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Paul’s Online Math Notes pretty much cover everything about BVPs and Fourier Series

1 Linear Algebra Recap

1.1 Solutions to a Linear System

We consider the general system:
Az =b

¢ When does such a system have a unique solution?

—1

— if A is nonsingular (A™" exists), then the system has a unique solution:

z=A"'

— otherwise, if the matrix is not square, or its determinant is 0, there can be either infinitely many
solutions, or no solutions

e What is the only solution to the corresponding homogeneous system Az =0 in which A
is invertible?

— x = 0 is always a solution, so if A is nonsingular, this will be the only solution

e How are the solutions to the homogeneous system related to the solution of the non-
homogeneous system?

— if the only solution to Az = 0 is 0, then it must be the case that A is invertible, and so, the
non-homogeneous system has a unique solution

— otherwise, the homogeneous system has a no or infinitely many solutions if and only if the homo-
geneous system has a non-zero solution

1.2 The Dot Product and Vectors as Basis
We shall use (a, b) to represent the dot product between 2 vectors, equivalent to using a - b
e How is the dot product of 2 vectors computed?

— for ease of computation, we shall consider vectors in R2. Define:

ai by

as by

— the dot product is computed by performing elementwise multiplication, and adding each resulting
element:

(@, b) = a1b1 + azbs

— alternatively,
(a,b) = lall[b]| cos &

where 6 is the angle between the 2 vectors
e What is the dot product of a vector with itself?

— we can easily compute this:

(a,a) = a1a; + azas = ai + a3 = |a||?
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https://tutorial.math.lamar.edu/Classes/DE/IntroBVP.aspx

e What is a vector basis?

— consider a vector space V (the set of all vectors which contain 0, and are closed under addition
and scalar multiplication)

— a basis for V| is the smallest set of linearly independent vectors which span V' (that is, any vector
in V' can be expressed as a linear combination of the basis vectors)

e How can we express a vector in terms of basis vectors?

— we can use a linear combination. Let n be the dimension of a vector space V', with basis:

{21722a'~'7yn}

— if z € V, then there exist unique ¢; € R, € [1,n] such that:

n
T = E Civ;
=1

e How can we find the coefficients for the basis expression of a vector in a given basis?

— let ¢ denote the set of coefficients ¢; € R, € [1,n], and assume we have:

n
z=> cu
i=1
— consider the matrix A constructed by taking v; as column vectors:

A:(y1 Vg ... Qn)

— then, we can express z via:

1=

— since each v, is linearly independent, and A is a square matrix, A is invertible, so:
c=A"'z

¢ When are 2 vectors orthogonal?
— 2 vectors are orthogonal if and only if their dot product is 0
¢ Why are orthogonal basis vectors desirable?
— if we can construct a basis for a vector space consisting of solely orthogonal vectors, then we have
that, Vi, j € [1,n]:
0, i#j
(in Q ) == ’ 2 7é .7 .
Hyi H y 1=

— this makes it extremely easy to find ¢, since if:

n
T = § Civ;
i=1
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we can find ¢; by computing the dot product of the above expression with v;:

=1
n
= yz=u Yy
i=1
n
= (Qj7£) = Cl(vjvvz)
i=1
= (v;,2) = ¢;(v;,)
v;, )
—s = J
T lyl?

e What is the eigenvalue problem?
— the eigenvalue problem is the problem of finding non-trivial eigenvectors v; which satisfy:

Av, = v,

3 =1

e Are eigenvectors basis vectors?

— if each eigenvalue is distinct, we can guarantee we can obtain distinct, linearly independent eigen-
vectors !, so in particularly, they will span a subspace

e When are eigenvectors orthogonal?

— if we have a symmetric matrix (A = AT | then its eigenvectors will be orthogonal

2 Boundary Value Problems

2.1 Defining Boundary Value Problems

e How do initial value problems differ from boundary value problems, in terms of the initial
conditions provided
— in an initial value problem, we seek to solve a ODE/system given:
x the value of the solution at a point
* the value of the derivative of the solution at the same point

(this is an example for second order ODESs)

— in a boundary value problem, we seck to solve a ODE/system given the values of the solution
at 2 points

— for example, an IVP could be:

y'+y=0,  y(0)=0,y(0)=2
, whilst a BVP could be:

3
y' +y=0, y(0)=0,y2) = -

Lhttps://math.stackexchange.com/questions/29371/how-to-prove-that-eigenvectors-from-different-eigenvalues-are-linearly-
independe
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e How do solutions differ between IVPs and BVPs?

