Honours Differential Equations - Week 3 - Solving Nonhomogeneous Linear Systems of ODEs

Antonio León Villares

October 2021

Contents

1		nhomogeneous Linear Systems	2
	1.1	Solving Nonhomogeneous Linear Systems: Diagonalisation	2
	1.2		3
	1.3	Solving Nonhomogeneous Linear Systems: Variation of Parameters	4
	1.4	Macro Example	5
		1.4.1 Diagonalisation	6
		1.4.2 Undetermined Coefficients	8
		1.4.3 Variation of Parameters	10
2	Nur	merical Methods	12
	2.1	Euler Method	12
	2.2	Errors in ODEs	12
	2.3	Higher Order Methods	12
	2.4	Multistep Numerical Methods	12

1 Nonhomogeneous Linear Systems

- What is a nonhomogeneous linear system?
 - a system of ODEs in which the RHS is function of t:

$$\underline{x}' = \mathbf{P}(t)\underline{x} + g(t)$$

- What are the solutions to a nonhomoegeneous linear system?
 - the general solution to a nonhomogeneous system is the addition of the general solution to the homogeneous system and a particular solution to the nonhomogeneous system:

$$\underline{x} = \underline{x}_h + \underline{x}_p$$

- to see why:

$$\underline{x} = \underline{x}_h + \underline{x}_p \implies \underline{x}' = \underline{x}'_h + \underline{x}'_p$$

$$\Longrightarrow \underline{x}' = \underline{x}'_h + \underline{x}'_p$$

$$= \underline{P}\underline{x}_h + \underline{P}\underline{x}_p + \underline{g}$$

$$= \underline{P}(\underline{x}_h + \underline{x}_p) + \underline{g}$$

$$= \underline{P}\underline{x} + g$$

- since we can solve homogeneous systems easily, the key to solving nonhomogeneous systems is being able to determine particular solutions

1.1 Solving Nonhomogeneous Linear Systems: Diagonalisation

- When can diagonalisation be used to solve a nonhomogeneous system?
 - the system has constant coefficients

$$P(t) = A$$

- ideally, \boldsymbol{A} should be diagonalisable, but if it isn't, we will get a system with a matrix defined in Jordan form, which is also solvable
- How can diagonalisation help find a particular solution to a nonhomogeneous system?
 - we consider the system

$$\underline{x}' = A\underline{x} + g(t)$$

- assuming \boldsymbol{A} is diagonalisable, we can define a transformation matrix \boldsymbol{T} , with the eigenvectors of \boldsymbol{A} as column vectors:

$$T = \begin{pmatrix} \underline{\xi}^{(1)} & \underline{\xi}^{(2)} & \dots & \underline{\xi}^{(n)} \end{pmatrix}$$

- we can define a new variable y via:

$$\underline{x} = Ty$$

- if we use this in the original system:

$$\underline{x}' = A\underline{x} + \underline{g}(t)$$

$$\Longrightarrow T\underline{y}' = AT\underline{y} + \underline{g}(t)$$

$$\Longrightarrow \underline{y}' = T^{-1}AT\underline{y} + T^{-1}\underline{g}(t)$$

$$\Longrightarrow \underline{y}' = T^{-1}AT\underline{y} + \underline{h}(t)$$

- we are guaranteed that T^{-1} exists, since its column vectors are linearly independent; moreover, $T^{-1}AT$ is a diagonal matrix, composed of the eigenvalues of A
- this is a system that can be solved variable wise, since it is defined by a diagonal matrix (it is said to be **uncoupled**):

$$y_i' = r_i y_i + h_i \implies y_i' - r_i y_i = h_i$$

which can be solved by using an integrating factor $e^{-r_i t}$, leading to:

$$y_i = c_i e^{r_i t} + e^{r_i t} \int_{t_0}^t e^{-r_i s} h_i(s) ds$$

- once we obtain y, we just get \underline{x} by using the transformation matrix
- notice, the term $c_i e^{r_i t}$ will lead to the general solution of the homogeneous equation, and $e^{r_i t} \int_{t_0}^t e^{-r_i s} h_i(s) ds$ corresponds to the particular solution
- What if the constant coefficient matrix is not diagonalisable?
 - we can define T using the n eigenvectors and generalised eigenvectors
 - the matrix $T^{-1}AT$ will be in Jordan form, which can be solved easily (solve one variable at a time)

