${\bf Honours\ Differential\ Equations\ -\ Week\ 2\ -\ Fundamental\ Matrices} \\ {\bf and\ Repeated\ Eigenvalues}$

Antonio León Villares

October 2021

Contents

1	Fundamental Matrices	2
	1.1 Properties of Fundamental Matrices	2
	1.2 The Special Fundamental Matrix	2
2	The Matrix Exponential	4
3	Matrix Diagonalisation	5
4	Solving Systems With Repeated Eigenvalues	7
5	Jordan Forms	8
6	Exercises	10

1 Fundamental Matrices

1.1 Properties of Fundamental Matrices

- If we have a system $\underline{x}' = A\underline{x}$, what is a fundamental matrix for this system?
 - a system of ODEs can have many fundamental matrices
 - if a system has a fundamental set of solutions $\underline{x}^{(1)}(t), \underline{x}^{(2)}(t), \dots, \underline{x}^{(n)}(t)$, then a fundamental matrix is:

$$\mathbf{\Psi}(t) = \left(\underline{x}^{(1)}(t) \ \underline{x}^{(2)}(t) \ \dots, \underline{x}^{(n)}(t)\right)$$

- What are the properties of the fundamental matrix?
 - 1. it is invertible, since $det \Psi(t) = W(t) \neq 0$
 - 2. if the general solution of $\underline{x}' = A\underline{x}$ is:

$$\underline{x}(t) = c_1 \underline{x}^{(1)}(t) + c_2 \underline{x}^{(2)}(t) + \dots + c_n \underline{x}^{(n)}(t)$$

then:

$$\underline{x}(t) = \Psi(t)\underline{c}$$

where

$$\underline{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

3. the fundamental matrix also satisfies the system:

$$\Psi'(t) = A\Psi(t)$$

This is because each column vector in $\Psi(t)$ satisfies the system, so it follows that:

$$\Psi'(t)_{ij} = A\Psi(t)_{ij}$$

- How can we use a fundamental matrix to specify a particular solution to the system?
 - if we have an initial value problem, and we know that $\underline{x}(t) = \Psi(t)\underline{c}$ is a general solution, if we need to satisfy $\underline{x}(t_0) = \underline{x}_0$, then:

$$\underline{x}(t_0) = \underline{\Psi}(t_0)\underline{c} = \underline{x_0} \implies \underline{c} = \underline{\Psi}^{-1}(t_0)\underline{x_0}$$

$$\therefore \underline{x} = \underline{\Psi}(t)\underline{\Psi}^{-1}(t_0)\underline{x_0}$$

satisfies the initial value problem

1.2 The Special Fundamental Matrix

- What other types of fundamental matrices exist/are relevant?
 - another very relevant fundamental matrix is $\Phi(t)$, constructed by using vectors, such that for the initial condition:

$$\Phi(t_0) = \mathbb{I}$$

- this matrix is particularly useful when finding particular solutions, as $\Phi^{-1}(t_0) = \mathbb{I}$, so it follows that if $\underline{x}(t_0) = \underline{x}_0$ is our initial condition, then the particular solution is:

$$\underline{x} = \mathbf{\Phi}(t)\underline{x}_0$$

- thus, solving an initial value problem gets reduced to simple matrix multiplication, whilst if we use $\Psi(t)$ we would need to compute a matrix inverse
- one can think of $\Phi(t)$ as a linear transformation from the initial conditions to the value of the solution at time t

For example, if we have the system

$$\underline{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \underline{x}$$

with general solution:

$$\underline{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

We have:

$$\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

If we want the special fundamental matrix, we need to satisfy:

$$\underline{x}^{(1)}(0) = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$\underline{x}^{(2)}(0) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Notice, for $x^{(1)}(t)$, we can define $c_1 = c_2 = \frac{1}{2}$, such that:

$$\underline{x}^{(1)}(t) = \frac{1}{2} \begin{pmatrix} 1\\2 \end{pmatrix} e^{3t} + \frac{1}{2} \begin{pmatrix} 1\\-2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t}\\e^{3t} - e^{-t} \end{pmatrix}$$