— in an IVP, we are guaranteed that a unique solution exists
— in a BVP, we can have no solutions, a unique solution, or infinitely many solutions

— this is akin to how the system Az = b can have no solutions, a unique solution, or infinitely many
solutions, depending on the properties of A

e What is a homogeneous BVP?
— a BVP is homogeneous if:

* it seeks a solution to a homogeneous ODE (for example, 4 + p(t)y + ¢(t)y = 0)

* the boundary conditions are both 0 (for example, y(3) = 0,y(—1.6) = 0)

2.2 Eigenvalues and Eigenfunctions

¢ What is the boundary eigenvalue problem?

— the eigenvalue problem is defined by a linear map (a matrix), acting on a vector, such that it only
stretches it

— this idea can be generalised to other linear maps; in particular, we can consider linear maps acting
on functions, which leads to the boundary eigenvalue problem

— in particular, if L is a linear operator, the boundary eigenvalue problem concerns itself with finding
functions y; such that:

Lyi(z) = Ayi(x)
given some set of boundary conditions
e What are eigenvalues and eigenfunctions?
— consider a boundary eigenvalue problem:
Lyi(z) = Ayi(x)

then:

* A is an eigenvalue

* y;(x) is its corresponding eigenfunction

2.3 Worked Example

We use these examples to outline the fact that BVPs can have no solutions/infinitely many solutions, and
also how to find eigenfunctions. The second example in particular is used to illustrate how, if we impose
periodicity as a boundary condition, we get that sin and cos appear as eigenfunctions, hinting at the fact
that they could be used to construct a basis for any periodic functions.

2.3.1 Example 1

Determine the eigenfunctions for the BVP defined by:
y' =Xy, y(0)=y(L)=0

This is an easily solvable ODE:

which has characteristic polynomial:



So solutions have the form:
Y= AeV M 4 Bem VA

(so long as A\ # 0)
We can now consider 3 distinct cases.
A=pu?>0

If this is the case, our solution becomes?:

y = Aelt 4 Be Mt

If we apply the boundary conditions:
y(0)=0 = A+B=0
y(L)=0 = Aett + Be # =0

If we set A = —B, the second equation becomes:

B(e "t —erl)y =0
which only has solution B =0 (e #/ — et =0 == —uL = pL which is only true if 4 =0 or L = 0, and
none of these are possible). But if B =0, then A = 0, so we have only the trivial solution.

Thus, if A > 0, the BVP has no non-trivial solutions

A=0

In this case our ODE is y”/ = 0 which has solution:
y=At+ B
Applying the boundary conditions:
y(0)=0 = B=0
y(L)=0 = AL=0
so if A = 0, there are no non-trivial solutions.
A=—u?2<0
In this case (taking the real solution), our solution becomes:
y = Acos(ut) + Bsin(ut)
If we apply the boundary conditions:
y(0)=0 = A=0
y(L)=0 == Bsin(uL)=0

This is a system with non-trivial solutions: independent of B, if we have:

nm

M:f

we are guaranteed that Bsin(uL) = 0. We have a free parameter n (and the solution is independent of B), so
if A < 0, there are infinitely many solutions. Moreover, it follows that the eigenvalues and eigenfunctions
are:

2this could also be expressed in terms of cosh(z),sinh(x)
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2.3.2 Example 2
Determine the eigenfunctions for the BVP defined by:

y' =Xy, y(t)=vy(t+2L)

What we are seeking is a 2L - Periodic Function. However, notice that periodicity means that after an
interval of length 2L the function looks the “same” (i.e seems to have been shifted). This is equivalent to
requiring:

y(=L) = y(L)
and
y' (L) =y'(L)

f(x)t

R % Y e
WONT AT NS

Figure 1: A periodic function will have the same value and same derivative at a point a period away.