1.2 Solving Nonhomogeneous Linear Systems: Undetermined Coefficients

- When can undetermined coefficients be used to solve a nonhomogeneous system?
 - the system has constant coefficients

$$P(t) = A$$

- the function g(t) is a linear combination of a polynomial and a complex exponential. In other words, any g which is:
 - * a polynomial
 - * an exponential
 - * a sinusoid

or a combination of this

- How can undetermined coefficients help find a particular solution to a nonhomogeneous system?
 - we assume that \underline{x}_p is of the form of $\underline{g}(t)$, albeit using unspecified coefficients
 - if λ is an eigenvalue of \mathbf{A} , and $\underline{g}(t) = \underline{u}e^{\lambda t}$, then, if λ has algebraic multiplicity j, we consider a particular solution given as a product of a jth degree polynomial and $e^{\lambda t}$:

$$(\underline{a}_j x^j + \underline{a}_{j-1} x^{j-1} + \ldots + \underline{a}_0) e^{\lambda t}$$

- typically, we consider each component of g(t) separately, such that:

$$\underline{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_n(t) \end{pmatrix} = \begin{pmatrix} g_1(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ g_2(t) \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ g_n(t) \end{pmatrix}$$

and we solve the system for each of the components. Then \underline{x}_p is taken as the sum of all the found particular solutions.

1.3 Solving Nonhomogeneous Linear Systems: Variation of Parameters

- When can variation of parameters be used to solve a nonhomogeneous system?
 - this is the most general method, so it assumes nothing about the nature of P(t) or g(t)
- How can variation of parameters help find a particular solution to a nonhomogeneous system?
 - we consider a system

$$\underline{x}' = \boldsymbol{P}(t)\underline{x} + g(t)$$

- moreover, we assume we have access to a fundamental matrix $\Psi(t)$ for the homogeneous system
- recall that the general solution to the homogeneous system can be described via:

$$\underline{x}_h = \Psi(t)\underline{c}$$

where c corresponds to the constant coefficients of the general solution

- variation of parameters assumes a particular solution of the form:

$$\underline{x}_p = \Psi(t)\underline{u}(t)$$

where $\underline{u}(t)$ is a vector to be found

 we can verify that this is indeed a solution. Firstly, recall that a fundamental matrix solves the homogeneous system, so:

$$\mathbf{\Psi}(t)' = \mathbf{P}(t)\mathbf{\Psi}(t)$$

- next, we differentiate our particular solution

$$\underline{x}' = (\Psi \underline{u})'$$

$$= \Psi' \underline{u} + \Psi \underline{u}'$$

$$= P\Psi \underline{u} + \Psi \underline{u}'$$

$$= P\underline{x} + \Psi \underline{u}'$$

– in other words, for $\underline{x} = \Psi \underline{u}$ to satisfy our system, we require:

$$\Psi \underline{u}' = \underline{g} \implies \underline{u}' = \Psi^{-1} \underline{g}$$

where we know Ψ^{-1} exists, since its a fundamental matrix

- to find u, we can integrate:

$$\underline{u}(t) = \underline{c} + \int \mathbf{\Psi}^{-1}(t)\underline{g}(t)dt$$