So indeed:

$$\underline{x}^{(1)}(0) = \begin{pmatrix} 1\\0 \end{pmatrix}$$

Similarly, for $x^{(2)}(t)$, we can define $c_1 = \frac{1}{4}$, $c_2 = -\frac{1}{4}$, such that:

$$\underline{x}^{(1)}(t) = \frac{1}{4} \begin{pmatrix} 1\\2 \end{pmatrix} e^{3t} - \frac{1}{4} \begin{pmatrix} 1\\-2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t}\\ \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{pmatrix}$$

So indeed:

$$\underline{x}^{(2)}(0) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Thus, our special fundamental matrix is:

$$\Phi(t) = \begin{pmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} & \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} \\ e^{3t} - e^{-t} & \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{pmatrix}$$

Indeed, $\Phi(t)$ is much harder to express than $\Psi(t)$, but it is easier to use when computing solutions for initial value problems.

2 The Matrix Exponential

• How is the exponential of a matrix defined?

- recall, the Taylor Expansion of the exponential function is:

$$e^{at} = \sum_{n=0}^{\infty} \frac{(at)^n}{n!}$$

and this power series converges for all t

- we can use this expansion to define the matrix exponential:

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}t)^n}{n!}$$

and each element of e^{At} converges for all t

- alternatively, it can be defined as the matrix which satisfies the differential equation:

$$\frac{d}{dt}\left(e^{\mathbf{A}t}\right) = \mathbf{A}e^{\mathbf{A}t}$$

- alternatively, define it as a limit:

$$e^{\mathbf{A}t} = \lim_{n \to \infty} \left(\mathbb{I} + \frac{1}{n} \mathbf{A} \right)^n$$

How is the matrix exponential related to fundamental matrices?

notice, from the differential definition of the matrix exponential, it follows that the matrix exponential satisfies the system:

$$e^{\mathbf{A}t\prime} = \mathbf{A}e^{\mathbf{A}t}$$

- thus, it follows that the matrix exponential must be a **fundamental matrix**
- moreover, notice that:

$$e^{\mathbf{A}0} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}0)^n}{n!} = \mathbb{I}$$

– in other words, not only is e^{At} a fundamental matrix, but it also evaluates to the identity when t=0. Thus, by the existence and uniqueness theorem, it must be the case that:

$$\Phi(t) = e^{At}$$

- thus, a solution to an IVP can be given by:

$$\underline{x} = e^{\mathbf{A}t}\underline{x}_0$$

• How can a matrix exponential be computed from a Fundamental Matrix?

– we can express a particular solution to our system via:

$$\underline{x} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0)\underline{x}_0$$

or via:

$$\underline{x} = e^{\mathbf{A}t}\underline{x}_0$$

From which it follows that:

$$e^{\mathbf{A}t} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0)$$

- notice that if **B** is a matrix, then $\Psi(t)\mathbf{B}$ will also be a fundamental matrix:

$$\begin{split} \frac{d}{dt} \left(\boldsymbol{\Psi}(t) \boldsymbol{B} \right) &= \boldsymbol{\Psi}'(t) \boldsymbol{B} \\ &= \boldsymbol{A} \boldsymbol{\Psi}(t) \boldsymbol{B} \\ &= \boldsymbol{A} (\boldsymbol{\Psi}(t) \boldsymbol{B}) \end{split}$$

3 Matrix Diagonalisation

- Why are diagonal matrices desirable?
 - 1. the determinant of a diagonal matrix is the product of its entries in the main diagonal
 - 2. systems defined by a diagonal matrix are immediately solvable (can just "read off" the eigenvalues from the diagonal)
 - 3. if:

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

then:

$$m{A}^k = egin{pmatrix} a_{11}^k & 0 & 0 & \dots & 0 \ 0 & a_{22}^k & 0 & \dots & 0 \ dots & dots & \ddots & dots & 0 \ 0 & 0 & 0 & \dots & a_{nn}^k \end{pmatrix}$$

4. it A is a diagonal matrix, its matrix exponential is just:

$$diag(e^{A_{11}}, e^{A_{22}}, \dots, e^{A_{nn}})$$

To see why, we can use (3), alongside the Taylor series expansion, and notice that at the diagonal entries we will just have the Taylor expansion of the exponential.

