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1 Nonhomogeneous Linear Systems

e What is a nonhomogeneous linear system?

— a system of ODEs in which the RHS is function of ¢:
2’ =P(t)z+g(t)
e What are the solutions to a nonhomoegeneous linear system?

— the general solution to a nonhomogeneous system is the addition of the general solution to the
homogeneous system and a particular solution to the nonhomogeneous system:

r=xz),+ux,

— to see why:

:P(£h+§p)+g
=Pzr+g

— since we can solve homogeneous systems easily, the key to solving nonhomogeneous systems is
being able to determine particular solutions
1.1 Solving Nonhomogeneous Linear Systems: Diagonalisation
e When can diagonalisation be used to solve a nonhomogeneous system?

— the system has constant coefficients

Pt)=A

— ideally, A should be diagonalisable, but if it isn’t, we will get a system with a matrix defined in
Jordan form, which is also solvable

e How can diagonalisation help find a particular solution to a nonhomogeneous system?

— we consider the system
' = Az +g(t)

assuming A is diagonalisable, we can define a transformation matrix T, with the eigenvectors of

A as column vectors:
T = (§<1> ONES €<n>)

we can define a new variable y via:

z=Ty
— if we use this in the original system:
' = Az +g(t)
= Ty =ATy+g(t)
— y’ :T_lATg—i—T_lg(t)
= Y =T 'ATy+h(t)
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— we are guaranteed that T~ exists, since its column vectors are linearly independent; moreover,
T~ ' AT is a diagonal matrix, composed of the eigenvalues of A

— this is a system that can be solved variable wise, since it is defined by a diagonal matrix (it is
said to be uncoupled):
yi =riyi +hi =y —riyi = h

which can be solved by using an integrating factor e=":¢, leading to:
t
Y = ciet 4+ e”t/ e "%h;(s)ds
to
— once we obtain y, we just get z by using the transformation matrix

— notice, the term c¢;e™* will lead to the general solution of the homogeneous equation, and e”# f:ﬂ e~ "i%h,;(s)ds
corresponds to the particular solution

e What if the constant coefficient matrix is not diagonalisable?

— we can define T using the n eigenvectors and generalised eigenvectors

— the matrix T~ ' AT will be in Jordan form, which can be solved easily (solve one variable at a
time)

1.2 Solving Nonhomogeneous Linear Systems: Undetermined Coefficients
¢ When can undetermined coefficients be used to solve a nonhomogeneous system?

— the system has constant coefficients
Pit)y=A
— the function g(¢) is a linear combination of a polynomial and a complex exponential. In other
words, any g which is:
* a polynomial
* an exponential
* a sinusoid
or a combination of this
¢ How can undetermined coefficients help find a particular solution to a nonhomogeneous
system?
— we assume that z, is of the form of g(t), albeit using unspecified coefficients

— if A is an eigenvalue of A, and g(t) = ue*, then, if A has algebraic multiplicity j, we consider a
particular solution given as a product of a jth degree polynomial and e*t:

. -
(a;27 +a; 127"+ +ag)e™

— typically, we consider each component of g(t) separately, such that:

91(t) 91(t) 0 0

gz (t) 0 ga (t) 0
g(t) = = + +...+

In(t) 0 0 In(t)

and we solve the system for each of the components. Then z, is taken as the sum of all the found
particular solutions.
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1.3 Solving Nonhomogeneous Linear Systems: Variation of Parameters
e When can variation of parameters be used to solve a nonhomogeneous system?
— this is the most general method, so it assumes nothing about the nature of P(t) or g(t)

e How can variation of parameters help find a particular solution to a nonhomogeneous
system?

— we consider a system
2’ = P(t)z+g(t)

— moreover, we assume we have access to a fundamental matrix W (¢) for the homogeneous system

— recall that the general solution to the homogeneous system can be described via:
z, = ¥(l)c

where ¢ corresponds to the constant coefficients of the general solution

— variation of parameters assumes a particular solution of the form:
z, = ¥(t)u(t)

where u(t) is a vector to be found

— we can verify that this is indeed a solution. Firstly, recall that a fundamental matrix solves the
homogeneous system, so:

— next, we differentiate our particular solution

2 = (Pu)
= W'y + P
= PWuy + ¥
=Pz + 9u

— in other words, for x = Yu to satisfy our system, we require:
lIlg/ =g EEN g/ = l:[171g

-1 . . . .
where we know W™~ exists, since its a fundamental matrix

— to find u, we can integrate:
u(t) = Q+/‘II_1(t)g(t)dt

— to find z,, we multiply through by ¥:

=p1

z,=Ct)c+T(t) [ T (s)g(s)dt

Lp
-
where ¢* is any point at which P(t) and g(t) are continuous

e Can variation of parameters be used to solve an IVP?