– to find \underline{x}_p , we multiply through by Ψ :

$$\underline{x}_p = \Psi(t)\underline{c} + \Psi(t) \int_{t^*}^t \Psi^{-1}(s)\underline{g}(s)dt$$

where t^* is any point at which P(t) and g(t) are continuous

- Can variation of parameters be used to solve an IVP?
 - assume the initial condition $\underline{x}(t_0) = x_0$
 - the general solution will be:

$$\underline{x}_p = \Psi(t)\underline{c} + \Psi(t) \int_{t_0}^t \Psi^{-1}(s)\underline{g}(s)dt$$

- at
$$t = t_0$$
:

$$\underline{x}_0 = \Psi(t_0)\underline{c} \implies \underline{c} = \Psi(t_0)^{-1}\underline{x}_0$$

- so the solution to the IVP is:

$$\underline{x}_p = \Psi(t)\Psi(t_0)^{-1}\underline{x}_0 + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\underline{g}(s)dt$$

– if we use the special fundamental matrix $e^{\mathbf{A}t}$ (given constant coefficients):

$$\underline{x}_p = e^{\mathbf{A}t}\underline{x}_0 + e^{\mathbf{A}t} \int_{t_0}^t e^{-\mathbf{A}s}\underline{g}(s)dt$$

where we have used the fact that $e^{\mathbf{A}t} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)$

1.4 Macro Example

Solve the nonhomogeneous system:

$$\underline{x}' = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{x} + \begin{pmatrix} 2e^{-t}\\ 3t \end{pmatrix}$$

The first step is to find the homogeneous solution. For that, we find the eigenvalues and eigenvectors.

For the eigenvalues, we solve the system:

$$\begin{pmatrix} -2-r & 1\\ 1 & -2-r \end{pmatrix} \underline{\xi} = \underline{0}$$

which results in:

$$\begin{vmatrix} -2-r & 1 \\ 1 & -2-r \end{vmatrix} = 0$$

$$\implies (2+r)^2 - 1 = 0$$

$$\implies r = -1, -3$$

If $r_1 = -1$, the eigenvector $\underline{\xi}_1$ is given by:

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \underline{\xi}_1 = \underline{0} \implies -\xi_1 + \xi_2 = 0$$

so:

$$\underline{\xi}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

If $r_2 = -3$, the eigenvector $\underline{\xi}_2$ is given by:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \underline{\xi}_2 = \underline{0} \implies \xi_1 + \xi_2 = 0$$

so:

$$\underline{\xi}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Thus, the general solution to the homogeneous system is:

$$\underline{x}_h(t) = c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

1.4.1 Diagonalisation

We define the transformation matrix:

$$T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

We define a new variable y, which satisfies:

$$\underline{x} = T\underline{y}$$

But this results in:

$$\underline{y}' = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\underline{y} + \mathbf{T}^{-1}\underline{g}(t)$$

$$\Rightarrow \underline{y}' = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2e^{-t} \\ 3t \end{pmatrix}$$

$$\Rightarrow \underline{y}' = \begin{pmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix} \underline{y} + \frac{1}{2} \begin{pmatrix} 2e^{-t} + 3t \\ 2e^{-t} - 3t \end{pmatrix}$$

Thus, we need to solve:

$$y'_1 = -y_1 + e^{-t} + \frac{3}{2}t \implies y'_1 + y_1 = e^{-t} + \frac{3}{2}t$$

 $y'_2 = -3y_2 + e^{-t} - \frac{3}{2}t \implies y'_2 + 3y_2 = e^{-t} - \frac{3}{2}t$

These have integrating factor e^t and e^{3t} respectively:

$$y_1'e^t + y_1e^t = 1 + \frac{3}{2}te^t \implies \frac{d}{dt}(y_1e^t) = 1 + \frac{3}{2}te^t$$
$$y_2'e^{3t} + 3y_2e^{3t} = e^{2t} - \frac{3}{2}te^{3t} \implies \frac{d}{dt}(y_2e^{3t}) = e^{2t} - \frac{3}{2}te^{3t}$$

Integrating both sides with respect to t:

$$y_1 = e^{-t} \int 1 + \frac{3}{2} t e^t dt$$
$$y_2 = e^{-3t} \int e^{2t} - \frac{3}{2} t e^{3t} dt$$