• How can one turn a matrix A into a diagonal matrix?

- a matrix is *diagonalisable* if and only if for each eigenvalue, its algebraic multiplicity is equal to its geometric multiplicity
- if the above holds, then we can define 2 matrices T and D, such that:

$$T^{-1}AT = D$$

where T is an invertible matrix, and D is a diagonal matrix

- in particular:
 - * T is the matrix we obtain by using the n linearly independent eigenvectors of A as columns
 - * D is the matrix we obtain by using the eigenvalues as the entries of the diagonal
- to see how the formula works, let:

$$T = \begin{pmatrix} \underline{v}_1 & \underline{v}_2 & \dots & \underline{v}_n \end{pmatrix}$$

$$\boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

But then:

$$\boldsymbol{AT} = \boldsymbol{A} \begin{pmatrix} \underline{v}_1 & \underline{v}_2 & \dots & \underline{v}_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{A}\underline{v}_1 & \boldsymbol{A}\underline{v}_2 & \dots & \boldsymbol{A}\underline{v}_n \end{pmatrix} = \begin{pmatrix} \lambda_1\underline{v}_1 & \lambda_1\underline{v}_2 & \dots & \lambda_1\underline{v}_n \end{pmatrix}$$

$$\boldsymbol{TD} = \begin{pmatrix} \underline{v}_1 & \underline{v}_2 & \dots & \underline{v}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1\underline{v}_1 & \lambda_1\underline{v}_2 & \dots & \lambda_1\underline{v}_n \end{pmatrix}$$

Thus, it follows that:

$$AT = TD \implies T^{-1}AT = D$$

- How can we use diagonalisation to compute the matrix exponential?
 - if \boldsymbol{A} is diagonalisable, then:

$$T^{-1}AT = D \implies A = TDT^{-1}$$

from which it follows that:

$$e^{\mathbf{A}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1} = \mathbf{T}diaq(e^{r_1t}, e^{r_2t}, \dots, e^{r_nt})\mathbf{T}^{-1}$$

- to see why $e^{\mathbf{A}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}$, we use the fact that:

$$(TDT^{-1})^n = TDT^{-1}TDT^{-1}TDT^{-1} \dots TDT^{-1} = TD^nT^{-1}$$

so in particular:

$$\begin{split} e^{\mathbf{A}t} &= e^{\mathbf{T}D\mathbf{T}^{-1}t} \\ &= \sum_{n=0}^{\infty} \frac{(\mathbf{T}D\mathbf{T}^{-1}t)^n}{n!} \\ &= \sum_{n=0}^{\infty} \frac{\mathbf{T}D^n\mathbf{T}^{-1}t^n}{n!} \\ &= \mathbf{T}\sum_{n=0}^{\infty} \frac{D^nt^n}{n!}\mathbf{T}^{-1} \\ &= \mathbf{T}e^{Dt}\mathbf{T}^{-1} \end{split}$$

- How can we use diagonalisation to find a fundamental matrix for a system of ODEs?
 - if we have the system $\underline{x}' = A\underline{x}$, one way of solving it is by assuming the existence of a solution of the form $\underline{x} = \xi e^{rt}$
 - we can reach solutions by using **diagonalisation**
 - lets assume that \boldsymbol{A} has n linearly independent eigenvectors
 - define $\underline{x} = T\underline{y}$, where T is the matrix of eigenvectors (we can think of T as leading to a change of basis)
 - using this in the system:

$$\underline{x}' = A\underline{x} \\
\Longrightarrow T\underline{y}' = AT\underline{y} \\
\Longrightarrow \underline{y}' = T^{-1}AT\underline{y} \\
\Longrightarrow \underline{y}' = D\underline{y}$$