A=u?>0
As before, the solution will be of the form:
y = Ae!® + Be Mt

and the derivative:
y = Ape' — Bue M

If we apply the (modified) boundary conditions:
y(—L) =y(L) = Ae "t 4 Bett = Aert 4 Be HL
v (~L) =y (L) = Ape " — Bue't = Aue"” — Bue "
If we multiply terms in the first equation by e*~:
A+ Bt = Ae? + B = (B - A)= (B - A)
but since e2#% > 0, this can only be satisfied if B = A

We can use this in the second equation, which, after removing the p factor, becomes:
Ae ™t — Aett = Aett — AemE = 2A(e7ME —etl) =0

which as discussed above is only satisfied if A = 0, which implies B = 0. Thus, if A > 0, the system has no
non-trivial solutions.

A=0
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As discussed above, this has solution:
y=At+ B

and derivative:

If we apply the (modified) boundary conditions:
y(-L)=y(L) = —-AL+B=AL+B
V(-L)=y(L) = A=A

The first equation implies that 2AL = 0, so we must have A = 0. This then means that for any B € R, if
A = Owe can satisfy the BVP, with infinitely many solutions (namely a constant)

A=—p2<0
In this case, the solution is of the form:
y = Acos(ut) + Bsin(ut)

with derivative
y' = —Apsin(ut) + By cos(ut)

If we apply the (modified) boundary conditions, and use the fact that cos is even and sin is odd:
y(=L)=y(L) = Acos(puL) — Bsin(uL) = Acos(uL) + Bsin(uL)

y'(—L)=vy'(L) = Apusin(uL)+ Bpcos(uL) = —Apsin(uL) + Bucos(uL)
The first equation implies (assuming B # 0):

sin(ul) =0
which we know requires puL = n.
The second equation implies (assuming A # 0):
sin(uL) =0
which we know requires ulL = n.

In particular, if A < 0, there are infinitely many solutions. In particular, these must be given by any

linear combination of sin (%) and cos (%) (since we can use any value of A and B).

Overall, it follows that:
A=0 = y,(t)=1

n2m? . nmt . nmt
An = Iz = yp(t) =sin - )cos|\

which we can interpret as 1,sin ("T”t) , COS (”T’Tt) acting as basis eigenfunctions for periodic solutions of the

ODE.

and
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3 Even and Odd Functions

3.1 Defining Even Functions

Definition (Even Function). Let f be a function whose domain contains —x if and only if it contains x.
Then, f is an even function if:

f(z) = f(—x)

Intuitively, an even function is a function which is symmetric on the y-axis, such as 5, 2, cos(x) and |z|.

3.2 Defining Odd Functions

Definition (Odd Function). Let f be a function whose domain contains —z if and only if it contains x.
Then, [ is an odd function if:

f(x) = —f(=x)
Intuitively, an odd function is a function which is symmetric given a 180° rotation about the origin, such

as , sin(z) and ;.

3.3 Properties of Even and Odd Functions
3.3.1 Sum and Product of Even/Odd Functions

e the sum/difference and product/quotient of 2 even functions are even
e the sum/difference of 2 odd functions is odd

e the product/quotient of 2 odd functions is even

3.3.2 Sum and Product of Even and Odd Functions

e the sum/difference of an even and odd function is neither even nor odd

e the product/quotient of an even and odd function is odd

3.3.3 Integral of Even Function Over Symmetric Interval

/LL F2)dz = Q/OL F(@)do

3.3.4 Integral of Odd Function Over Symmetric Interval
If f is odd, then:

If f is even, then:

/_LL f(x)dx =0

3.4 The Odd and Even Extensions

(See https://people.math.carleton.ca/~mneufang/vorl/Fseries_1/nodel5.html)

Sometimes (*cough* when computing Fourier Series *cough*) we require functions to be odd/even over
a given (symmetric) interval.
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Consider a function f defined over some interval (0, L). We can compute the even extension of f over
(=L, L) via:
f(z), 0<z<L

Jeven(@) = {f(x), “L<z<0

Consider a function f defined over some interval (0,L). We can compute the odd extension of f over

(=L, L) via:
) f(@), 0<x<L
fodd(x)_{_f(_x)7 _L<z<0

Once we have the extension over (—L, L), we can extend the function periodically by defining f(x) =
f(x+2L).