We can use integration by parts to compute:

$$\int te^{nt}$$

We have:

$$u = t \implies du = 1$$

$$dv = e^{nt} \implies v = \frac{e^{nt}}{n}$$

So:

$$\int te^{nt} = t\frac{e^{nt}}{n} - \frac{1}{n} \int e^{nt}dt$$
$$= t\frac{e^{nt}}{n} - \frac{e^{nt}}{n^2} + C$$
$$= e^{nt} \left(\frac{tn-1}{n^2}\right) + C$$

Going back to the above:

$$y_1 = e^{-t} \int 1 + \frac{3}{2} t e^t dt$$

$$= e^{-t} \left(t + \frac{3}{2} e^t (t - 1) + C_1 \right)$$

$$= t e^{-t} + \frac{3}{2} t - \frac{3}{2} + C_1 e^{-t}$$

$$y_2 = e^{-3t} \int e^{2t} - \frac{3}{2} t e^{3t} dt$$

$$= e^{-3t} \left(\frac{1}{2} e^{2t} - \frac{3}{2} e^{3t} \left(\frac{3t - 1}{9} \right) + C_2 \right)$$

$$= \frac{1}{2} e^{-t} - \frac{3}{2} \left(\frac{3t - 1}{9} \right) + C_2 e^{-3t}$$

$$= \frac{1}{2} e^{-t} + \frac{3 - 9t}{18} + C_2 e^{-3t}$$

$$= \frac{1}{2} e^{-t} + \frac{1}{6} - \frac{t}{2} + C_2 e^{-3t}$$

So:

$$\underline{y} = \begin{pmatrix} te^{-t} + \frac{3}{2}t - \frac{3}{2} + C_1e^{-t} \\ \frac{1}{2}e^{-t} + \frac{1}{6} - \frac{t}{2} + C_2e^{-3t} \end{pmatrix}$$

From which it follows that:

$$\underline{x} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underline{y}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} te^{-t} + \frac{3}{2}t - \frac{3}{2} + C_1e^{-t} \\ \frac{1}{2}e^{-t} + \frac{1}{6} - \frac{t}{2} + C_2e^{-3t} \end{pmatrix}$$

$$= \begin{pmatrix} te^{-t} + \frac{3}{2}t - \frac{3}{2} + C_1e^{-t} + \frac{1}{2}e^{-t} + \frac{1}{6} - \frac{t}{2} + C_2e^{-3t} \\ te^{-t} + \frac{3}{2}t - \frac{3}{2} + C_1e^{-t} - \frac{1}{2}e^{-t} - \frac{1}{6} + \frac{t}{2} - C_2e^{-3t} \end{pmatrix}$$

$$= \begin{pmatrix} te^{-t} + t - \frac{4}{3} + \frac{1}{2}e^{-t} + C_1e^{-t} + C_2e^{-3t} \\ te^{-t} + 2t - \frac{5}{3} - \frac{1}{2}e^{-t} + C_1e^{-t} - C_2e^{-3t} \end{pmatrix}$$

$$= C_1e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} t + \frac{1}{2} \\ t - \frac{1}{2} \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

1.4.2 Undetermined Coefficients

We can write g(t) as:

$$\underline{g}(t) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{-t} + \begin{pmatrix} 0 \\ 3 \end{pmatrix} t$$

Thus, our solution must look like the sum of an exponential, and a polynomial of degree 1. However, notice that r = -1 is an eigenvalue of \mathbf{A} , so the exponential will be multiplied by a polynomial of degree 1 (since $r_1 = -1$ has algebraic multiplicity 1). Thus, we expect a particular solution of the form:

$$\underline{x}_p = (\underline{a}t + \underline{b})e^{-t} + \underline{c}t + \underline{d}$$

where $(\underline{a}t + \underline{b})e^{-t}$ corresponds to the exponential part of g(t), and $\underline{c}t + \underline{d}$ corresponds to the polynomial part.