But this is very easy to solve, as we have a system of n equations of the form:

$$y_i' = r_i y_i$$

which has solution $y_i = e^{r_i t}$

- thus, a fundamental matrix for the system y' = Dy is just $diag(e^{r_1t}, e^{r_2t}, \dots, e^{r_nt}) = e^{Dt}$
- since $\underline{x} = T\underline{y}$ the fundamental matrix for the system $\underline{x}' = A\underline{x}$ will be the product of T and the fundamental matrix for the system with y, so:

$$\Psi(t) = Te^{Dt} = \begin{pmatrix} \underline{\xi_1}e^{r_1t} & \underline{\xi_2}e^{r_2t} & \dots & \underline{\xi_n}e^{r_nt} \end{pmatrix}$$

which is precisely what we expected

4 Solving Systems With Repeated Eigenvalues

- Can we use methods from linear ODEs with repeated roots to solve systems with repeated eigenvalues?
 - when we had a differential equation:

$$a\ddot{y} + b\dot{y} + cy = 0$$

we considered the characteristic polynomial:

$$ar^2 + br + c = 0$$

If this had a repeated root r, then a basis for solutions was given by:

$$e^{rt}$$
 ter^{r}

– this does **not** work for systems of ODEs. Consider the system $\underline{x}' = A\underline{x}$. Assume we have found a solution $\underline{x}^{(2)} = \underline{\xi} e^{rt}$. Consider $\underline{x}^{(2)} = \underline{\xi} t e^{rt}$. Plugging in to the equation:

$$\underline{\xi}(e^{rt} + rte^{rt}) = \mathbf{A}\underline{\xi}te^{rt}$$

But then, using t as a "coefficient", and matching coefficients, we must satisfy:

$$t \pmb{A} \xi = r t \xi$$

$$\xi e^{rt} = 0$$

The latter implies $\underline{\xi} = \underline{0}$, but we require non-zero eigenvectors. Thus, $\underline{\xi}te^{rt}$ doesn't solve the system.

- What is the general form for a system of ODEs with repeated eigenvalues?
 - assume $\underline{x}' = A\underline{x}$ has repeated eigenvalue r, and we have found that $\underline{x}^{(1)} = \xi e^{rt}$ is a solution
 - a second solution can be found by considering:

$$\underline{x}^{(2)}(t) = \underline{\xi} t e^{rt} + \underline{\eta} e^{rt}$$

- we can confirm this by plugging it into the system:

Thus, we must satisfy:

$$\begin{split} \pmb{A}\underline{\xi} &= \underline{\xi} r \\ \pmb{A} \underline{\eta} &= \xi + \eta r \implies (\pmb{A} - r \mathbb{I}) \underline{\eta} = \xi \end{split}$$

The first is our standard eigenvalue equation, which we know has a solution ($\underline{x}^{(1)}$). The second equation is one that we are **guaranteed** to have a solution for.

- the vector η is known as the **generalised eigenvector** of matrix A

5 Jordan Forms

- Do repeated eigenvalues affect Fundamental Matrices?
 - no, Fundamental Matrices can be calculated in the same way, as we are capable of producing n linearly independent solutions to the system
- Can we diagonalise the matrices with repeated eigenvalues?
 - only if the algebraic multiplicity is the same as the geometric multiplicity
 - if we have more eigenvalues than eigenvectors, the next best thing after diagonalisation is to put
 it in **Jordan Form**, with eigenvalues in the main diagonal, ones in positions above the main
 diagonal, and zeros elsewhere
- How can Jordan Form matrices be constructed?
 - for the transformation matrix T, since we no longer have n linearly independent eigenvectors, we must make use of the generalised eigenvectors, η
 - then, the transformation will be:

$$T^{-1}AT = J$$

where J is our matrix in jordan form. For example,

$$\boldsymbol{J} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

is the Jordan Form for a matrix \boldsymbol{A} with repeated eigenvalue r=2

- from linear algebra, every matrix can be transformed into a diagonal matrix, or into a Jordan form
- as in the case above, we can also use the transformation $\underline{x} = Ty$
- How useful are Jordan forms?
 - matrix systems with Jordan Form are particularly simple to solve. For example:

$$\underline{y}' = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \underline{y}$$

is equivalent to the system:

$$y_2' = \lambda y_2$$

$$y_1' = \lambda y_1 + y_2$$

The first equation is a standard first order ODE which can be solved. Then, the solution can be used in the second equation to find y_1 .

• What is the format of a exponential matrix in Jordan Form?

- let:

$$\boldsymbol{J}_{\lambda} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

Then:

$$e^{\mathbf{J}_{\lambda}t} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix}$$

- to see why, notice that:

$$\boldsymbol{J}_{\lambda} = diag(\lambda, \lambda) + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- most importantly, these 2 components commute. For matrix exponentials,

$$e^{A+B} = e^A e^B \iff AB = BA$$

- thus, it follows that:

$$e^{\mathbf{J}_{\lambda}t} = e^{diag(\lambda t, \lambda t)} e^{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} t}$$

- lastly, notice:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

so from the series expansion, it follows that:

$$e^{\begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}} = \mathbb{I} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

- so finally:

$$e^{\mathbf{J}_{\lambda}t} = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix}$$

- How can we generalise for cases in which n > 2?
 - if we have a 3×3 system, with an eigenvalue r with algebraic multiplicity 3 and geometric multiplicity 1, then:

$$\underline{x}^{(1)}(t) = \underline{\xi}e^{rt}$$

$$\underline{x}^{(2)}(t) = t\underline{\xi}e^{rt} + \underline{\eta}e^{rt}, \qquad \underline{\xi} = (\mathbf{A} - r\mathbb{I})\underline{\eta}$$

$$\underline{x}^{(3)}(t) = \frac{t^2}{2}\underline{\xi}e^{rt} + t\underline{\eta}e^{rt} + \underline{\zeta}e^{rt}, \qquad \underline{\eta} = (\mathbf{A} - r\mathbb{I})\underline{\zeta}$$

– if we have a 3×3 system, with an eigenvalue r with algebraic multiplicity 3 and geometric multiplicity 2, then:

$$\begin{split} &\underline{x}^{(1)}(t) = \underline{\xi}_1 e^{rt} \\ &\underline{x}^{(2)}(t) = \underline{\xi}_2 e^{rt} \\ &\underline{x}^{(3)}(t) = t(a\underline{\xi}_1 + b\underline{\xi}_2) e^{rt} + \underline{\eta} e^{rt}, \qquad a\underline{\xi}_1 + b\underline{\xi}_2 = (\mathbf{A} - r\mathbb{I})\underline{\eta} \end{split}$$

6 Exercises

1. Find a fundamental matrix for the system:

$$\underline{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \underline{x}$$

Assuming a solution of the form $\underline{x} = \underline{\xi}e^{rt}$, we consider the system:

$$\begin{pmatrix} 1 - r & 1 \\ 4 & 1 - r \end{pmatrix} \underline{\xi} = \underline{0}$$

