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1 Fundamental Matrices

1.1 Properties of Fundamental Matrices

• If we have a system x′ = Ax, what is a fundamental matrix for this system?

– a system of ODEs can have many fundamental matrices

– if a system has a fundamental set of solutions x(1)(t), x(2)(t), . . . , x(n)(t), then a fundamental
matrix is:

Ψ(t) =
(
x(1)(t) x(2)(t) . . . , x(n)(t)

)
• What are the properties of the fundamental matrix?

1. it is invertible, since detΨ(t) = W (t) 6= 0

2. if the general solution of x′ = Ax is:

x(t) = c1x
(1)(t) + c2x

(2)(t) + . . .+ cnx
(n)(t)

then:
x(t) = Ψ(t)c

where

c =


c!
c2
...
cn


3. the fundamental matrix also satisfies the system:

Ψ′(t) = AΨ(t)

This is because each column vector in Ψ(t) satisfies the system, so it follows that:

Ψ′(t)ij = AΨ(t)ij

• How can we use a fundamental matrix to specify a particular solution to the system?

– if we have an initial value problem, and we know that x(t) = Ψ(t)c is a general solution, if we
need to satisfy x(t0) = x0, then:

x(t0) = Ψ(t0)c = x0 =⇒ c = Ψ−1(t0)x0

∴ x = Ψ(t)Ψ−1(t0)x0

satisfies the initial value problem

1.2 The Special Fundamental Matrix

• What other types of fundamental matrices exist/are relevant?

– another very relevant fundamental matrix is Φ(t), constructed by using vectors, such that for the
initial condition:

Φ(t0) = I

– this matrix is particularly useful when finding particular solutions, as Φ−1(t0) = I, so it follows
that if x(t0) = x0 is our initial condition, then the particular solution is:

x = Φ(t)x0

Page 2



– thus, solving an initial value problem gets reduced to simple matrix multiplication, whilst if we
use Ψ(t) we would need to compute a matrix inverse

– one can think of Φ(t) as a linear transformation from the initial conditions to the value of the
solution at time t

For example, if we have the system

x′ =

(
1 1
4 1

)
x

with general solution:

x = c1

(
1
2

)
e3t + c2

(
1
−2

)
e−t

We have:

Ψ(t) =

(
e3t e−t

2e3t −2e−t

)
If we want the special fundamental matrix, we need to satisfy:

x(1)(0) =

(
1
0

)

x(2)(0) =

(
0
1

)
Notice, for x(1)(t), we can define c1 = c2 = 1

2 , such that:

x(1)(t) =
1

2

(
1
2

)
e3t +

1

2

(
1
−2

)
e−t =

(
1
2e

3t + 1
2e
−t

e3t − e−t
)

So indeed:

x(1)(0) =

(
1
0

)
Similarly, for x(2)(t), we can define c1 = 1

4 , c2 = − 1
4 , such that:

x(1)(t) =
1

4

(
1
2

)
e3t − 1

4

(
1
−2

)
e−t =

(
1
4e

3t − 1
4e
−t

1
2e

3t + 1
2e
−t

)
So indeed:

x(2)(0) =

(
0
1

)
Thus, our special fundamental matrix is:

Φ(t) =

(
1
2e

3t + 1
2e
−t 1

4e
3t − 1

4e
−t

e3t − e−t 1
2e

3t + 1
2e
−t

)
Indeed, Φ(t) is much harder to express than Ψ(t), but it is easier to use when computing solutions for initial
value problems.
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2 The Matrix Exponential

• How is the exponential of a matrix defined?

– recall, the Taylor Expansion of the exponential function is:

eat =

∞∑
n=0

(at)n

n!

and this power series converges for all t

– we can use this expansion to define the matrix exponential:

eAt =

∞∑
n=0

(At)n

n!

and each element of eAt converges for all t

– alternatively, it can be defined as the matrix which satisfies the differential equation:

d

dt

(
eAt
)

= AeAt

– alternatively, define it as a limit:

eAt = lim
n→∞

(
I +

1

n
A

)n
• How is the matrix exponential related to fundamental matrices?