Since \underline{x}_p must satisfy:

$$\underline{x}' = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{x} + \begin{pmatrix} 2e^{-t}\\ 3t \end{pmatrix}$$

we can substitute in. However, we can do so separately. Let:

$$\underline{x}_p^{(1)} = (\underline{a}t + \underline{b})e^{-t}$$
$$x_r^{(2)} = ct + d$$

We first consider the exponential part. Differentiating:

$$\underline{x}_p^{(1)'} = -(\underline{a}t + \underline{b})e^{-t} + \underline{a}e^{-t} = (-\underline{a}t - \underline{b} + \underline{a})e^{-t}$$

If we plug in to the system (considering only the exponential part of g(t):

$$(-\underline{a}t - \underline{b} + \underline{a})e^{-t} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} (\underline{a}t + \underline{b})e^{-t} + \begin{pmatrix} 2\\ 0 \end{pmatrix} e^{-t}$$

$$\implies -\underline{a}t - \underline{b} + \underline{a} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} (\underline{a}t + \underline{b}) + \begin{pmatrix} 2\\ 0 \end{pmatrix}$$

From which we can extract 2 systems, separated by the power of t involved:

$$-\underline{a} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{a}$$

$$\underline{a} - \underline{b} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{b} + \begin{pmatrix} 2\\ 0 \end{pmatrix} \implies \underline{a} - \underline{b} - \begin{pmatrix} 2\\ 0 \end{pmatrix} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{b}$$

The first system we recognise as the eigenvector/eigenvalue system, from which we know that \underline{a} must be a **multiple** of $\underline{\xi}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. It is important that we consider the multiple, since $\underline{\xi}_1$ was just a particular eigenvector choice, but definitely not the only possible solution to the eigenvector problem. By parametrising \underline{a} , we will be able to solve the second system. In other words,

$$\underline{a} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}$$

For the second system, we have:

$$\left(\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} + \mathbb{I} \right) \underline{b} = \underline{a} - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\implies \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \underline{b} = \begin{pmatrix} \alpha - 2 \\ \alpha \end{pmatrix}$$

Notice, the row vectors of the matrix are multiples of each other (differ by factor of -1). Since the rows are linearly dependent, it follows that the system will have a solution if the RHS also has this linear dependence. Thus:

$$\alpha - 2 = -\alpha \implies \alpha = 1$$

In other words, the solution of the system must solve:

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \underline{b} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \implies b_2 = -1 + b_1$$

So:

$$\underline{b} = \begin{pmatrix} k \\ k-1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

We can just pick k = 0, as the vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ will already be included by the general solution. From this, we get that:

$$\underline{x}_p^{(1)'} = \left[-\begin{pmatrix} 1 \\ 1 \end{pmatrix} t - \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] e^{-t} \implies x_p^{(1)'} = \begin{pmatrix} 1 - t \\ 2 - t \end{pmatrix} e^{-t}$$

We now consider the polynomial part. Differentiating:

$$\underline{x}_p^{(2)'} = \underline{c}$$

If we plug in to the system (considering only the polynomial part of g(t)):

$$\underline{c} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} (\underline{c}t + \underline{d}) + \begin{pmatrix} 0\\ 3 \end{pmatrix} t$$

From which we can extract 2 systems, separated by the power of t involved:

$$\underline{c} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{d}$$

$$\underline{0} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \underline{c} + \begin{pmatrix} 0\\ 3 \end{pmatrix}$$