— assume the initial condition z(t9) = xo

— the general solution will be:



—att= to:
2o =V(tg)e = c=T(t) 'z,

— so the solution to the IVP is:
t
2, = B(0)T(to) Lo + \Il(t)/ T (s)g(s)dt
to
— if we use the special fundamental matrix e“* (given constant coefficients):

t
T, = ey + eAt/ e A%g(s)dt

to -

where we have used the fact that et = W (£)® ()

1.4 Macro Example

Solve the nonhomogeneous system:

The first step is to find the homogeneous solution. For that, we find the eigenvalues and eigenvectors.

For the eigenvalues, we solve the system:
—2—-r 1
1 —2—-r
which results in:

—2—-r 1
=0
1 —2—-r
= (2+7)?-1=0

== r=-1,-3
If 1 = —1, the eigenvector §1 is given by:
-1 1
§=0 = -&4+&=0
1 -1
s0:
1
§ = .
If ro = —3, the eigenvector &, is given by:
11
- &=0 = &G +&=0

Page 5



SO:

Thus, the general solution to the homogeneous system is:

1 ) 1
zp,(t) = cre™? + e 3
-1
1.4.1 Diagonalisation
We define the transformation matrix:
1 1
T =
1 -1
p—— 1 1 1
1 -1
We define a new variable y, which satisfies:
z=Ty
But this results in:
g’ = TflATng T 1g(t)
11 1) [-2 1)\ (1 1 11 1) (2
2\1 —1)\1 -2/ \1 -1/ 2\1 1 3t
, -1 0 1 (2" +3t
0 -3 2 \2et—3t

Thus, we need to solve:

/ —t 3 / —t 3
y1=—y1+e +§t — y1+y1=e +§t

3 3
yé = _3y2 + e_t - §t > ?/2 + 3y2 - e_t — §t
These have integrating factor e' and e3' respectively:

3 d 3
yret +yet =1+ itet = pr (ylet) =1+ itet

3, . d .

2t 3t 3t 2t
t

3 e’ = 7 (yge ) e

yéeBt + 3y263t =e

Integrating both sides with respect to ¢:
—t 3,
y1=e 1+ §te dt

3
Yo = eigt/ezt - §t63tdt

/tent
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We have:

u=t — du=1
ent

nt:} V= —
n

dv=ce

So:

Going back to the above:
—t 3 ¢
yr=e /1 + §te dt

=e! (t + get(t —-1)+ Cl)
3

3
= teit + 5(‘5 — 5 + Cl@it

3
Yo = 673t/62t _ ite?’tdt

1 3 3t—1
(LS (320 s6)

1 3 /3t—-1
= ie_t - = <> +02€_3t

2 9
1 ., 3-9t
— _p ¢t -7 C —3t
26 + 18 + Che
1 ., 1 t
— Ze— - _ C —3t
26 +6 2+ 2€

So:
te t + %t — % + Ciet

I
Il

1t , 1t —3t
3¢ "+ 53T Cee
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From which it follows that:

1 1
g:
1 -1
1 1 te*t—i—%t—%—kclet
1 -1 tel+ 1 — L4 Cre™®

te™t+t— 3+ iet + Cret + Cre™™

te=t 4+ 2t — % — et 4+ Cre7t — Coe™ 3t

1 1 t+1 1 1[4
= Cye ! + Che™ 3 + 2let+ t— =
1 -1 t—1 2 3 \5
1.4.2 TUndetermined Coefficients
We can write g(t) as:
2 . 0
(t) = e "+ t
N 0 3
Thus, our solution must look like the sum of an exponential, and a polynomial of degree 1. However, notice
that » = —1 is an eigenvalue of A, so the exponential will be multiplied by a polynomial of degree 1 (since
r1 = —1 has algebraic multiplicity 1). Thus, we expect a particular solution of the form:

z,=(at+be " +ct+d

where (at+b)e™" corresponds to the exponential part of g(t), and ¢t + d corresponds to the polynomial part.