– notice, from the differential definition of the matrix exponential, it follows that the matrix expo-
nential satisfies the system:

eAt′ = AeAt

– thus, it follows that the matrix exponential must be a fundamental matrix

– moreover, notice that:

eA0 =

∞∑
n=0

(A0)n

n!
= I

– in other words, not only is eAt a fundamental matrix, but it also evaluates to the identity when
t = 0. Thus, by the existence and uniqueness theorem, it must be the case that:

Φ(t) = eAt

– thus, a solution to an IVP can be given by:

x = eAtx0

• How can a matrix exponential be computed from a Fundamental Matrix?

– we can express a particular solution to our system via:

x = Ψ(t)Ψ−1(0)x0

or via:
x = eAtx0

From which it follows that:
eAt = Ψ(t)Ψ−1(0)
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– notice that if B is a matrix, then Ψ(t)B will also be a fundamental matrix:

d

dt
(Ψ(t)B) = Ψ′(t)B

= AΨ(t)B

= A(Ψ(t)B)

3 Matrix Diagonalisation

• Why are diagonal matrices desirable?

1. the determinant of a diagonal matrix is the product of its entries in the main diagonal

2. systems defined by a diagonal matrix are immediately solvable (can just “read off” the eigenvalues
from the diagonal)

3. if:

A =


a11 0 0 . . . 0
0 a22 0 . . . 0
...

...
. . .

... 0
0 0 0 . . . ann


then:

Ak =


ak11 0 0 . . . 0
0 ak22 0 . . . 0
...

...
. . .

... 0
0 0 0 . . . aknn


4. it A is a diagonal matrix, its matrix exponential is just:

diag(eA11 , eA22 , . . . , eAnn)

To see why, we can use (3), alongside the Taylor series expansion, and notice that at the diagonal
entries we will just have the Taylor expansion of the exponential.

• How can one turn a matrix A into a diagonal matrix?

– a matrix is diagonalisable if and only if for each eigenvalue, its algebraic multiplicity is equal to
its geometric multiplicity

– if the above holds, then we can define 2 matrices T and D, such that:

T−1AT = D

where T is an invertible matrix, and D is a diagonal matrix

– in particular:

∗ T is the matrix we obtain by using the n linearly independent eigenvectors of A as columns

∗ D is the matrix we obtain by using the eigenvalues as the entries of the diagonal

– to see how the formula works, let:

T =
(
v1 v2 . . . vn

)

D =


λ1 0 0 . . . 0
0 λ1 0 . . . 0
...

...
. . .

... 0
0 0 0 . . . λn


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But then:

AT = A
(
v1 v2 . . . vn

)
=
(
Av1 Av2 . . . Avn

)
=
(
λ1v1 λ1v2 . . . λ1vn

)

TD =
(
v1 v2 . . . vn

)

λ1 0 0 . . . 0
0 λ1 0 . . . 0
...

...
. . .

... 0
0 0 0 . . . λn

 =
(
λ1v1 λ1v2 . . . λ1vn

)
Thus, it follows that:

AT = TD =⇒ T−1AT = D

• How can we use diagonalisation to compute the matrix exponential?

– if A is diagonalisable, then:

T−1AT = D =⇒ A = TDT−1

from which it follows that:

eAt = T eDtT−1 = T diag(er1t, er2t, . . . , ernt)T−1

– to see why eAt = T eDtT−1, we use the fact that:

(TDT−1)n = TDT−1TDT−1TDT−1 . . .TDT−1 = TDnT−1

so in particular:

eAt = eTDT−1t

=

∞∑
n=0

(TDT−1t)n

n!

=

∞∑
n=0

TDnT−1tn

n!

= T

∞∑
n=0

Dntn

n!
T−1

= T eDtT−1

• How can we use diagonalisation to find a fundamental matrix for a system of ODEs?

