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1 Linear Algebra Recap

1.1 Fundamental Theorem of Invertible Matrices
1.2 Computing the Determinant
1.3 Calculating Eigenvalues and Eigenvectors

1.4 Linear Independence of Eigenvectors

2 Systems of ODEs

e Systems of ODEs can be expressed by using vectors

e Solutions for linear, homogeneous systems of ODEs can be derived by using linear combinations of
linearly independent solutions to the system

e Given a set of n linearly independent solutions to a linear, homogeneous system of n ODEs, if their
Wronskian is non-zero, then the set of solutions form a fundamental set of solutions

e By Abel’s Theorem, the Wronskian needs to be only evaluated at a single point in an open interval to
determine whether the solutions are linearly independent on the interval

2.1 General ODEs and Linear Algebra
e When do systems of ODEs arise?

— whenever we have to model a system with many dependent variables, and each of these
dependent variables are functions of the same independent variable

— Example: a system of 2 sprints, at positions x; and zs, which depend on time ¢
e What is the most general system of ODEs?

— let ¢ € [1,n]. Then a system of n ODEs can be described by:

J)/»(t) = Fi(ail,.lfg, cee ,J}n,t)

7

where F; is just a function.

— Exzample:
xh = 227 — 2te”
’ L1 2
=1y
R
e Why are first order ODEs desirable?
— recall, the order of an ODE is the highest derivative which appears in the system
— any high order ODE can be converted into an equivalent system of first order ODEs

— Exzample: a general n'" order ODE can be described by:

y" =F(tyy,. .y Y)
In order to turn this into a system, we define n new variables x1, 2o, ..., x,, such that:

1=y To =1 . Ty = y("fl)
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from which we obtain the system:

Ty T2
Th =19
o
T =Ty
/
x, = F(t,x1,29,...,2)

More generally, the derived system can be:

l‘/l = Fl(t7.1‘1,.’)32,...,$n)
xl2 = FZ(tvxl,l'Q?"'axn)
'r;’L = F(t7$17x27~"axn)

e How can a system of ODEs be expressed in terms of vectors?

— it is somewhat inconvenient to have to write equations at all times. We can use vectors to encode
all the information:

z(t) = (w1 (), z2(t), - - xn(t))
F=(F,F,....F,)
2'(t) = E(x(t),1)

— if 8;; = 0, then the system is autonomous

e How can we geometrically interpret a system of ODEs?

— viewing systems of ODEs in terms of vectors allow us to obtain intuition as to what they “repre-
sent”
— if t and z are constant, F'(z(¢),t) is just a vector

— if ¢ is constant, F(z(t),t) is a vector field. Then, 2/(t) = F(z(¢),t) tells us that the solution
z(t) represents a curve in space which is tangential to the vector field F(x(t)

2.2 The Existence and Uniqueness Theorem: General Systems of ODEs

Theorem (The Existence and Uniqueness Theorem). Consider a system of ODEs:

xll = Fl(t,$1,$2,...7$n)
xh = Fy(t,x1,22,...,7,)
x, = F(t,x1,22,...,2y)

and consider the set of n initial conditions:
x1(tg) = 29 zo(tg) = 29 e T, (to) = 22
The ODEFEs and the inital conditions define an initial value problem.

Let each of the n functions Fy, ..., F, and the n? partial derivatives:

LR
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be continuous in a region R of (tx1xa ...z, )-space, defined by:

a<t<p
oy <z < Pr

ay <Tp < B

0

and let (to,2%,29,...,2%) € R. Then there is an interval t —to| < h in which there exists a unique solution:

x1 = ¢1(t)

Tn = On (t)

which satisfies the initial value problem.

2.3 Linear Systems of ODEs
e What is a linear system of ODEs?

— a system of ODEs in which each of the F; are linear functions of x1, s, ...

e How can a system of linear ODEs be represented?

7‘%.774

— since F; will be linear, we can consider a summation, in which each of the x; are multiplied by a

function of ¢, and we also have an additional term, independent of x1, xo, .

zy = g1(t) + Z Pri(t)xi(t)

zy = go(t) + Z Poi(t)(t)

z,, = gn(t) + Z Pri(t)zi(t)

— more generally, if we define:

z(t) = (x1(t), 22(t), ..., zn(t))

Pll(t) P]g(t) s Pln(t)

Po1(t) Poo(t) -+ Paul(t)
P(t) - . .

Pu(t) Puolt) - Pu(t)

9(t) = (g1(t), 92(t), - -, gn (1))

Then our system can be succintly described as:

e When is a system of linear ODEs homogeneous?

— the system z/(t) = P(t)z(t) + g(t) is homogeneous if g(t) = 0
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2.4 The Existence and Uniqueness Theorem: Linear Systems of ODEs

Theorem (The Existence and Uniqueness Theorem (Linear Systems)). If the functions P11, Pia, ..., Pon, g1, - - -

are continuous on an open interval I = («, ), then there exists a unique solution:

z1 = $1(t)
Tn = @n (t)
of the system z'(t) = P(t)z(t) 4 g(t) which also satisfies the initial conditions
1(to) = 2 5 (to) = o n(to) = o
where tg € I, and 29,...,2% are any prescribed numbers. Moreover, the solution ezists throughout the

interval.
Notice that we get a lot more (in terms of the interval in which the solution is defined, and how the initial

values are arbitrary) than in the general case.

