we enforce B = 0:

R(r) = AJm(µr)

Recall the initial condition boundary condition R(1) = 0:

R(1) = AJm(µ) = 0

In other words, the eigenvalues are all the zeros of Jm, µm,n, and the eigenfunctions will be Rm,n =
Jm(µm,nr).

The Jm are oscillatory, so there are infinitely manye igenvalues and eigenfunctions. Moreover, notice

that (rR)′ = (−µ2r + m2

r )R is a (singular) Sturm-Liouville Problem, which means that the Rm,n will be
orthogonal.

1.3.4 Solving for T (t)

For T we have the same ODE as in teh rectangular case, so we know:

Tm,n(t) = Cm,n cos(µm,nαt) +Dm,n sin(µm,nαt)

Similarly, ut(r, θ, 0) will imply that Dm,n = 0, so:

Tm,n(t) = Cm,n cos(µm,nαt)

1.3.5 Solving the PDE

Applying superposition:

u(r, θ, t) =

∞∑
m=1

∞∑
n=1

(Am,n cos(mθ) +Bm,n sin(mθ))× Jm(µm,nr)× cos(µm,nαt)

(we have rewritten A = Am,n and B = Bm,n in anticipation to when we compute them, and for consistency
with the summation)

As an initial condition we had that u(r, θ, 0) = f(r, θ), so:

u(r, θ, 0) = f(r, θ) =

∞∑
m=1

∞∑
n=1

(Am,n cos(mθ) +Bm,n sin(mθ))× Jm(µm,nr)
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We can then show that:

Am,n ∝
∫ 2π

0

∫ 1

0

f(r, θ) cos(mθ)Jm(µm,nr)rdrdθ

Bm,n ∝
∫ 2π

0

∫ 1

0

f(r, θ) sin(mθ)Jm(µm,nr)rdrdθ

Actual values of Am,n and Bm,n can be found here.

Again, the frequencies of each of the components in the solutions are not multiples of each other, so the
sound won’t be harmonic.

Figure 1: The derivation was excruciating, pedantic, repetitive and full of gaps, but at least the solutions
look good. If I look back on these notes, I wrote this severely sleep deprived at 03:20 on Friday the 19th of
November, 2021, whilst listening to Clocks by Coldplay.
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Paul’s Online Math Notes for Laplace Transform
Khan Academy’s Series on the Laplace Transform - where I first learn from

2 The Laplace Transform

2.1 Defining the Laplace Transform

Definition (Laplace Transform)
Suppose that:

1. f is a piecewise continuous function on the interval 0 ≤ t ≤ A for any positive A

2. there exist real constants K, a,M with K,M > 0 such that:

|f(t)| ≤ Keat, t ≥M

Then, we define the Laplace Transform of f via:

L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt

given s > a.

• Are the conditions above necessary for the Laplace Transform to be defined?

– yes, otherwise the improper integral might not be defined

Proof: Laplace Transform. By the second assumption, we can bound:

f(t) ≤ |f(t)| < Keat

for t ≥M . But then:

L{f(t)} (s) = F (s) =

∫ ∞
0

e−stf(t)dt < K

∫ ∞
0

e−steatdt = K

∫ ∞
0

et(a−s)dt

If we integrate using the fact that f is piecewise continuous on 0 ≤ A:

K

∫ ∞
0

et(a−s)dt = lim
A→∞

K

∫ A

0

et(a−s)dt

= lim
A→∞

K

a− s

[
et(a−s)

]A
0

= lim
A→∞

K

a− s

[
eA(a−s)

]
Intuitively, if a− s < 0, it is easy to see that the limit converges; otherwise, it will diverge (either
because the exponential goes to infinity, or if a−s = 0, the fraction is undefined). In other words,
for convergence we require s > a

• What are functions of exponential order?

– a function is of exponential order if they satisfy the conditions defined above for the existence of
Lapalce Transform
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2.2 Basics of the Laplace Transform

2.2.1 A Linear Operator

One of the most useful properties of the Lapalce Transform is that it is linear, meaning that we can decompose
complicated functions into its terms.