ORIGINAL EVEN EXTENSION

S NN\

S S s

ODD EXTENSION "REGULAR" EXTENSION

4 Fourier Series

4.1 Periodic Functions

e When is a function called periodic?

— a function is said to be T-Periodic if:

fl@)=flx+T)
for some T' € R
¢ What is the fundamental period of a periodic function?

— the fundamental period is the smallest number T for which f(z) = f(x +T)

— for sin(z) the fundamental period is 2w, whilst for constant functions, they have an arbitrary
period, but no fundamental period
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4.2 Inner Product of Function
4.2.1 Defining the Inner Product for Functions

Definition (Inner Product of Functions). Consider 2 non-zero functions u(x),v(z), and let a < x <b. The
inner product of u,v is:

4.2.2 Orthogonality of Functions

Definition (Orthogonality of Functions). Consider 2 non-zero functions u(x),v(x), and let a <z <b. u,v
are orthogonal if:
(u(z),v(x)) =0

A set of functions { f;} is said to be mutually orthogonal if each distinct pair of functions is orthogonal.

4.2.3 Inner Product of Sine and Cosine

The identities used to integrate products of sin(x) and cos(x).
. L. :
sinacos f = E[sm(a — B) + sin(a + §)]
sinasin 8 = %[cos(a — ) = cos(a + B)]

cosacos f = %[cos(a — B) + cos(a + B)]

We are particularly interested in the orthogonality of the set of functions:

(i (7)o ()

over one period, (—L, L). (technically this set contains infinitely many terms, as the 1 consists of all constant
numbers, and we have infinitely many different sine and cosines, dependent on n)

Orthogonality of Constant Function

Clearly, if 1 is orthogonal with some other function, any constant will also be orthogonal with said
function.

Constant + Constant

It is easy to see that:

L

(171)2/ lde =2L >0
—L

so (technically) constant is mutually orthogonal with constant.

Constant + cos

If n = 2kn, k € N, we have cos (%) =1, s0 1 and cos (%) are equal:

L
(1,1) :/ ldz = 2L
L
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https://www.ck12.org/book/ck-12-calculus-concepts/section/8.7/

For n > 0, the 2 functions are not equal, so:

(e (757)

/Llecos(nzx)dx
:/LLcos (?) dx

L,

= % [sin (n7) — sin (—n)]

=0

Thus, 1 is mutually orthogonal with {cos (”Z””) }Oo

n=0"
Constant + sin
If n= 5 (4k + 1),k € N, we have sin (”—g“) =1, so0 1 and sin (%) are equal:
L
(1,1) = / ldx = 2L
L
For n > 0, the 2 functions are not equal, so:

(s (")) = [ 1esin (U5 e

= /L sin (?) dzx
—L

[ ()]
nmw L -L

n% [cos (n) — cos (—nr)]

% [cos (n) — cos (nr)]
=0

(oo}

Thus, 1 is mutually orthogonal with {sin ("—g“") }n:O'

Overall, 1 is mutually orthogonal with everything in the set.

Orthogonality of cos (%72)

We need to consider 3 cases:
1. (cos (%) , COS (mgw)) , m#£n

2. (cos (72),cos (F2)), m=n

3. (cos (™72) ,sin (™12))
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cos + cos (m # n)

o (5). o (%)
o () o () o

Il D
—
~ h/—\
O
)]

n—m)rx n+m)rz\1*
_;[(”Lmﬁfsm(( P )+(n+Lm)7rSin(( = ﬂL
= % [(n —e i ((n—m)m) + R ((n+m)m) — e sin (—(n — m)m) — y +Lm)7T sin (= (n 4 m))
0

where we have used the fact that n,m € N so n — m,n +m € N. Alternatively, we could’ve used the fact
that cos is even, and integrated over (0, L).

cos + cos (m =n)

( (7))
()

. COb( >L

ke ()]

[
[L—i—sm (2nm) — (- L)—%sm( 1)

