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1 Nonhomogeneous Linear Systems

• What is a nonhomogeneous linear system?

– a system of ODEs in which the RHS is function of t:

x′ = P (t)x+ g(t)

• What are the solutions to a nonhomoegeneous linear system?

– the general solution to a nonhomogeneous system is the addition of the general solution to the
homogeneous system and a particular solution to the nonhomogeneous system:

x = xh + xp

– to see why:

x = xh + xp =⇒ x′ = x′h + x′p

=⇒ x′ = x′h + x′p

= Pxh + Pxp + g

= P (xh + xp) + g

= Px+ g

– since we can solve homogeneous systems easily, the key to solving nonhomogeneous systems is
being able to determine particular solutions

1.1 Solving Nonhomogeneous Linear Systems: Diagonalisation

• When can diagonalisation be used to solve a nonhomogeneous system?

– the system has constant coefficients
P (t) = A

– ideally, A should be diagonalisable, but if it isn’t, we will get a system with a matrix defined in
Jordan form, which is also solvable

• How can diagonalisation help find a particular solution to a nonhomogeneous system?

– we consider the system
x′ = Ax+ g(t)

– assuming A is diagonalisable, we can define a transformation matrix T , with the eigenvectors of
A as column vectors:

T =
(
ξ(1) ξ(2) . . . ξ(n)

)
– we can define a new variable y via:

x = T y

– if we use this in the original system:

x′ = Ax+ g(t)

=⇒ T y′ = AT y + g(t)

=⇒ y′ = T−1AT y + T−1g(t)

=⇒ y′ = T−1AT y + h(t)
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– we are guaranteed that T−1 exists, since its column vectors are linearly independent; moreover,
T−1AT is a diagonal matrix, composed of the eigenvalues of A

– this is a system that can be solved variable wise, since it is defined by a diagonal matrix (it is
said to be uncoupled):

y′i = riyi + hi =⇒ y′i − riyi = hi

which can be solved by using an integrating factor e−rit, leading to:

yi = cie
rit + erit

∫ t

t0

e−rishi(s)ds

– once we obtain y, we just get x by using the transformation matrix

– notice, the term cie
rit will lead to the general solution of the homogeneous equation, and erit

∫ t
t0
e−rishi(s)ds

corresponds to the particular solution

• What if the constant coefficient matrix is not diagonalisable?

– we can define T using the n eigenvectors and generalised eigenvectors

– the matrix T−1AT will be in Jordan form, which can be solved easily (solve one variable at a
time)

1.2 Solving Nonhomogeneous Linear Systems: Undetermined Coefficients

• When can undetermined coefficients be used to solve a nonhomogeneous system?

– the system has constant coefficients
P (t) = A

– the function g(t) is a linear combination of a polynomial and a complex exponential. In other
words, any g which is:

∗ a polynomial

∗ an exponential

∗ a sinusoid

or a combination of this

• How can undetermined coefficients help find a particular solution to a nonhomogeneous
system?

– we assume that xp is of the form of g(t), albeit using unspecified coefficients

– if λ is an eigenvalue of A, and g(t) = ueλt, then, if λ has algebraic multiplicity j, we consider a

particular solution given as a product of a jth degree polynomial and eλt:

(ajx
j + aj−1x

j−1 + . . .+ a0)eλt

– typically, we consider each component of g(t) separately, such that:

g(t) =


g1(t)

g2(t)
...

gn(t)

 =


g1(t)

0
...

0

+


0

g2(t)
...

0

+ . . .+


0

0
...

gn(t)


and we solve the system for each of the components. Then xp is taken as the sum of all the found
particular solutions.
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1.3 Solving Nonhomogeneous Linear Systems: Variation of Parameters

• When can variation of parameters be used to solve a nonhomogeneous system?

– this is the most general method, so it assumes nothing about the nature of P (t) or g(t)

• How can variation of parameters help find a particular solution to a nonhomogeneous
system?