– if we have the system x′ = Ax, one way of solving it is by assuming the existence of a solution of
the form x = ξert

– we can reach solutions by using diagonalisation

– lets assume that A has n linearly independent eigenvectors

– define x = T y, where T is the matrix of eigenvectors (we can think of T as leading to a change
of basis)

– using this in the system:

x′ = Ax

=⇒ T y′ = AT y

=⇒ y′ = T−1AT y

=⇒ y′ = Dy
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But this is very easy to solve, as we have a system of n equations of the form:

y′i = riyi

which has solution yi = erit

– thus, a fundamental matrix for the system y′ = Dy is just diag(er1t, er2t, . . . , ernt) = eDt

– since x = T y the fundamental matrix for the system x′ = Ax will be the product of T and the
fundamental matrix for the system with y, so:

Ψ(t) = T eDt =
(
ξ1e

r1t ξ2e
r2t . . . ξne

rnt
)

which is precisely what we expected

4 Solving Systems With Repeated Eigenvalues

• Can we use methods from linear ODEs with repeated roots to solve systems with repeated
eigenvalues?

– when we had a differential equation:

aÿ + bẏ + cy = 0

we considered the characteristic polynomial:

ar2 + br + c = 0

If this had a repeated root r, then a basis for solutions was given by:

ert tert

– this does not work for systems of ODEs. Consider the system x′ = Ax. Assume we have found
a solution x(2) = ξert. Consider x(2) = ξtert. Plugging in to the equation:

ξ(ert + rtert) = Aξtert

But then, using t as a “coefficient”, and matching coefficients, we must satisfy:

tAξ = rtξ

ξert = 0

The latter implies ξ = 0, but we require non-zero eigenvectors. Thus, ξtert doesn’t solve the
system.

• What is the general form for a system of ODEs with repeated eigenvalues?

– assume x′ = Ax has repeated eigenvalue r, and we have found that x(1) = ξert is a solution

– a second solution can be found by considering:

x(2)(t) = ξtert + ηert

– we can confirm this by plugging it into the system:

ξert + ξrtert + ηrert = A(ξtert + ηert)

=⇒ ξ + ξrt+ ηr = A(ξt+ η)

=⇒ (ξ + ηr) + ξrt = tAξ + Aη
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Thus, we must satisfy:
Aξ = ξr

Aη = ξ + ηr =⇒ (A− rI)η = ξ

The first is our standard eigenvalue equation, which we know has a solution (x(1)). The second
equation is one that we are guaranteed to have a solution for.

– the vector η is known as the generalised eigenvector of matrix A

5 Jordan Forms

• Do repeated eigenvalues affect Fundamental Matrices?

– no, Fundamental Matrices can be calculated in the same way, as we are capable of producing n
linearly independent solutions to the system

• Can we diagonalise the matrices with repeated eigenvalues?

– only if the algebraic multiplicity is the same as the geometric multiplicity

– if we have more eigenvalues than eigenvectors, the next best thing after diagonalisation is to put
it in Jordan Form, with eigenvalues in the main diagonal, ones in positions above the main
diagonal, and zeros elsewhere

• How can Jordan Form matrices be constructed?

– for the transformation matrix T , since we no longer have n linearly independent eigenvectors, we
must make use of the generalised eigenvectors, η

– then, the transformation will be:
T−1AT = J

where J is our matrix in jordan form. For example,

J =

(
2 1
0 2

)
is the Jordan Form for a matrix A with repeated eigenvalue r = 2

– from linear algebra, every matrix can be transformed into a diagonal matrix, or into a Jordan
form

– as in the case above, we can also use the transformation x = T y

• How useful are Jordan forms?

– matrix systems with Jordan Form are particularly simple to solve. For example:

y′ =

(
λ 1
0 λ

)
y

is equivalent to the system:
y′2 = λy2

y′1 = λy1 + y2

The first equation is a standard first order ODE which can be solved. Then, the solution can be
used in the second equation to find y1.