The determinant is:

$$\begin{vmatrix} 1-r & 1\\ 4 & 1-r \end{vmatrix} = (1-r)^2 - 4$$

$$\implies r = -1, 3$$

Let $r_1 = -1$, then:

$$\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \underline{\xi}_1 = \underline{0}$$

leads to:

$$2\xi_1 + \xi_2 = 0 \implies \underline{\xi} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Let $r_1 = 3$, then:

$$\begin{pmatrix} -2 & 1\\ 4 & -2 \end{pmatrix} \underline{\xi}_2 = \underline{0}$$

leads to:

$$-2\xi_1 + \xi_2 = 0 \implies \underline{\xi} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Thus, we get 2 solutions:

$$\underline{x}^{(1)}(t) = \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix}$$

$$\underline{x}^{(2)}(t) = \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix}$$

So a fundamental matrix for the system is:

$$\Psi(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -2e^{-t} & 2e^{3t} \end{pmatrix}$$

Notice, the special fundamental matrix for this system was already discussed above in Section 1.2.

2. Consider the matrix:

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

Find the similarity transformation matrix T and show that A can be diagonalised

From the exercise above, we know that:

$$r_1 = -1 \implies \underline{\xi}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 $r_2 = 3 \implies \underline{\xi}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Thus, the transformation matrix is:

$$T = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$

Recall, the inverse of a 2×2 matrix $\boldsymbol{X} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is:

$$\frac{1}{\det \mathbf{X}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

So it follows that:

$$\boldsymbol{T}^{-1} = -\frac{1}{4} \begin{pmatrix} -2 & -1 \\ -2 & 1 \end{pmatrix}$$

Since the algebraic multiplicity is the same as the geometric multiplicity, and T has an inverse, we can diagonalise A (otherwise explicitly comput $T^{-1}AT$ and ensure it gives a diagonal matrix).

3. Consider once again the system of differential equations $\underline{x}' = A\underline{x}$, where:

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

Using the transformation $\underline{x} = T\underline{y}$ where:

$$T = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$

the above system reduces to the diagonal system:

$$\underline{y}' = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \underline{y}$$

Obtain a fundamental matrix for the system involving \underline{y} , and then transform it to obtain a fundamental matrix for the original system.

The exponential of the diagonal matrix gives:

$$\mathbf{Q} = \begin{pmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{pmatrix}$$

Moreover, we know that $\Psi(t) = TQ$, so:

$$\Psi(t) = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{pmatrix} = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

which corresponds with the fundamental matrix we obtained above.

4. Find a fundamental set of solutions of:

$$\underline{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \underline{x}$$

We compute the eigenvalues of the system:

$$\begin{vmatrix} 1-r & -1 \\ 1 & 3-r \end{vmatrix} = (1-r)(3-r) + 1$$

$$\implies r^2 - 4r + 4 = 0$$

$$\implies (r-2)^2 = 0$$

$$\therefore r = 2$$

Thus, we have an eigenvalue with algebraic multiplicity 2. To compute its corresponding eigenvector:

$$\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \underline{\xi} = 0 \implies \underline{\xi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Since r=2 has geometric multiplicity 1, we seek an additional solution of the form:

$$\underline{x}^{(2)}(t) = \xi t e^{2t} + \eta e^{2t}$$

For this, we seek to solve:

$$(\mathbf{A} - 2\mathbb{I})\underline{\eta} = \underline{\xi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

This requires $-\eta_1 - \eta_2 = 1$, so if we parametrise via $\eta_1 = s$, then $\eta_2 = -s - 1$, so:

$$\underline{\eta} = \begin{pmatrix} s \\ -s - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Thus, the general solution is:

$$\underline{x} = c_1 e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{2t} \left(t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

But notice the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ appears twice, so the second one can be ignored by setting s=0:

$$\underline{x} = c_1 e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{2t} \left(t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right)$$

5. Derive a Fundamental Matrix, the Special Fundamental Matrix and a Jordan Form for the system:

$$\underline{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \underline{x}$$

Verify that we can re-derive a Fundamental Matrix from the Jordan Form

We computed the fundamental set of solution above, so:

$$\Psi(t) = \begin{pmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{pmatrix} = e^{2t} \begin{pmatrix} 1 & t \\ -1 & -t - 1 \end{pmatrix}$$