– we consider a system
x′ = P (t)x+ g(t)

– moreover, we assume we have access to a fundamental matrix Ψ(t) for the homogeneous system

– recall that the general solution to the homogeneous system can be described via:

xh = Ψ(t)c

where c corresponds to the constant coefficients of the general solution

– variation of parameters assumes a particular solution of the form:

xp = Ψ(t)u(t)

where u(t) is a vector to be found

– we can verify that this is indeed a solution. Firstly, recall that a fundamental matrix solves the
homogeneous system, so:

Ψ(t)′ = P (t)Ψ(t)

– next, we differentiate our particular solution

x′ = (Ψu)
′

= Ψ′u+ Ψu′

= PΨu+ Ψu′

= Px+ Ψu′

– in other words, for x = Ψu to satisfy our system, we require:

Ψu′ = g =⇒ u′ = Ψ−1g

where we know Ψ−1 exists, since its a fundamental matrix

– to find u, we can integrate:

u(t) = c+

∫
Ψ−1(t)g(t)dt

– to find xp, we multiply through by Ψ:

xp = Ψ(t)c+ Ψ(t)

∫ t

t∗
Ψ−1(s)g(s)dt

where t∗ is any point at which P (t) and g(t) are continuous

• Can variation of parameters be used to solve an IVP?

– assume the initial condition x(t0) = x0

– the general solution will be:

xp = Ψ(t)c+ Ψ(t)

∫ t

t0

Ψ−1(s)g(s)dt

Page 4



– at t = t0:
x0 = Ψ(t0)c =⇒ c = Ψ(t0)−1x0

– so the solution to the IVP is:

xp = Ψ(t)Ψ(t0)−1x0 + Ψ(t)

∫ t

t0

Ψ−1(s)g(s)dt

– if we use the special fundamental matrix eAt (given constant coefficients):

xp = eAtx0 + eAt
∫ t

t0

e−Asg(s)dt

where we have used the fact that eAt = Ψ(t)Ψ−1(t0)

1.4 Macro Example

Solve the nonhomogeneous system:

x′ =

−2 1

1 −2

x+

2e−t

3t


The first step is to find the homogeneous solution. For that, we find the eigenvalues and eigenvectors.

For the eigenvalues, we solve the system:−2− r 1

1 −2− r

 ξ = 0

which results in: ∣∣∣∣∣∣−2− r 1

1 −2− r

∣∣∣∣∣∣ = 0

=⇒ (2 + r)2 − 1 = 0

=⇒ r = −1,−3

If r1 = −1, the eigenvector ξ
1

is given by:−1 1

1 −1

 ξ
1

= 0 =⇒ −ξ1 + ξ2 = 0

so:

ξ
1

=

1

1


If r2 = −3, the eigenvector ξ

2
is given by:1 1

1 1

 ξ
2

= 0 =⇒ ξ1 + ξ2 = 0
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so:

ξ
1

=

 1

−1


Thus, the general solution to the homogeneous system is:

xh(t) = c1e
−t

1

1

+ c2e
−3t

 1

−1


1.4.1 Diagonalisation

We define the transformation matrix:

T =

1 1

1 −1


T−1 =

1

2

1 1

1 −1


We define a new variable y, which satisfies:

x = T y

But this results in:

y′ = T−1AT y + T−1g(t)

=⇒ y′ =
1

2

1 1

1 −1

−2 1

1 −2

1 1

1 −1

+
1

2

1 1

1 −1

2e−t

3t


=⇒ y′ =

−1 0

0 −3

 y +
1

2

2e−t + 3t

2e−t − 3t


Thus, we need to solve:

y′1 = −y1 + e−t +
3

2
t =⇒ y′1 + y1 = e−t +

3

2
t

y′2 = −3y2 + e−t − 3

2
t =⇒ y′2 + 3y2 = e−t − 3

2
t

These have integrating factor et and e3t respectively:

y′1e
t + y1e

t = 1 +
3

2
tet =⇒ d

dt

(
y1e

t
)

= 1 +
3

2
tet

y′2e
3t + 3y2e

3t = e2t − 3

2
te3t =⇒ d

dt

(
y2e

3t
)