• What is the format of a exponential matrix in Jordan Form?
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– let:

Jλ =

(
λ 1
0 λ

)
Then:

eJλt =

(
eλt teλt

0 eλt

)
– to see why, notice that:

Jλ = diag(λ, λ) +

(
0 1
0 0

)
– most importantly, these 2 components commute. For matrix exponentials,

eA+B = eAeB ⇐⇒ AB = BA

– thus, it follows that:

eJλt = ediag(λt,λt)e

0 1
0 0

t
– lastly, notice: (

0 1
0 0

)2

=

(
0 0
0 0

)
so from the series expansion, it follows that:

e

0 t
0 0


= I +

(
0 t
0 0

)
=

(
1 t
0 1

)
– so finally:

eJλt =

(
eλt 0
0 eλt

)(
1 t
0 1

)
=

(
eλt teλt

0 eλt

)
• How can we generalise for cases in which n > 2?

– if we have a 3 × 3 system, with an eigenvalue r with algebraic multiplicity 3 and geometric
multiplicity 1, then:

x(1)(t) = ξert

x(2)(t) = tξert + ηert, ξ = (A− rI)η

x(3)(t) =
t2

2
ξert + tηert + ζert, η = (A− rI)ζ

– if we have a 3 × 3 system, with an eigenvalue r with algebraic multiplicity 3 and geometric
multiplicity 2, then:

x(1)(t) = ξ
1
ert

x(2)(t) = ξ
2
ert

x(3)(t) = t(aξ
1

+ bξ
2
)ert + ηert, aξ

1
+ bξ

2
= (A− rI)η
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6 Exercises

1. Find a fundamental matrix for the system:

x′ =

(
1 1
4 1

)
x

Assuming a solution of the form x = ξert, we consider the system:(
1− r 1

4 1− r

)
ξ = 0

The determinant is: ∣∣∣∣1− r 1
4 1− r

∣∣∣∣ = (1− r)2 − 4

=⇒ r = −1, 3

Let r1 = −1, then: (
2 1
4 2

)
ξ
1

= 0

leads to:

2ξ1 + ξ2 = 0 =⇒ ξ =

(
1
−2

)
Let r1 = 3, then: (

−2 1
4 −2

)
ξ
2

= 0

leads to:

−2ξ1 + ξ2 = 0 =⇒ ξ =

(
1
2

)
Thus, we get 2 solutions:

x(1)(t) =

(
e−t

−2e−t

)
x(2)(t) =

(
e3t

2e3t

)

So a fundamental matrix for the system is:

Ψ(t) =

(
e−t e3t

−2e−t 2e3t

)
Notice, the special fundamental matrix for this system was already discussed above in Section 1.2.

2. Consider the matrix:

A =

(
1 1
4 1

)
Find the similarity transformation matrix T and show that A can be diagonalised
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From the exercise above, we know that:

r1 = −1 =⇒ ξ
1

=

(
1
−2

)
r2 = 3 =⇒ ξ

2
=

(
1
2

)
Thus, the transformation matrix is:

T =

(
1 1
2 −2

)
Recall, the inverse of a 2× 2 matrix X =

(
a b
c d

)
is:

1

detX

(
d −b
−c a

)
So it follows that:

T−1 = −1

4

(
−2 −1
−2 1

)
Since the algebraic multiplicity is the same as the geometric multiplicity, and T has an inverse, we can
diagonalise A (otherwise explicitly comput T−1AT and ensure it gives a diagonal matrix).

3. Consider once again the system of differential equations x′ = Ax, where:

A =

(
1 1
4 1

)
Using the transformation x = T y where:

T =

(
1 1
2 −2

)
the above system reduces to the diagonal system:

y′ =

(
3 0
0 −1

)
y

Obtain a fundamental matrix for the system involving y, and then transform it to obtain
a fundamental matrix for the original system.

The exponential of the diagonal matrix gives:

Q =

(
e3t 0
0 e−t

)
Moreover, we know that Ψ(t) = TQ, so:

Ψ(t) =

(
1 1
2 −2

)(
e3t 0
0 e−t

)
=

(
e3t e−t

2e3t −2e−t

)
which corresponds with the fundamental matrix we obtained above.
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4. Find a fundamental set of solutions of:

x′ =

(
1 −1
1 3

)
x

We compute the eigenvalues of the system:∣∣∣∣1− r −1
1 3− r

∣∣∣∣ = (1− r)(3− r) + 1

=⇒ r2 − 4r + 4 = 0

=⇒ (r − 2)2 = 0

∴ r = 2

Thus, we have an eigenvalue with algebraic multiplicity 2. To compute its corresponding eigenvector:(
−1 −1
1 1