For the special fundamental matrix, we recall that $\Phi(t) = \Psi(t)\Psi^{-1}(t)$, so:

$$\boldsymbol{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \implies \boldsymbol{\Psi}^{-1}(0) = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$

So:

$$\mathbf{\Phi}(t) = e^{2t} \begin{pmatrix} 1 & t \\ -1 & -t-1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} = e^{2t} \begin{pmatrix} 1-t & -t \\ t & 1+t \end{pmatrix}$$

Alternatively, we can use the exponential definition. Define:

$$T = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$
$$T^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$
$$J = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

Then:

$$\begin{split} e^{\mathbf{A}t} &= \mathbf{T}e^{\mathbf{J}t}\mathbf{T}^{-1} \\ &= \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \\ &= e^{2t} \begin{pmatrix} 1 & t \\ -1 & -t - 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \\ &= e^{2t} \begin{pmatrix} 1 - t & -t \\ t & 1 + t \end{pmatrix} \\ &= \mathbf{\Phi}(t) \end{split}$$

as expected.

Moreover, notice that we have confirmed $\Psi(t) = Te^{Jt}$, in the calculation above, and thus, we confirm that we can go to $\Psi(t)$ using the Jordan Form J.

6. Derive the Special Fundamental Matrix for the system:

$$\underline{x}' = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \underline{x}$$

There are 2 ways to do this: either compute a fundamental matrix, or compute the matrix exponential. Either way, we require the eigenvalues and eigenvectors of the matrix

For the eigenvalues:

$$\begin{vmatrix} 1-r & 2\\ 0 & 3-r \end{vmatrix} = (1-r)(3-r) = 0$$

$$\implies r = 1,3$$

If $r_1 = 1$, then consider:

$$\begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} \underline{\xi} = \underline{0}$$

from which it follows that:

$$\underline{\xi} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

If $r_1 = 3$, then consider:

$$\begin{pmatrix} -2 & 2\\ 0 & 0 \end{pmatrix} \underline{\xi} = \underline{0}$$

from which it follows that:

$$\underline{\xi} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Thus, the solutions are:

$$\underline{x}^{(1)}(t) = \begin{pmatrix} e^t \\ 0 \end{pmatrix}$$

$$\underline{x}^{(2)}(t) = \begin{pmatrix} e^{3t} \\ e^{3t} \end{pmatrix}$$

Hence, a fundamental matrix will be:

$$\mathbf{\Psi}(t) = \begin{pmatrix} e^t & e^{3t} \\ 0 & e^{3t} \end{pmatrix}$$

Recall, $\Phi(t) = \Psi(t)\Psi^{-1}(0)$. Thus:

$$\Psi(0) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \implies \Psi^{-1}(0) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

So:

$$\mathbf{\Phi}(t) = \begin{pmatrix} e^t & e^{3t} \\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e^t & e^{3t} - e^t \\ 0 & e^{3t} \end{pmatrix}$$

Alternatively, we can use diagonalisation. Let:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$T^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

Thus:

$$\begin{split} \boldsymbol{\Phi}(t) &= e^{\boldsymbol{A}t} \\ &= \boldsymbol{T}e^{\boldsymbol{D}t}\boldsymbol{T}^{-1} \\ &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^t & 0 \\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} e^t & e^{3t} \\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} e^t & e^{3t} - e^t \\ 0 & e^{3t} \end{pmatrix} \end{split}$$

as required.