\
~
Q
@]
@,

~

~ w\»—l wm—x wm—t

where we have used the identity:

1
cos? f = 5(1 + cos 20)

Thus, from this and the previous result, it follows that the set:

n=0
1S mutually ()rthogonal.

cos + sin

Page 14



() o ()

08 (?) dx

() (2

- :<n e (m T W) el (m T )mﬂ:
- f% G _Lm)w cos (11— m)) + s cos (n - m)) —
_ _% = _Lm)w €08 (n = m)) 4 G cos (-4 m)) = _Lm)w
~0

Thus, from this it follows that the sets:

and

feos (7)),
fon (T

(n+m)m

(n+m)m

cos (—(n + m)vr)}

cos ((n + m)w)]

is mutually orthogonal. For sin we start with n = 1, as we are not interested in having 0 (its a trivial

solution).

Orthogonality of sin (%)

We need to consider 2 cases:
1. (sin (%) , COS (mg‘"”)) ,

2. (sin (72), cos (%)) ,

sin+ sin (m # n)

m#£n

m=n

L o e
=3[ () - ()]
— 5 |G s (= )~ i (-4 )

0

where we have used the fact that n,m € Nson —m,n+m € N.
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sin + sin (m =n)

_ 9 nmc)d
[Ls1n ( 7 T
L

:1/ 1 — cos (2n7mc> dxr

2 ) L

1 L oz \ 1"

N YT S U

1
=3 [ — ——sin(2n7) — (=L) + —— sin (—2nm)
=1L

where we have used the identity:
1
sin? @ = 5(1 — cos 20)

Thus, from this and the previous result, it follows that the set:

fom ()1
sin { —

L n=1
is mutually orthogonal.

4.2.4 Sanity Check: m #n

We have been pretty lenient, as to the fact that the periodic functions described above are equal if and only if
m = n. This might seem bizarre, since the functions are periodic, so there might exist some m,n € Nym # n

such that, for instance:
(mrx) B (mwx)
cos|[— ) =cos | ——
L L

A quick computation quickly dismisses this; in particular, we consider periodicity, as that is the only instance
in which the arguments of cos can be different and yet produce the same output:

cos (@ + 2L) = cos (w)

L L
. nwT oL — MmnTT
L
= nnz+ 2L% = mnx
L2

= nt+—=m
xm

Which means that m would have to be irrational.
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4.2.5 Orthogonality Summary

I (2L ifn=m=
1/ cos nﬂm)ms(mgx)dm=< L ifn=m#0
E L0 ifn#m

P (L ifn=m=
2/ coS nﬂm)cos(mgm)dm=< % ifn=m+#0
’ L0 ifn#m
B/Lsin nﬂm)sm(m'nm ifn=m
L ifn#m
/L nwry . /mme % ifn=m
4. sn )s ( dm—
0 L ifn #m
L mr;r MTT
5/ sin )cus( )dm:l’]
L L

Figure 2: We can see that cos is mutually orthogonal with itself and with sin. sin is mutually orthogonal
with itself and cos.

4.3 Defining Fourier Series

Definition 1. Given a periodic function f(x) with period 2L, it can be expressed as a Fourier Series:

:30 Z(ancos( )er Sm(mlrlx))

given that certain conditions are satisfied.
an, by are constants, known as Fourier Coefficients

4.4 The Euler-Fourier Coefficients

Assuming that a Fourier Series converges to f(z) on —L < z < L, how do we do to find the Fourier
Coefficients. Naturally, we exploit the orthogonality!

This is inspired by what we did in (1.2), where a orthogonal basis helped find coefficients in a simple,
systematic way.
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4.4.1 Cosine Fourier Coefficients

If we have: -
=5 3 (omem (72 5 (75)
consider: S
(e (755
We get:

i ;
m=1
= (e (M) (35 (o () i (55 e (7))
= (e (")) # 22 ((omeos (5 ) seon (UF0)) o (omsin () s (7))
(20 n()  oon(5).cn (22
2 on () () o ()
=anlL
Which thus means: .
ap = % (f(x) cos (?)) = % » f(zx) cos (@) dx

forn > 1.