)
ξ = 0 =⇒ ξ =

(
1
−1

)
Since r = 2 has geometric multiplicity 1, we seek an additional solution of the form:

x(2)(t) = ξte2t + ηe2t

For this, we seek to solve:

(A− 2I)η = ξ =

(
1
−1

)
This requires −η1 − η2 = 1, so if we parametrise via η1 = s, then η2 = −s− 1, so:

η =

(
s

−s− 1

)
=

(
0
−1

)
+ s

(
1
−1

)
Thus, the general solution is:

x = c1e
2t

(
1
−1

)
+ c2e

2t

(
t

(
1
−1

)
+

(
0
−1

)
+ s

(
1
−1

))

But notice the vector

(
1
−1

)
appears twice, so the second one can be ignored by setting s = 0:

x = c1e
2t

(
1
−1

)
+ c2e

2t

(
t

(
1
−1

)
+

(
0
−1

))
5. Derive a Fundamental Matrix, the Special Fundamental Matrix and a Jordan Form for the

system:

x′ =

(
1 −1
1 3

)
x

Verify that we can re-derive a Fundamental Matrix from the Jordan Form

We computed the fundamental set of solution above, so:

Ψ(t) =

(
e2t te2t

−e2t −te2t − e2t
)

= e2t
(

1 t
−1 −t− 1

)
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For the special fundamental matrix, we recall that Φ(t) = Ψ(t)Ψ−1(t), so:

Ψ(0) =

(
1 0
−1 −1

)
=⇒ Ψ−1(0) =

(
1 0
−1 −1

)
So:

Φ(t) = e2t
(

1 t
−1 −t− 1

)(
1 0
−1 −1

)
= e2t

(
1− t −t
t 1 + t

)
Alternatively, we can use the exponential definition. Define:

T =

(
1 0
−1 −1

)

T−1 =

(
1 0
−1 −1

)
J =

(
2 1
0 2

)
Then:

eAt = T eJtT−1

=

(
1 0
−1 −1

)(
e2t te2t

0 e2t

)(
1 0
−1 −1

)
=

(
e2t te2t

−e2t −te2t − e2t
)(

1 0
−1 −1

)
= e2t

(
1 t
−1 −t− 1

)(
1 0
−1 −1

)
= e2t

(
1− t −t
t 1 + t

)
= Φ(t)

as expected.

Moreover, notice that we have confirmed Ψ(t) = T eJt, in the calculation above, and thus, we confirm
that we can go to Ψ(t) using the Jordan Form J .

6. Derive the Special Fundamental Matrix for the system:

x′ =

(
1 2
0 3

)
x

There are 2 ways to do this: either compute a fundamental matrix, or compute the matrix exponential.
Either way, we require the eigenvalues and eigenvectors of the matrix

For the eigenvalues: ∣∣∣∣1− r 2
0 3− r

∣∣∣∣ = (1− r)(3− r) = 0

=⇒ r = 1, 3

If r1 = 1, then consider: (
0 2
0 2

)
ξ = 0
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from which it follows that:

ξ =

(
1
0

)
If r1 = 3, then consider: (

−2 2
0 0

)
ξ = 0

from which it follows that:

ξ =

(
1
1

)
Thus, the solutions are:

x(1)(t) =

(
et

0

)
x(2)(t) =

(
e3t

e3t

)
Hence, a fundamental matrix will be:

Ψ(t) =

(
et e3t

0 e3t

)
Recall, Φ(t) = Ψ(t)Ψ−1(0). Thus:

Ψ(0) =

(
1 1
0 1

)
=⇒ Ψ−1(0) =

(
1 −1
0 1

)
So:

Φ(t) =

(
et e3t

0 e3t

)(
1 −1
0 1

)
=

(
et e3t − et
0 e3t

)
Alternatively, we can use diagonalisation. Let:

A =

(
1 2
0 3

)