Proof: Linearity of Laplace Transform.

L{c1f1(t) + c2f2(t)} =

∫ ∞
0

e−st(c1f1(t) + c2f2(t))dt

= c1

∫ ∞
0

e−stf1(t)dt+ c2

∫ ∞
0

f2(t)dt

= c1L{f1(t)}+ c2L{f2(t)}

2.2.2 Laplace Transform of Derivative

The second most useful property of the Laplace Transform is that it is easy to apply it to derivatives. We
consider a first order derivative, which can then be generalised.

Laplace Transform of Derivative.

L{f ′(t)} =

∫ ∞
0

e−stf ′(t)dt

If we use integration by parts:
u = e−st du = −se−st

dv = f ′(t) v = f(t)

Hence:

L{f ′(t)} =

∫ ∞
0

e−stf ′(t)dt

= lim
A→∞

[
f(t)e−st

]A
0

+ s

∫ ∞
0

f(t)e−stdt

= lim
A→∞

[
f(A)e−sA − f(0)

]
+ sL{f(t)}

= −f(0) + sL{f(t)}

Using similar arguments we can show that, assuming each derivative can have the Laplace Transform
applied:

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0)− . . .− sf (n−2)(0)− f (n−1)(0)

(we obtain this formula by recursively applying the theorem above. For example:)

L{f ′′(t)} = sL{f ′(t)} − f ′(0)

= s(sL{f(t)} − f(0))− f ′(0)

= s2L{f(t)} − sf(0)− f ′(0)
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2.2.3 Laplace Transform of tn

By knowing this Laplace Tranform, we can find the Laplace Transform of any polynomial by linearity:

L{tn} =

∫ ∞
0

e−sttndt

If we apply integration by parts:
u = tn du = ntn−1

dv = e−st v = −1

s
e−st

Hence:

L{tn} =

∫ ∞
0

e−sttndt

= lim
A→∞

[
− t

n

s
e−st

]A
0

+
n

s

∫ ∞
0

tn−1e−st

= lim
A→∞

[
−A

n

s
e−sA

]
+
n

s
L
{
tn−1

}

If we use the argument that exponentials grow faster than polynomials, it follows that:

lim
A→∞

[
−A

n

s
e−sA

]
So:

L{tn} =
n

s
L
{
tn−1

}
It follows that1, if we repeatedly apply this recursion:

L{tn} =
n!

sn
L{1}

The Laplace Transform of 1 is easy:

L{1} =

∫ ∞
0

e−stdt = −1

s
lim
A→∞

[
e−st

]A
0

= −1

s
lim
A→∞

[
e−sA − 1

]
=

1

s

Hence, it follows that:

L{tn} =
n!

sn+1

2.2.4 Laplace Transform of Exponential

L
{
eat
}

=

∫ ∞
0

e−(s−a)tdt

= − 1

s− a
lim
A→∞

[
e−(s−a)t

]A
0

= − 1

s− a
lim
A→∞

[
e−(s−a)A − 1

]
=

1

s− a

1This all can be proven by induction, but we would require knowledge of what we are trying to prove
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where we have assume that s > a, as otherwise the limit would diverge.

Hence, it follows that:

L
{
eat
}

=
1

s− a

2.2.5 Laplace Transform of Sine and Cosine

To save some work, we first acknowledge that:

cos(at) = Re(eiat)

sin(at) = Im(eiat)

Hence, we consider:

L
{
eiat
}

=
1

s− ia

Then:

L{cos(at)} = Re

(
1

s− ia

)
= Re

(
s+ ia

s2 + a2

)
=

s

s2 + a2

We can find L{sin(at)} by considering the imaginary part. It is then easy to see that:

L{cos(at)} =
s

s2 + a2

L{sin(at)} =
a

s2 + a2

More on the following can be found here

2.2.6 Laplace Transform of f(ct)

L{f(ct)} =

∫ ∞
0

e−stf(ct)dt

Consider the change of variables u = ct. Then:

du

dt
= c =⇒ 1

c
du = dt

u(0) = c× 0 = 0

u(∞)2 =∞
2Ouch!
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Hence, from u-substitution:

L{f(ct)} =

∫ ∞
0

e−stf(ct)dt

=
1

c

∫ ∞
0

e−u(
s
c )f(u)du

=
1

c
L{f(t)}

(s
c

)
=

1

c
F
(s
c

)

2.2.7 s - shift

L
{
e−ctf(t)

}
=

∫ ∞
0

e−ste−ctf(t)dt

=

∫ ∞
0

e−(s+c)tf(t)dt

= L{f(t)} (s+ c)

= F (s+ c)

2.2.8 Derivative in s

L{tf(t)} =

∫ ∞
0

te−stf(t)dt

=

∫ ∞
0

− d

ds

(
e−st

)
f(t)dt

= − d

ds

∫ ∞
0

e−stf(t)dt

= − d

ds
L{f(t)} (s)

= −F ′(s)

2.2.9 Laplace Transform of tnf(t)

We saw above that:
L{tf(t)} = −F ′(s)

Consider:

L
{
t2f(t)

}
=

∫ ∞
0

t2e−stf(t)dt

=

∫ ∞
0

d2

ds2

(
e−st

)
f(t)dt

=
d2

ds2

∫ ∞
0

e−stf(t)dt

=
d2

ds2
L{f(t)} (s)

= F ′′(s)
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where we have use the fact that:

d

ds
e−st = −te−st d

ds
(−te−st) = −t2e−st

Overall, it follows that:

L{tnf(t)} = (−1)n
dn

dsn
L{f(t)} (s) = (−1)nF (n)(s)

2.2.10 Laplace Transform of Products of Exponentials and Cosines/Sines

As we will see, when applying the Laplace Transform to an ODE, we obtain solutions as algebraic expressions,
typically rational. It is thus useful to consider these products, as means of reversing said rational fractions.

L
{
ebt cos(at)

}
= L{cos(at)} (s− b) =

s− b
(s− b)2 + a2

L
{
ebt sin(at)

}
= L{sin(at)} (s− b) =

a

(s− b)2 + a2

L
{
tnebt cos(at)

}
= (−1)n

dn

dsn
L
{
ebt cos(at)

}
= (−1)n

dn

dsn
s− b

(s− b)2 + a2

2.2.11 Laplace Transform Table

A very nice, thorough Laplace Transform Table
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2.2.12 The Inverse Laplace Transform

• Is the Laplace Transform unique?
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– it can b ehsown that if f and g are continuous functions, and:

L{f} = L{g}

then:
f = g

• What if f and g are only pointwise continuous?

– then it is possible that f and g are distinct, but:

L{f} = L{g}

– this is a consequence of the fact that at the points of discontinuity, f and g can be defined in
different ways

• What is the Inverse Laplace Transform?

– an operator, which given F (s) return f(t). In other words:

L−1{F (s)} = f(t)

• Is the Inverse Laplace Transform a linear operator?

– the Inverse Laplace Transform is also linear

– if:
f1(t) = L−1{F1(s)} . . . fn(t) = L−1{Fn(s)}

Then, the function:
f(t) = f1(t) + f2(t) + . . .+ fn(t)

has a Laplace Transform F (s) given by:

F (s) = F1(s) + F2(s) + . . .+ Fn(s)

– by the Uniqueness of the Lapalce Transform, we can write:

f(t) = L−1(F (s)) = L−1(F1(s)) + L−1(F2(s)) + . . .+ L−1(Fn(s))

• How can we find the Inverse Laplace Transform?

– there is a formula available, but it requires knowledge of complex analysis

– it is just easier to look at the table of Laplace Transforms. For example,

L−1

{
a

s2 + a2

}
= sin(at)
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2.3 Partial Fraction Decomposition

2.4 Laplace Transform for Solving ODEs

• What is the result of applying the Laplace Transform to an ODE?