For n = 0, we have:

~ (%, ]
=®@ﬁ§%wﬂ%30+Ww( ):1))
=3

= agL

S0:

et (s (")) = L [ o (%22 a

Thus, by setting the first element to %, we can in fact compute a,,n > 0 via:
1<f( ) (mm;)) 1/L (@) (mm)d
Ap = — x),cos | — ) ) == x)cos | — ) dx
L L LJ_; L
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4.4.2 Sine Fourier Coefficients

If we have: -
flz) = % + mZ:l (am cos (?) + by, sin (?))
consider: e
(e (%5
We get:

(1 35 (oo () i (25 i ()
(35 s (7)o (2)) o ()
+ i ((am cos (?) ,sin (?)) + (bm sin (?) ,sin (?)))

B Gy (T N (b S,ﬂ(mrx) g ( wm))
= ,sin | —— nsin ( —— ), sin ( ——
- @ . nm . nmwx . nmr
_2(1’51 (L >+b”(sm<L)’sm(L>)

Which thus means: .
by, = % (f(x),sin (nf}r{x)) = %/_L f(z)sin (sz> dx

forn > 1.

4.4.3 Extra Pointers
e if the series converges, then a,, b, must be given by the formulae above
e the value of a,, b, depends solely on the value of f on (—L, L); it is possible to show that we will get
the same result by considering any other interval of length 2L
4.4.4 Interpreting Fourier Series

e we have already seen that a Fourier Series is the result of using an orthogonal basis of functions to
construct periodic functions

e one particular use of this is that we can decompose a signal into a sum of cosines and sines with
different frequency. If we have many small a,,b,,, we are able to compress a complex signal as a sum
of a few cosines and sines. This is used for image and sound compression.

4.5 Fourier Cosine Series
It is possible to construct a Fourier Series using only cosine terms. This is the case if f is an even function.
We exploit the facts from (3.3), in particular the fact that a product of even and odd functions is odd,

and the integral of an odd function over a symmetric interval is 0, whilst the integral of an even function
over a symmetric interval is twice the value of the integral over half of the interval.

Page 19



If we compute the Fourier Coeflicients:

/ f(z cos n7m: / f(z) cos 7rx>
—é/_if(x)sin(nzx)dxzo

Thus, the Fourier Series of an even function is:

flx) = % + iancos (?)

n=1

This is known as a Fourier Cosine Series.

We can use even extensions if a function is solely defined on (0, L) in order to make use of the Cosine
Series.

4.6 Fourier Sine Series

It is possible to construct a Fourier Series using only sine terms. This is the case if f is an odd function.
We exploit the facts from (3.3), in particular the fact that a product of even and odd functions is odd,

the product of 2 odd functions is even, and the integral of an odd function over a symmetric interval is 0,

whilst the integral of an even function over a symmetric interval is twice the value of the integral over half

of the interval.

If we compute the Fourier Coefficients:

= i/_LLf(x)cos (?) dr=20
/ flz sin mmc / flx sm ) dx

Thus, the Fourier Series of an odd function is:

= ni_o:l by, sin (?)

This is known as a Fourier Sine Series.

We can use odd extensions if a function is solely defined on (0, L) in order to make use of the Cosine
Series.

4.7 The Fourier Convergence Theorem

e Does a Fourier Series always converge to its function?

— it is possible to find functions f whose Fourier Series do not converge to f, and might even diverge

— even more common is to find functions which don’t converge to the function at certain points
e What is a piecewise continuous function?

— a function which is continuous, except possibly at finitely many points
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— in essence, we can split the function into finitely many subintervals; the function is continuous on
the subintervals, but might not be continuous at the endpoints

— we still approach that as we approach the endpoints (left and right limits), we get a finite number

— We use:

F(e) = lim_f(x)

r—ct

to denote the right limit, and
f(e) = lim f(z)

T—Cc™

to denote the left limit

¥=U "z
i
7 |
I I
! | Lin
. ]
¥ I o
1 i*2
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: ‘ | /" s
]
i ‘ } |
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X X1 ] Xjs1 Xj+2 X;

Theorem (The Fourier Convergence Theorem). Suppose that f and f' are piecewise continuous on the
interval —L < x < L. Further, assume that f is 2L periodic, such that it is defined outside the aforementioned
interval. Then we can write f as a Fourier Series:

1=+ 3 (oo (%52) e (72

whose coefficients are given by:

In particular the Fourier Series:
e converges to f at all points in which f is continuous
e converges to:
@) + )

at all points where f is discontinuous

e Does the Fourier Convergence Theorem give necessary conditions for convergence?