T =

(
1 1
0 1

)
T−1 =

(
1 −1
0 1

)
D =

(
1 0
0 3

)
Thus:

Φ(t) = eAt

= T eDtT−1

=

(
1 1
0 1

)(
et 0
0 e3t

)(
1 −1
0 1

)
=

(
et e3t

0 e3t

)(
1 −1
0 1

)
=

(
et e3t − et
0 e3t

)
as required.
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7. Solve the system:

x′ =

(
3 1
−4 −1

)
x

We first find the eigenvalues: ∣∣∣∣3− r 1
−4 −1− r

∣∣∣∣ = −(3− r)(1 + r) + 4

=⇒ −(3 + 2r − r2) + 4 = 0

=⇒ r2 − 2r + 1 = 0

=⇒ (r − 1)2 = 0

∴ r = 1

Thus, the eigenvalue 1 has algebraic multiplicity 2. We determine its corresponding eigenvector:(
2 1
−4 −2

)
ξ = 0 =⇒ 2ξ1 + ξ2 = 0

Thus, it follows that:

ξ =

(
1
−2

)
So a solution to the system:

x(1)(t) = et
(

1
−2

)
Since r = 1 has geometric multiplicity 1, we require another solution. This shall be of the form:

x(2) = et
(
t

(
1
−2

)
+ η

)
where η satisfies: (

2 1
−4 −2

)
η =

(
1
−2

)
=⇒ 2η1 + η2 = 1

So then:

η =

(
s

1− 2s

)
=

(
0
1

)
+ s

(
1
−2

)
We can choose s = 0, so that:

η =

(
0
1

)
And so, the general solution becomes:

x = et
(
c1

(
1
−2

)
+ c2

(
t

(
1
−2

)
+

(
0
1

)))
8. Solve the system:

x′ =

 5 −3 −2
8 −5 −4
−4 3 3

x
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The eigenvalues are given by:∣∣∣∣∣∣
5− r −3 −2

8 −5− r −4
−4 3 3− r

∣∣∣∣∣∣ = (5− r)
∣∣∣∣−5− r −4

3 3− r

∣∣∣∣+ 3

∣∣∣∣ 8 −4
−4 3− r

∣∣∣∣− 2

∣∣∣∣ 8 −5− r
−4 3

∣∣∣∣
= (5− r) [−(5 + r)(3− r) + 12] + 3 [24− 8r − 16]− 2 [24− 4(5 + r)]]

= r3 − 3r2 + 3r − 1

∴ (r − 1)3 = 0 =⇒ r = 1

r = 1 has algebraic multiplicity 3. We now compute the corresponding eigenvector: 4 −3 −2
8 −6 −4
−4 3 2

 ξ = 0 =⇒ 4ξ1 − 3ξ2 − 2ξ3 = 0

If we parametrise via s = ξ1 and t = ξ2, it follows that:

ξ =

 s
t

2s− 3
2 t


From which we obtain 2 eigenvectors:

ξ
1

=

1
0
2


ξ
2

=

 0
2
−3


Since the geometric multiplicity is 2, we are missing one solution. In particular, we seek a solution of
the form:

x(3)(t) = et

t
a
1

0
2

+ b

 0
2
−3

+ η


where η satsifies:  4 −3 −2

8 −6 −4
−4 3 2

 η = a

1
0
2

+ b

 0
2
−3

 =

 a
2b

2a− 3b


Notice, the rows of the matrix are multiples of each other (×2, ×−1), so the elements of the right vector
must also be related in this way. Thus:

2a = 2b =⇒ a = b

a = b & a = −(2a− 3b) =⇒ a = a

Thus, the system is always satisfied, so long as a = b, so we can pick a = b = 1, which leads to: 4 −3 −2
8 −6 −4
−4 3 2

 η =

 1
2
−1

 =⇒ 4η1 − 3η2 − 2η3 = 1

(Note that we could have reached values of a, b by using EROs) Thus, we get:
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η =

1
1
0


Hence, the general solution is:

x(t) = et

c1
1

0
2

+ c2

 0
2
−3

+ c3t

1
0
2

+

 0
2
−3

+

1
1
0


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