Which leads to the equations:

$$-2d_1 + d_2 = c_1$$

$$d_1 - 2d_2 = c_2$$

$$-2c_1 + c_2 = 0$$

$$c_1 - 2c_2 = -3$$

We can solve for c_1, c_2 by multiplying the third equation by 2, and adding it to the fourth equation:

$$-3c_1 = -3 \implies c_1 = 1 \therefore c_2 = 2$$

Thus, we now just need to solve:

$$-2d_1 + d_2 = 1$$
$$d_1 - 2d_2 = 2$$

Applying the same operation as for the c's:

$$-3d_1 = 4 \implies d_1 = -\frac{4}{3} : d_2 = -\frac{5}{3}$$

Thus, it follows that the particular solution is:

$$\underline{x}_p = \begin{pmatrix} 1 - t \\ 2 - t \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

Whilst this solution does not look identical to the one in diagonalisation, had we chosen $k = \frac{1}{2}$, we would've obtained the same particular solution.

1.4.3 Variation of Parameters

We first need to construct a fundamental matrix for the system.

$$\Psi(t) = \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix}$$

Assuming a solution of the form $\underline{x} = \Psi(t)\underline{u}(t)$, we reach the system:

$$\begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 2e^{-t} \\ 3t \end{pmatrix}$$

We could solve this system by taking the inverse of the fundamental matrix. However, we can also solve via row reduction:

$$\begin{pmatrix} e^{-3t} & e^{-t} & 2e^{-t} \\ -e^{-3t} & e^{-t} & 3t \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} e^{-3t} & e^{-t} & 2e^{-t} \\ 0 & 2e^{-t} & 3t + 2e^{-t} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} e^{-3t} & e^{-t} & 2e^{-t} \\ 0 & e^{-t} & \frac{3}{2}t + e^{-t} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} e^{-3t} & 0 & e^{-t} - \frac{3}{2}t \\ 0 & e^{-t} & \frac{3}{2}t + e^{-t} \end{pmatrix}$$

From which it follows that:

$$u'_1 = e^{2t} - \frac{3}{2}te^{3t}$$
$$u'_2 = 1 + \frac{3}{2}te^t$$

If we recall that $\int te^{nt} = e^{nt} \left(\frac{tn-1}{n^2} \right) + C$, then:

$$u_1 = \int e^{2t} - \frac{3}{2}te^{3t}dt$$

$$= \frac{1}{2}e^{2t} - \frac{3}{2}\left(\frac{3t-1}{9}\right)e^{3t} + C_1$$

$$= \frac{1}{2}e^{2t} - \frac{t}{2}e^{3t} + \frac{1}{6}e^{3t} + C_1$$

$$u_2 = \int 1 + \frac{3}{2} t e^t dt$$
$$= t + \frac{3}{2} (t - 1) e^t + C_2$$

We can now reconstruct \underline{x} :

$$\underline{x} = \Psi(t)\underline{u}(t)
= \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \begin{pmatrix} \frac{1}{2}e^{2t} - \frac{t}{2}e^{3t} + \frac{1}{6}e^{3t} + C_1 \\ t + \frac{3}{2}(t-1)e^t + C_2 \end{pmatrix}
= \begin{pmatrix} \frac{1}{2}e^{-t} - \frac{t}{2} + \frac{1}{6} + C_1e^{-3t} + te^{-t} + \frac{3}{2}(t-1) + C_2e^{-t} \\ -\frac{1}{2}e^{-t} + \frac{t}{2} - \frac{1}{6} - C_1e^{-3t} + te^{-t} + \frac{3}{2}(t-1) + C_2e^{-t} \end{pmatrix}
= \begin{pmatrix} te^{-t} + t - \frac{4}{3} + \frac{1}{2}e^{-t} + C_1e^{-t} + C_2e^{-3t} \\ te^{-t} + 2t - \frac{5}{3} - \frac{1}{2}e^{-t} + C_1e^{-t} - C_2e^{-3t} \end{pmatrix}
= C_1e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} t + \frac{1}{2} \\ t - \frac{1}{2} \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

which is identical to the solution obtain using diagonalisation.

2 Numerical Methods

- 2.1 Euler Method
- 2.2 Errors in ODEs
- 2.3 Higher Order Methods
- 2.4 Multistep Numerical Methods