= e2t − 3

2
te3t

Integrating both sides with respect to t:

y1 = e−t
∫

1 +
3

2
tetdt

y2 = e−3t
∫
e2t − 3

2
te3tdt

We can use integration by parts to compute: ∫
tent
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We have:

u = t =⇒ du = 1

dv = ent =⇒ v =
ent

n

So: ∫
tent = t

ent

n
− 1

n

∫
entdt

= t
ent

n
− ent

n2
+ C

= ent
(
tn− 1

n2

)
+ C

Going back to the above:

y1 = e−t
∫

1 +
3

2
tetdt

= e−t
(
t+

3

2
et(t− 1) + C1

)
= te−t +

3

2
t− 3

2
+ C1e

−t

y2 = e−3t
∫
e2t − 3

2
te3tdt

= e−3t
(

1

2
e2t − 3

2
e3t
(

3t− 1

9

)
+ C2

)
=

1

2
e−t − 3

2

(
3t− 1

9

)
+ C2e

−3t

=
1

2
e−t +

3− 9t

18
+ C2e

−3t

=
1

2
e−t +

1

6
− t

2
+ C2e

−3t

So:

y =


te−t + 3

2 t−
3
2 + C1e

−t

1
2e
−t + 1

6 −
t
2 + C2e

−3t


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From which it follows that:

x =

1 1

1 −1

 y

=

1 1

1 −1

 te−t + 3
2 t−

3
2 + C1e

−t

1
2e
−t + 1

6 −
t
2 + C2e

−3t


=

te−t + 3
2 t−

3
2 + C1e

−t + 1
2e
−t + 1

6 −
t
2 + C2e

−3t

te−t + 3
2 t−

3
2 + C1e

−t − 1
2e
−t − 1

6 + t
2 − C2e

−3t


=

 te−t + t− 4
3 + 1

2e
−t + C1e

−t + C2e
−3t

te−t + 2t− 5
3 −

1
2e
−t + C1e

−t − C2e
−3t


= C1e

−t

1

1

+ C2e
−3t

 1

−1

+

t+ 1
2

t− 1
2

 e−t +

1

2

 t− 1

3

4

5


1.4.2 Undetermined Coefficients

We can write g(t) as:

g(t) =

2

0

 e−t +

0

3

 t

Thus, our solution must look like the sum of an exponential, and a polynomial of degree 1. However, notice
that r = −1 is an eigenvalue of A, so the exponential will be multiplied by a polynomial of degree 1 (since
r1 = −1 has algebraic multiplicity 1). Thus, we expect a particular solution of the form:

xp = (at+ b)e−t + ct+ d

where (at+ b)e−t corresponds to the exponential part of g(t), and ct+d corresponds to the polynomial part.

Since xp must satisfy:

x′ =

−2 1

1 −2

x+

2e−t

3t


we can substitute in. However, we can do so separately. Let:

x(1)p = (at+ b)e−t

x(2)p = ct+ d

We first consider the exponential part. Differentiating:

x(1)
′

p = −(at+ b)e−t + ae−t = (−at− b+ a)e−t

If we plug in to the system (considering only the exponential part of g(t):

(−at− b+ a)e−t =

−2 1

1 −2

 (at+ b)e−t +

2

0

 e−t

=⇒ −at− b+ a =

−2 1

1 −2

 (at+ b) +

2

0


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From which we can extract 2 systems, separated by the power of t involved:

−a =

−2 1

1 −2

 a

a− b =

−2 1

1 −2

 b+

2

0

 =⇒ a− b−

2

0

 =

−2 1

1 −2

 b

The first system we recognise as the eigenvector/eigenvalue system, from which we know that a must be

a multiple of ξ
1

=

1

1

. It is important that we consider the multiple, since ξ
1

was just a particular

eigenvector choice, but definitely not the only possible solution to the eigenvector problem. By parametrising
a, we will be able to solve the second system. In other words,

a =

α
α


For the second system, we have: −2 1

1 −2

+ I

 b = a−

2

0


=⇒

−1 1

1 −1

 b =

α− 2

α


Notice, the row vectors of the matrix are multiples of each other (differ by factor of −1). Since the rows are
linearly dependent, it follows that the system will have a solution if the RHS also has this linear dependence.
Thus:

α− 2 = −α =⇒ α = 1

In other words, the solution of the system must solve:−1 1

1 −1

 b =

−1

1

 =⇒ b2 = −1 + b1

So:

b =

 k

k − 1

 =

 0

−1

+ k

1

1


We can just pick k = 0, as the vector

1

1

 will already be included by the general solution. From this, we

get that:

x(1)
′

p =

−
1

1

 t−

 0

−1

+

1

1

 e−t =⇒ x(1)
′

p =

1− t

2− t

 e−t

We now consider the polynomial part. Differentiating:

x(2)
′

p = c
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If we plug in to the system (considering only the polynomial part of g(t)):

c =

−2 1

1 −2

 (ct+ d) +

0

3

 t

From which we can extract 2 systems, separated by the power of t involved:

c =

−2 1

1 −2

 d

0 =

−2 1

1 −2

 c+

0

3


Which leads to the equations:

−2d1 + d2 = c1

d1 − 2d2 = c2

−2c1 + c2 = 0

c1 − 2c2 = −3

We can solve for c1, c2 by multiplying the third equation by 2, and adding it to the fourth equation:

−3c1 = −3 =⇒ c1 = 1 ∴ c2 = 2

Thus, we now just need to solve:

−2d1 + d2 = 1

d1 − 2d2 = 2

Applying the same operation as for the c’s:

−3d1 = 4 =⇒ d1 = −4

3
∴ d2 = −5

3

Thus, it follows that the particular solution is:

xp =

1− t

2− t

 e−t +

1

2

 t− 1

3

4

5


Whilst this solution does not look identical to the one in diagonalisation, had we chosen k = 1

2 , we would’ve
obtained the same particular solution.

1.4.3 Variation of Parameters

We first need to construct a fundamental matrix for the system.

Ψ(t) =

 e−3t e−t

−e−3t e−t


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Assuming a solution of the form x = Ψ(t)u(t), we reach the system: e−3t e−t

−e−3t e−t

u′1
u′2

 =

2e−t

3t


We could solve this system by taking the inverse of the fundamental matrix. However, we can also solve via
row reduction:  e−3t e−t 2e−t

−e−3t e−t 3t


=⇒

e−3t e−t 2e−t

0 2e−t 3t+ 2e−t


=⇒

e−3t e−t 2e−t

0 e−t 3
2 t+ e−t


=⇒

e−3t 0 e−t − 3
2 t

0 e−t 3
2 t+ e−t



From which it follows that:

u′1 = e2t − 3

2
te3t

u′2 = 1 +
3

2
tet

If we recall that
∫
tent = ent

(
tn−1
n2

)
+ C, then:

u1 =

∫
e2t − 3

2
te3tdt

=
1

2
e2t − 3

2

(
3t− 1

9

)
e3t + C1

=
1

2
e2t − t

2
e3t +

1

6
e3t + C1

u2 =

∫
1 +

3

2
tetdt

= t+
3

2
(t− 1)et + C2
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We can now reconstruct x:

x = Ψ(t)u(t)

=

 e−3t e−t

−e−3t e−t

 1
2e

2t − t
2e

3t + 1
6e

3t + C1

t+ 3
2 (t− 1)et + C2


=

 1
2e
−t − t

2 + 1
6 + C1e

−3t + te−t + 3
2 (t− 1) + C2e

−t

− 1
2e
−t + t

2 −
1
6 − C1e

−3t + te−t + 3
2 (t− 1) + C2e

−t


=

 te−t + t− 4
3 + 1

2e
−t + C1e

−t + C2e
−3t

te−t + 2t− 5
3 −

1
2e
−t + C1e

−t − C2e
−3t


= C1e

−t

1

1

+ C2e
−3t

 1

−1

+

t+ 1
2

t− 1
2

 e−t +

1

2

 t− 1

3

4

5


which is identical to the solution obtain using diagonalisation.

2 Numerical Methods

2.1 Euler Method

2.2 Errors in ODEs

2.3 Higher Order Methods

2.4 Multistep Numerical Methods
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