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1 The Phase Plane

e What is a phase plane?

— we consider the 2-dimension, first-order, linear homogeneous sytem of constant coefficients:

where:

— the phase plane is the plane we obtain by using 1 and xo as the basis (that is, we plot x; and
To, as opposed to 1 vs t and xo vs t
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e Why is the phase plane of interest when analysing ODEs?

— there are many ODEs which can’t be solved analytically

solving said ODEs numerically is one way of visualising solutions

alternatively, we can use the phase plane to plot the behaviour of general solutions, without
needing to solve systems

— in other words, phase planes provide us with qualitative understanding of how solutions behave

— what is most useful is that we get information about all possible solutions in one go
e What is a trajectory?

— generally, we consider solutions of the form z = x(¢)

— if we plot z(t) in the z1, x5 plane, we obtain a curve/path which we call a trajectory

— we can think of a trajectory as the path traversed by a particle with velocity %

— the number of trajectories is the number of possible initial conditions to a problem

— if we have an autonomous ODE, we are guaranteed that trajectories will never cross each other

e What is the phase portrait of an ODE system?

— a phase portrait is obtained by plotting a (representative) set of trajectories for a given ODE
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Figure 1: If we plot many different trajectories in the phase plane we get a phase portrait
here
e What are the critical points of an ODE system?

— a point z* is said to be a critical point if the vector field is 0 at z*
— if we have a system:

F(z)

G(z)

then x* is a critical point if:

Qo
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— if we have a system with constant coefficients:

z = Az

if A is invertible, then the only critical point is:
z"=0
— if we have an IVP, such that z(tp) = z*, then clearly 2’ = 0, and so:

YVt e R, z(t) = z*

e Why are critical points important?

. Create your own

— critical points are the points in which a solution to an ODE is constant (known as equilibrium

solutions)
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https://aeb019.hosted.uark.edu/pplane.html

— as we will see next, for linear, autonomous systems of the form 2’ = Az, critical points basically
determine the behaviour of trajectories throughout the 1, x2 plane

— if the system is non-linear and autonomous, such as:
F(z)
G(z)

g =
can still be classified based on their local influence on solution behaviour

2 Classifying Critical Points: Linear, Autonomous Systems

If we have a system z’ = Az, we know that the only critical point is z = 0 (given that A is non-invertible.
Then, by considering the eigenvalues and eigenvectors of A we are able to not only classify the critical point,
but also describe the behaviour of the trajectories near said critical point in phase space.

This video was the most helpful when trying to understand how to plot each case. I really recommend
watching.

Paul’s Online Math Notes also have all the diagrams and classifications available

Good explanations and diagrams
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https://www.youtube.com/watch?v=dpbRUQ-5YWc
https://www.youtube.com/watch?v=dpbRUQ-5YWc
https://tutorial.math.lamar.edu/classes/de/phaseplane.aspx
http://www.personal.psu.edu/sxt104/class/Math251/Notes-PhasePlane.pdf

2.1 Real, Different, Negative Eigenvalues
e Case: 1 <19 <0
e General Solution: ¢§ e 4 o€ e

e Solution Behaviour:

— as t — 00, €™t goes to 0 much faster than e"2?

* cg # 0: €™ is the dominant term, so 0 is approached along 3 )
* cg = 0: solutions start on § " and 0 is approached along £ L
— ast — —oo, €' is the dominant term (larger):

* ¢ # 0: trajectories start close to §,
* ¢; = 0: solutions start on §2

— thus, unless solutions start on § L or 3 g their trajectory will begin parallel to . and eventually
converge to 0 by being parallel to § )

e Critical Point Classification: node/nodal sink

Figure 2: A nodal sink, produced when the eigenvalues are r; < ry < 0. Trajectories begin close to £ g but
then get parallel to £ , to eventually converget at 0
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2.2 Real, Different, Positive Eigenvalues
e Case: ;1 >1r9 >0
e General Solution: cl§le”t + 02§26T2t

e Solution Behaviour: using a similar diagnosis as before, this leads to the same trajectories as in
the negative case, albeit with the direction reversed. Vectors will start parallel to £ 9 and eventually
diverge parallel to § |- Trajectories seem to be repelled by the critical point

e Critical Point Classification: node/nodal source
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Figure 3: A nodal source, produced when the eigenvalues are 0 < 72 < r;. Trajectories begin close to £ 0
but then get parallel to § , to diverge
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2.3 Real, Different, Opposite Signed Eigenvalues
e Case: 1y > 0,75 <0
e General Solution: cl§le”t + 02§26T2t
e Solution Behaviour:

— ast — 00, e is the dominant term

* c¢1 # 0: solutions approach infinity asymptotic to § L (if they start on £ |+ they approach infinity
on said line)

* ¢1 = 0: solutions start on §2. et will go to 0, so 0 is approached along §2
— ast — —oo, e™! is the dominant term:
* g # 0: solutions approach infinity asymptotic to £ ) (if they start on & 9 they approach infinity
on said line)
* ¢z = 0: solutions start on § 1 et will go to 0, so 0 is approached along £ L
— thus:
x if trajectories start at §1 (c2 = 0), they go to 0 as t — —oo, and to infinity as t — oo
* if trajectories start at £, (c1 = 0), they go to 0 as ¢t — 0o, and to infinity as ¢ — —oo
* if trajectories start elsewhere, as t — oo, they they diverge to infinity parallel to L
* if trajectories start elsewhere, t — —oo, they will be parallel to § )

e Critical Point Classification: saddle

Saddle Point - Unstable

X2

AN
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Figure 4: A saddle produced when the eigenvalues are r; > 0,79 < 0. Trajectories only approach the critical
point along the eigenvectors.
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2.4

Real, Equal Eigenvalues

2.4.1 2 Linearly Independent Eigenvectors

Case: r = ry = rg, r has geometric multiplicity 2
General Solution: e (ci§, + c2€,)

Solution Behaviour: notice that % is a constant, dependent on § 1,§ 5 C1,C2. Most importantly it
is independent of ¢, so solutions will be straight lines passing through the critical point. Trajectories
converge to 0 if r < 0, and diverge otherwise.

Critical Point Classification: proper node/star point

Figure 5: A proper node produced when the eigenvalues are » < 0. Trajectories are straight lines going
through the critical point.

Figure 6: A proper node produced when the eigenvalues are r > 0. Trajectories are straight lines going
through the critical point.
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2.4.2 1 Linearly Independent Eigenvector
e Case: r =1y = rg, r has geometric multiplicity 1
e General Solution: €™ (c1€ + c2(€t + 1))
e Solution Behaviour:

— ast — o0, te’ is the dominant term

* if r <0, independent of the value of ¢z, the trajectory approaches 0 parallel to §
* if r > 0, independent of the value of ¢z, the trajectory diverges to infinity parallel to §

— as t — —oo, te" is still the dominant term (due to the presence of t)

* if r > 0, independent of the value of ¢z, the trajectory approaches 0 parallel to §
* if r <0, independent of the value of ca, the trajectory diverges to infinity parallel to §

— the resulting trajectory is one that goes parallel to the eigenvector, and eventually curves and
changes direction via a 180° turn

e Critical Point Classification: improper/degenerate node

Notice that the direction of the
arrows affects stability

Improper Node - Unstable Improper Node - Asymptotically Stable ’
x37 Xz
x;- x
Single postive eigenvalue Single negative eigenvalue
The eigenvector is the Eigenvector is the asymptote
asymptote

Figure 7: An improper node produced when the eigenvalues are » < 0 and r > 0. Trajectories curve, but
eventually are always parallel to the eigenvector. To know the direction of the trajectory, determine the

0 1
direction of the field at points like or
1 0
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2.5 Complex, Non-Zero Real Part Eigenvalues

e Case: 1y = A+iu, 1o =A—iu, A#0

c1 cos(ut) + co sin(ut cos(¢ — ut
e General Solution: e 1 cos(ut) + ¢y sin{yt) = CeM (6= pt) . The latter uses the amplitude-
—cy sin(ut) + co cos(ut) sin(¢ — pt)
phase form, where:
C=4/c2+c3

c
¢ = arctan <1>
2

e Solution Behaviour: notice the general solution satisfies:

(see this MIT resource)

2} 4 23 = C2eM
In other words, we can think of the trajectory as a circle which as t — oo has an ever changing radius.