7. Solve the system:

$$\underline{x}' = \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix} \underline{x}$$

We first find the eigenvalues:

$$\begin{vmatrix} 3-r & 1\\ -4 & -1-r \end{vmatrix} = -(3-r)(1+r) + 4$$

$$\implies -(3+2r-r^2) + 4 = 0$$

$$\implies r^2 - 2r + 1 = 0$$

$$\implies (r-1)^2 = 0$$

$$\therefore r = 1$$

Thus, the eigenvalue 1 has algebraic multiplicity 2. We determine its corresponding eigenvector:

$$\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \underline{\xi} = \underline{0} \implies 2\xi_1 + \xi_2 = 0$$

Thus, it follows that:

$$\underline{\xi} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

So a solution to the system:

$$\underline{x}^{(1)}(t) = e^t \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Since r=1 has geometric multiplicity 1, we require another solution. This shall be of the form:

$$\underline{x}^{(2)} = e^t \left(t \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \underline{\eta} \right)$$

where η satisfies:

$$\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \underline{\eta} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \implies 2\eta_1 + \eta_2 = 1$$

So then:

$$\underline{\eta} = \begin{pmatrix} s \\ 1 - 2s \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

We can choose s = 0, so that:

$$\underline{\eta} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

And so, the general solution becomes:

$$\underline{x} = e^t \left(c_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + c_2 \left(t \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \right)$$

8. Solve the system:

$$\underline{x}' = \begin{pmatrix} 5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3 \end{pmatrix} \underline{x}$$

The eigenvalues are given by:

$$\begin{vmatrix} 5-r & -3 & -2 \\ 8 & -5-r & -4 \\ -4 & 3 & 3-r \end{vmatrix} = (5-r)\begin{vmatrix} -5-r & -4 \\ 3 & 3-r \end{vmatrix} + 3\begin{vmatrix} 8 & -4 \\ -4 & 3-r \end{vmatrix} - 2\begin{vmatrix} 8 & -5-r \\ -4 & 3 \end{vmatrix}$$
$$= (5-r)\left[-(5+r)(3-r) + 12\right] + 3\left[24 - 8r - 16\right] - 2\left[24 - 4(5+r)\right]$$
$$= r^3 - 3r^2 + 3r - 1$$
$$\therefore (r-1)^3 = 0 \implies r = 1$$

r=1 has algebraic multiplicity 3. We now compute the corresponding eigenvector:

$$\begin{pmatrix} 4 & -3 & -2 \\ 8 & -6 & -4 \\ -4 & 3 & 2 \end{pmatrix} \underline{\xi} = \underline{0} \implies 4\xi_1 - 3\xi_2 - 2\xi_3 = 0$$

If we parametrise via $s = \xi_1$ and $t = \xi_2$, it follows that:

$$\underline{\xi} = \begin{pmatrix} s \\ t \\ 2s - \frac{3}{2}t \end{pmatrix}$$

From which we obtain 2 eigenvectors:

$$\underline{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

$$\underline{\xi}_2 = \begin{pmatrix} 0\\2\\-3 \end{pmatrix}$$

Since the geometric multiplicity is 2, we are missing one solution. In particular, we seek a solution of the form:

$$\underline{x}^{(3)}(t) = e^t \left[t \left(a \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} \right) + \underline{\eta} \right]$$

where η satsifies:

$$\begin{pmatrix} 4 & -3 & -2 \\ 8 & -6 & -4 \\ -4 & 3 & 2 \end{pmatrix} \underline{\eta} = a \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ 2a - 3b \end{pmatrix}$$

Notice, the rows of the matrix are multiples of each other ($\times 2$, $\times -1$), so the elements of the right vector must also be related in this way. Thus:

$$2a = 2b \implies a = b$$

$$a = b$$
 & $a = -(2a - 3b) \implies a = a$

Thus, the system is always satisfied, so long as a = b, so we can pick a = b = 1, which leads to:

$$\begin{pmatrix} 4 & -3 & -2 \\ 8 & -6 & -4 \\ -4 & 3 & 2 \end{pmatrix} \underline{\eta} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \implies 4\eta_1 - 3\eta_2 - 2\eta_3 = 1$$

(Note that we could have reached values of a, b by using EROs) Thus, we get:

$$\underline{\eta} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Hence, the general solution is:

$$\underline{x}(t) = e^t \left[c_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} + c_3 t \left(\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right) \right]$$