— the Theorem only provides sufficient conditions to prove convergence

— other more restrictive conditions exist
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e Which functions don’t satisfy the conditions of the theorem?

— in general, functions which have infinitely many discontinuities (i.e tan(z),z € R), or functions

which have infinite discontinuities on the interval [~L, L] (i.e 25 as 2 — 0 or In|z — L| as  — L)

e Can a Fourier Series converge to a non-differentiable or non-continuous function?

— consider a function which has jump discontinuities. If we define the value of the function at said
discontinuities as

1 -
S + 1)
then the Fourier Series will converge to f(x); otherwise it won’t
e What is Gibbs Phenonmenon?

— the phenomenon arising from using Fourier Series with functions which has jump discontinuities

— it can be observed that, close to these points, the Fourier Series will under/overshoot the point,
since they can’t accommodate the sudden change in the function

— this over/undershooting is independent of n, so it can’t be eliminated

n=16 n =32
1 1
A D\ o0 AA Al
P A W A
0.5 0.5
0 0
-0.5 -0.5
A_Ba A AN
V ‘o Yo TN V L Ad vV
1 -1
0 2 4 6 0 2 4 6
n=64 n=128
1 1
0.5 0.5
0 0
-0.5 -0.5
1 1
0 2 4 6 0 2 4 6

e If a Fourier Series is convergent, is the derivative of the Fourier Series convergent?
— it is possible to find a Fourier Series which converges to f, but if we differentiate the series, to
attempt to get f’, it might not be a convergent series
4.8 Parseval’s Theorem
Derivation by blackpenredpen
Theorem (Parseval’s Theorem). Let f(x) =Y .00 c,e'"I", and define:

n=—oo

L
112 = (f, ) = /_L \F()2da
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Then:

oo 2 o0
ao
1P =20 Y Jeal =1 (2 F3 ¢ |bn|2)
n=1

n=-—oo
This can be interpreted as an infinite dimensional Pythagorean Theorem, and is particularly useful when
finding infinite series.

Proof.
By definition and linearity,

) L
(f,f)= Z /cnc,’;,e‘(”_m)“ﬂ'dx
—L
(s o]

n,m=—
oo

= z Cn €5 2L 8, by orthogonality

n,m=—no
oo
2
=2L 3 eqf*.
n=-—o0
To prove the last bit, we just remember

a-+ ib,
2

an - fbn
2

Cn = (n>0), cn=
©=7

(n<0)

Figure 3: Here % is used to represent the ocmplex conjugate, and d,,, is the Kronecker Delta, 1 if m = n,
and 0 otherwise.

Proof.
Indeed,

2L Y el =21 |Col2+Z(|Cn|2+|C—n|2)]
n=1

n=—oco L
[laol2 & [ anl2 + 1bal? . |an|? + |Bal?
=2/ | ——
4 +; 4 + 4

=1L @+§:(Ia ?+164%)| -
2 — n n

5 The Complex Fourier Series

Euler’s Formula tells us that: _
cos(wz) + isin(wzx) = 7
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Using this, we can redefine Fourier Series via the complex exponential. In particular, notice that:

s NTIT s NTIT

nwr\  exp (z T )+exp (—ZT)
COS( L )_ 2

_(nmzy _exp (i) —exp (—i%fF)
Sm( L )_ %

So:

o543 ows (75 b (75)
~nﬂ'ac) nmwx

_a 2. exp (i%7E) + exp (—i %) exp (i%7%) — exp (—i27%)

2 23

If we change the limits of the sum, as to include negative natural numbers, we can compress the whole
expression:

f(z) = Z cpet T

n=—oo
where: ‘
7‘1"_2”’", n >0
Cp = 7‘1”2”’”, n <0
a,
2, n=0
In general:
1 /L
J(@)e "t
P
oL

We could’ve derived the above, by using e’"Z° as a basis for periodic functions, and extending the
definition of the inner product of functions for complex valued functions in the following way:

(u(x), v(z)) = / a(x) x v(z)ds

—L

The complex Fourier Series is clearly more convenient if f is complex valued.