Since z,, must satisfy:

we can substitute in. However, we can do so separately. Let:
2l = (at +b)e™*

a?) =ct+d

We first consider the exponential part. Differentiating:
eV = —(at +b)e +ae™t = (—at —b+a)e”

If we plug in to the system (considering only the exponential part of g(t):

1 2
(—at —b+a)e " = (at +be " + et

1
= —at—b+a= (at +b) +
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From which we can extract 2 systems, separated by the power of ¢ involved:

a—b= b+ — a—b— = b
1 -2 0 0 1 -2

The first system we recognise as the eigenvector/eigenvalue system, from which we know that a must be

a multiple of & L= . It is important that we consider the multiple, since & , was just a particular
S 1 S

eigenvector choice, but definitely not the only possible solution to the eigenvector problem. By parametrising
a, we will be able to solve the second system. In other words,

Q
Q =
o
For the second system, we have:
-2 1 2
+I)b=a—
1 -2 0
-1 1 a—2
— b =
1 -1 o

Notice, the row vectors of the matrix are multiples of each other (differ by factor of —1). Since the rows are
linearly dependent, it follows that the system will have a solution if the RHS also has this linear dependence.
Thus:

a—2=—-—a = a=1

In other words, the solution of the system must solve:

-1 1 -1
1 -1 1

IS
|

— b2:71+b1

get that:

We can just pick k = 0, as the vector ) will already be included by the general solution. From this, we
&1(01)/ - (

We now consider the polynomial part. Differentiating:



If we plug in to the system (considering only the polynomial part of ¢(t)):

-2 1 0
c= (¢t +d)+ t
1 -2 3

From which we can extract 2 systems, separated by the power of ¢ involved:

-2 1
c= d
1 =2
-2 1 0
0= c+
1 -2 3
Which leads to the equations:
72d1 + dg =C
d1 — 2d2 = C2
—2c1+c3=0
C1 — 262 = -3

We can solve for ¢;, co by multiplying the third equation by 2, and adding it to the fourth equation:

—3c1=—-3 = c¢1=1 .. c=2
Thus, we now just need to solve:
—2d; +dy =1
di — 2dy =2

Applying the same operation as for the ¢’s:
4
_3d1:4 — dl:_g L. d2:_7
Thus, it follows that the particular solution is:

1=ty _, 1 1[4
2—t 2 5

Whilst this solution does not look identical to the one in diagonalisation, had we chosen k = %7 we would’ve
obtained the same particular solution.

1.4.3 Variation of Parameters

We first need to construct a fundamental matrix for the system.
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Assuming a solution of the form x = ¥(¢)u(t), we reach the system:
e 3t e u) 2e~t
—e e ubh 3t

We could solve this system by taking the inverse of the fundamental matrix. However, we can also solve via
row reduction:

e—3t e—t 2€_t
—e73t et 3t
e 3t et 2¢t
—
0 27t |3t+2e?
e 3t et 2¢~t
—
0 et %t + et
e Bt 0 |et— %t
—
0 et %t +et

From which it follows that:

3
/ 2t 3t
= —t
Uy B e
3
/ 1 t t
Uy = + 72 e

If we recall that [te" = e (2251) + C, then:

3
up = /th — 5t63tdt

1 3 (3t—-1
5e2t o 5 <9> €3t+01

1 t 1
_ §e2t—§e3t+ge3t+01

Uy = /1 + gtetdt

3
:t+§(t—1)et+02
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We can now reconstruct z:

z = W(t)u(t)
_ e emt\ [Le — ted 4 led iy
—e 3t et t+3(t—1)e' +Cy

et =L+ i+ Cre 3t ttemt +2(t— 1) + Coe™?

—te Tt L1 —Cre ¥ +te !+ 2(t— 1)+ Coe™?

1 t+3) _, (1 1
+ e "+ t— =
~1 t—1 2 3

which is identical to the solution obtain using diagonalisation.

2 Numerical Methods

2.1 Euler Method

2.2 Errors in ODEs

2.3 Higher Order Methods

2.4 Multistep Numerical Methods
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