– lets consider a second order, linear, non-homogeneous ODE:

ay′′ + by′ + cy = f(t)

– if we apply the Laplace Transform to the LHS:

L{ay′′ + by′ + cy} = aL{y′′}+ bL{y′}+ cL{y}
= as2L{y} − asy(0)− ay′(0) + bsL{y} − by(0) + cL{y}
= L{y} (as2 + bs+ c)− y(0)(as+ b)− ay′(0)

– let F (s) = L{f(t)}
– then, the ODE becomes:

L{y} (as2 + bs+ c)− y(0)(as+ b)− ay′(0) = F (s)

– solving for L{y}:

L{y} =
F (s) + y(0)(as+ b) + ay′(0)

as2 + bs+ c

– notice the denominator is the characteristic polynomial of the ODE

– we can then solve this by finding the Inverse Laplace Transform, which is usually done by em-
ploying partial fraction decomposition

• Why use Laplace Transform instead of standard methods?

1. It turns solving the ODE into an algebraic equation in s, which is easy to solve

2. Solutions involving initial conditions are embedded in solutions using Laplace Transform by the
presence of y(0), y′(0), . . ., so less steps

3. In solving non-homogeneous ODE, we don’t need to compute the homogeneous ODE and then
find a particular solution

4. The method is generalisable for higher-order ODEs
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3 Examples

1. Solve the ODE:
y′′ − y′ − 2y = 0

satisfying y(0) = 1, y′(0) = 0.

Applying the Laplace Transform, we get:

L{y} =
s− 1

s2 − s− 2

where we have used:

• a = 1

• b = c = −1

• F (s) = 0

• y(0) = 1

• y′(0) = 0

Notice:
s2 − s− 2 = (s+ 1)(s− 2)

Thus:

L{y} =
s− 1

(s+ 1)(s− 2)

Lets apply partial fraction decomposition:

s− 1

(s+ 1)(s− 2)
=

A

s+ 1
+

B

s− 2

=⇒ s− 1

(s+ 1)(s− 2)
=
As− 2A+Bs+B

(s+ 1)(s− 2)

=⇒ 1 = A+B

−1 = B − 2A

=⇒ 2 = 3A ∴ A =
2

3

=⇒ 1 =
2

3
+B ∴ B =

1

3

Hence:

L{y} =
s− 1

s2 − s− 2
=

2

3

1

s+ 1
+

1

3

1

s− 2

and so, recalling that:

L
{
eat
}

=
1

s− a
it follows that:

y =
2

3
e−t +

1

3
e2t

2. Solve the ODE:
y′′ + y = sin(2t)

subject to y(0) = 2, y′(0) = 1
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Applying the Laplace transform:

L{y} =
2

s2+4 + 2s+ 1

s2 + 1
=

2 + 2s3 + 8s+ s2 + 4

(s2 + 1)(s2 + 4)
=

2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)

We then consider partial fraction decomposition:

2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)
=
As+B

s2 + 1
+
Cs+D

s2 + 4

=⇒ 2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)
=

(As+B)(s2 + 4)) + (Cs+D)(s2 + 1)

(s2 + 1)(s2 + 4)

=⇒ 2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)
=
As3 + 4As+Bs2 + 4B + Cs3 + Cs+Ds2 +D

(s2 + 1)(s2 + 4)

=⇒ 2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)
=
s3(A+ C) + s2(B +D) + s(4A+ C) + (4B +D)

(s2 + 1)(s2 + 4)

=⇒ A+ C = 2

B +D = 1

4A+ C = 8

4B +D = 6

Substracting the 3rd equation from the first equation:

3A = 6 =⇒ A = 2

So A+ C = 2 implies:
C = 0

Substracting the 4th equation from the second equation:

3B = 5 =⇒ B =
5

3

So B +D = 1 implies:

D = −2

3

Thus:

L{y} =
2s3 + s2 + 8s+ 6

(s2 + 1)(s2 + 4)

=
2s+ 5

3

s2 + 1
+
− 2

3

s2 + 4

= 2
s

s2 + 1
+

5

3

1

s2 + 1
+−1

3

2

s2 + 4

But recall:
L{cos(at)} =

s

s2 + a2

L{sin(at)} =
a

s2 + a2

Hence, it follows that:

y = 2 cos(t) +
5

3
sin(t)− 1

3
sin(2t)
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