In other words, the trajectory draws a spiral. That is, as t — oo, if A > 0, the spiral will go outwards,
whilst if A < 0, the spiral will converge towards the critical point.

To determine how the spiral is oriented (clockwise or anti-clockwise), we consider the vector field at

0
z1 = 0,29 = 1 (so we compute A ). If the x1 component of the resulting vector is positive, we
1

will have clockwise motion.

Figure 8: The left is a clockwise spiral, whilst the right is a anti-clockwise spiral.

Alternatively, we could’ve used polar coordinates:
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https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/readings/supp_notes/MIT18_03S10_chapter_4.pdf

An alternative way of reaching this conclusion.
Introduce polar coordinates in phase space

r’=x%+y?, tanq5=x.
X

(x, y) satisfy the ODE system

X = AX+ py
y =AYy — px.
It follows
ri =xx+yy =x(Ax+ py) +y(Ay — pux) = Ar?,
¢ _xy—yx .
cos2¢p  x2 > ¢=H

F=Ar=r=ceM

¢=—p=¢=—ut+do.

» A>0= |x| = oo fort — o0
» A<0=|x| >0fort— o0

» ¢ decreases as t evolves (since 1 > 0) = motion is clockwise

Conclusions are fully consistent with our spiral picture.

e Critical Point Classification: spiral point/spiral source/spiral sink
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2.6 Imaginary Eigenvalues

e Case: 1y =i, 1o = —ilt

c1 cos(ut) + co sin(ut cos(¢ — ut
e General Solution: 1 cos(ut) + ¢y sin{yt) =C (&= pt) . The latter uses the amplitude-

—cy sin(ut) + co cos(ut) sin(¢ — ut)
¢ = arctan <Cl>
C2

e Solution Behaviour: notice the general solution satisfies:

phase form, where:

(see this MIT resource)

2, .2 2
i +ax5=C

In other words, we can think of the trajectory as a circle (technically it forms an ellipse) centered at
the critical point. If g > 0 the ellipse is traversed clockwise, whilst if 1 < 0, the ellipse is traversed
anti-clockwise.

e Critical Point Classification: center
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Figure 9: The cases for complex eigenvalues.
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https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/readings/supp_notes/MIT18_03S10_chapter_4.pdf

2.7 Critical Point Classification Summary

Table 1: It is important to recall that this is only valid for second-order, linear, autonomous systems defined

Eigenvalues Critical Point Type
e >19 >0 node (source)

ry <rg <0 node (sink)

ro <0< ry saddle

r=ry=r9,7>0

proper /improper node

r=ry=ro,r <0

proper/improper node

ri, o = ALt iu, A >0

spiral source

ri,re =AE£iu, A <0

spiral sink

Tl,T’QZ)\Zl:’L',lL,A:O

center

by constant, invertible matrices

3 Stability of Critical Points

e When is a critical point said to be stable?

Definition (Stability of a Critical Point). A critical point * is said to be stable if Ve > 0, 36 > 0

such that if x = x(t) is a solution to a system, and:

then:

What the above definition states is that if we have a solution which starts (initial condition ¢ = 0)
sufficiently close (0 close) to a critical point, then the whole solution will stay close (¢ close) to the

l2(0) — z*]| < 6

la(t) — 27| <e

critical point. Diagrammatically:

y

(x(0), ¥(0))

Figure 10: The sole requirement for stable critical point is that trajectories beginning close enough to a

(a)

critical point will stay within e of the critical point.

(b)

Page 13




e When is a critical point said to be unstable?

— whenever the requirements of stability are not satisfied

e When is a critical point said to be asymptotically stable?

— informally, asymptotically stable critical points are those such that trajectories which start close

— more formally, a critical point is asymptotically stable if beyond being stable, we can find some

— for example, sinks are stable and asymptotically stable, whilst centers are stable but not asymp-

enough to them will converge to the critical point at infinity

do > 0 such that if:

then:

totically stable

|2(0) —z*|| < do

. . *
Jim 2(t) =2

e How does stability correlate with the classification of a critical point?