More in detail view of complex Fourier; in particular, further simplifies ¢, to be as a single integral

6 Worked Example (+ Bonus Identity)

1. Consider the odd function f(x) = z.

(a) Derive the Fourier Series for g(z), the periodic version of f, with period 4, such that
f(z) is equal to g(z) on [—2,2]

We can visualise g as:
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-3L —2L -L L 2L 3L *

L

Figure 4: g(z) is known as the Sawtooth Function

Since g is odd, we know that the coefficients a,, will vanish, so we only need to consider:

1 /2 nmwT

by = = xsin (“74) d

n =3 /_ ,  x sin { — x

2
nmwx
:/ xxsin(—)dx

O 2

We use integration by parts:
u=2x = du=1

. /nmx 2 nwx
dv = sin (—) — U:_i(;os( )
2 nmw 2
So:
2

2 nrzy ]2 2 nmx
b, = |—x— cos (—) + — cos (—) dx
nmw 2 o N Jy 2

4 (n7) + 4 [ . (mrxﬂ?
= —— —— |sin | ——
o cos{nm n27r2 S 2 0

= —— cos(nm) + sin (nm)]

nmw n2m? [

4
= cos(nm)

Thus, it follows that:
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(b) Derive the Fourier Series for h(z), the periodic, even version of f, with period 4, such

that f(x) is equal to g(z) on [0, 2]

For this, we consider the even expansion of f(x) = z, by defining:

< 2
h(z) = z, 0<x<
-z, —2<z<0

We can visualise this:

=Y

Since h is an even function, b,, = 0, and we juse need to compute:

1 2
an =5 /_2 h(zx) x cos (%) dx
= l/oxxcos(mm)d:c—k1/2xxcos(mm)dx
2/, 2 2 /o 2
1 0 nwx 2 nwx
=— |- xxcos(—) dr + T X CoS (—) dxr

We can compute [z x cos (“5%) dz again using integration by parts:

u=r — du=1
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nmw
So:
T nwx 2 nwx
T X Cos (—) dr = x— cos (—) — — [ sin (—) dx
2 nm
= —CO‘(WTI) + cos (mm)
T P\ n2r? 2
Thus:
Ay = 1 — xl Ccos (nmc) + CcOos (mrx) ' + |x— cos (@) + cos (@>
) 2 2772 2 5 nmw 2 2772 2 0
1 4 2 4 4 4 4
=3 ( |:n27r2 - <_2)E cos (—nm) — —— cos (—mr)] + [ cos (nm) + —5— cos (nm) — 27r2]>
_ 4cos(nm) — 4

n2m2

Thus, it follows that:

0, n even
pn =
8. nodd

- (nTr)2 ’

For ag, we can see that the integral of the function over (—2,2) has area equal to a square of side

length 2, so:
2
/ rdr =4
2

1 /2
ag = = xdr =
=3
Thus, the Cosine Fourier Series is:

B 8 — 1 (2n — D)7z
h(x)—l—ﬂ;(2n1)2008< 5 )

From which it follows that:

Notice, by construction, both g(x) and h(z) give us a series representation of f(z) = z,z € [0,2].

Use Parseval’s Theorem, alongside the above parts, to deduce that:

2

=1
> m=

We consider g(z). We can easily compute [|g|?:

2 372
T 16
ot = [ = 5| =%
9 | ‘ 3 L 3
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From Parseval’s Theorem:

So it follows that:

lao]* | &
7 =2 (15 4 5™
n=1
:2<an|2>
n=1
oo 4 2
=2 —(=1)"*?
(Sheer)
= 16
(Za)
SN
_7T n=1 TL2
2= 1 16 — 1
P _ = - _ =
T f=n? 3 nz::lrﬂ 6
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