Eigenvalues Critical Point Type Stability
ry>1re >0 node (source) unstable

ry <re <0 node (sink) asymptotically stable
reo <0< saddle unstable
r=1ry=r9,7>0 proper/improper node unstable

r=ry=1r9,17<0

proper/improper node

asymptotically stable

r,To = AEXiu, A >0

spiral source

unstable

r,re =AExiu, A <0

spiral sink

asymptotically stable

Tl,TQZ)\:l:i,LL,)\ZO

center

stable

e What is the basin of attraction of a critical point?

— the basin of attraction is the set of all points in the x1,z2 plane, such that as t — oo any
trajectory passing through said points approaches a given critical point

— it is also known as the region of asymptotic stability of a critical point

— a separatrix is any trajectory which bounds a basin of attraction
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Figure 11: The basin of attraction for the central critical point is given in green

4 Classifying Critical Points: Non-Linear, Autonomous Systems
e Can we classify critical points for non-linear systems?

— we consider autonomous, non-linear systems defined by:
¥ = F(z,y)

y = G(z,y)

— in general, the techniques explained above won’t work on this general system, since we don’t know
how to solve non-linear systems

— however, we can exploit local linearity to approximate the vector field linearly
e What is the Rectification Theorem?

Theorem (Rectification Theorem). Consider some point z, such that:
F(z,) #0

G(z,) #0

In other words, x, is not a critical point. Then, in the neighbourhood of x,, it is possible to find some
change of variables:

(1‘, y) — (ja g)
such that:

=/

=1y=0

In other words, for any vector field, if we take a non-critical point, we are able to change variables,
such as to locally approximate the vector field as if it were a linear vector field

e How can we linearise a non-linear system?

— we can use Taylor Expansions to show that in the neighbourhood of a critical point, the vector
field is locally linear
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— let * be a critical point, such that:
F(z")=G(z") =0
— then, we can define a change of coordinates via:
u=x—z"
v=y—y"

We can think of u, v as being the perturbation of x,y near a critical point

— we can then differentiate:
u' = F(z,y) = Flu+a",v+y")

v' = G(z,y)

Glu+z",v+y")
— and finally consider the Taylor Expansion (check this if you need to refresh) for «’ and v':

/

u' = F(z",y") +ulp (2", y") +vFy(z",y") + m(z,y)
/

v =G(x",y") +vGa (27, y") + vGy (27, y) + 2z, y)

— the key is that the remainder terms 71,72 are small, in the sense that:

li i
m — =
z—z* |l — z*|

In other words, since (u,v) = x — z*, we say that 11,72 are much smaller than u and v as these
go to 0. Long story short, this means that if we consider small u, v, we can safely ignore 77,72

— using this, alongside the fact that F(z*) = G(z*) = 0 our expansion simplifies to:
v = uF,(z*,y") + vFy (2", y")

v =G, (2", ") +vGy (", y")

which is a linear system, wince we are evaluating the partial derivatives at the critical point:

— here:

is known as the Jacobian Matrix

— this system involving the Jacobian Matrix is our linear approximation to the original non-linear
system. In particular, we can employ all the techniques above to determine the behaviour in the
neighbouthood of z*

e How does non-linearity affect the critical point classification and stability?
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https://math.stackexchange.com/questions/254792/how-is-the-taylor-expansion-for-fx-h-derived

Eigenvalues Critical Point Type Stability
ry>1re >0 node (source) unstable

ry <719 <0 node (sink) asymptotically stable
ro <0< ry saddle unstable
r=1ry=r9,7>0 proper/improper node unstable

r=ry=r9,7r <0

proper/improper node

asymptotically stable

r,To = AEiu, A >0

spiral source

unstable

r1,ro = A+ iu, A <0

spiral sink

asymptotically stable

Tl,TQZA:l:i/l,)\:O

center

stable

Table 2: Critical Point Classification and Stability for a Linear System

Eigenvalues Critical Point Type Stability
ry>1r9 >0 node (source) unstable

r1 <719 <0 node (sink) asymptotically stable
ro <0< saddle unstable
r=ry=r9,r>0 node/spiral point unstable

r=r1=r,1<0

node/spiral point

asymptotically stable

ri,ro = AL iu, A >0

spiral source

unstable

r,To = AExiu, A <0

spiral sink

asymptotically stable

r,ro = A X iu,A=0

center/spiral point

indeterminate
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Table 3: Critical Point Classification and Stability for a Locally Linear System
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