2.5 The Principle of Superposition

Theorem (The Principle of Superposition). Consider a linear, homogeneous system of ODFEs z'(t) =
P(t)x(t). If the vector functions:
{g(j)(t)} =z M M

are linearly independent solutions of the system Vt € (a, 3), then each solution x(t) of the linear, homo-
geneous ODE can be expressed as a linear combination of {x()(t)}:

n
z(t) = Z iz (t) = crzM(t) + ...+ crz™ (1)
i=1

in exactly one way.

Proof. We show that the linear combination z(t) = S°7", c;z()(¢) satisfies its linear, homogeneous ODE:
d n (,L) n d (1)
7 D ex(t) ] = Zcza(z (t))
i=1 i=1
= Z i P(t)z@ (t) since 9 is a solution, it follows that ) = P(t)z9)
i=1

n
= P(t) <Z ciz® (t)) since matrices are linear operators

=1

e What is the general solution of a linear, homogeneous ODE?

— a solution which encompasses all possible solutions to a given system:

z(t) =) iz (t) =z () +.. +cnz™(t)
i=1
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2.6 The Wronskian

e Since all solutions to a linear, homogeneous system of ODEs can be expressed as a linear
combination of linearly independent solutions, what is the interpretation of the set of all
solutions?

— the solution space, given by all possible solutions, is precisely a vector subspace of dimension 7,
where n is the dimension of z(t)

e How can we know if a set of n solutions is linearly independent?

— we need to calculate the Wronskian

— if {z()} is the set of all solutions, consider a matrix M:
M — @(1)’£(2)’ o 7$(n)>
then, the Wronskian is defined as the determinant of M, and we denote it as:
W[Q(l)@@)’ o 7£(n)](t)

— the columns of a matrix are linearly independent if and only if the determinant of the matrix
is non-zero. Thus, if at a point ¢ we have that W[z 2@ ... 2(™](t) # 0, then {2} is a set
of linearly independent solutions

Proof: A Matriz M has Linearly Dependent Columns if detM = 0. Let M be a n x n matrix. Apply
elementary row operations, until we reach row-echelon form. Call the new matrix M’ (notice it will
be an upper triangular matrix). If the columns of M are linearly dependent, then there must be a row
in M’ that is all 0s. But the determinant of an upper triangular matrix is the product of the elements
in its diagonal entries. Since one of these elements is 0, it follows that det = 0. Since elementary row
operations preserve properties of the matrix, it follows that det = 0.

The result follows directly from the Fundamental Theorem of Invertible Matrices O

e What is a fundamental set of solutions?
— for a system of n linear, homogeneous ODEs, the fundamental set of solutions is any set of n
linearly independent solutions at each point of an interval a <t <
— 50 {z\9)(t)} forms the fundamental set of solutions iff W[{z()(t)}] # 0

— any linear, homogeneous system of ODEs (z/) = P(t)z\9)) will always have at least one funda-
mental set of solutions

Proof: The Principle of Superposition Gives All Solutions. We know by the Principle of Superposition that
z(t) = Y cizD(t) is a solution to the system zU) = P(t)z(). Let ty € (a,3). Is there any solution
of the form z(t) = >, ¢;z(V(t) that satisfies the initial condition z(tg) = y? In other words, we seek
C1,Co,...,Cn, such that:

cazW(to) + ...+ cpz™(to) = y
But this is just a linear system: -
C1
(zW(to) ... z"(t)) =y
Cn

But by the Fundamental Theorem of Invertible Matrices, such a system will have a unique solution if and
only if the determinant of the matrix is non-zero. And the determinant of the matrix is just W [{z(?)}](to).
Since the vectors are linearly independent, we are guaranteed that the Wronskian is non-zero, and so, a
unique solution exists to the linear system, which satisfies the initial conditions. O
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2.7 Abel’s Theorem

Theorem (Abel’s Theorem). If (M, ... 2" are solutions of the linear, homogeneous system z'(t) =
P(t)z(t) on the interval I = (o, B), then iftg € I, and W{zM ... 2(™](tg) # 0, thenVt € I, W[z™, ..., zM](t) #
0.

Abel’s Theorem means that for any interval it is sufficent for us to check the value of the Wronskian at
a single value, in order to confirm lindear independence of solutions. To prove Abel’s Theorem, we can us
Abel’s Formula:

dw
dt

e W= cexp (/(trP(s))ds)

= (trP(t))W

Alternatively, proving that if n solutions are linearly dependent at a point, they must be linearly de-
pendent at all points, which implies that linear independence at a point implies linear independence at all
points.

2.8 Real Valued Systems and Complex Solutions

Theorem. Consider the system z' = P(t)x. Moreover, let P;j(t) be a real-valued, continuous function. If
x = u(t) +ivt is a complez-valued solution of the linear, homogeneous system of ODEs, then u(t) and v(t)
are also solutions.

Proof. Substituting z = u(t) + ivt into 2’ = P(¢)x:
2’ — P(t)z = (u(t) +iv(t))" — P(t)(u(t) +v(t))
u'(t) + ' (t) — P(t)u(t) — iP(t)v(t)
= (W (t) = P(t)u(t)) +i(2'(t) — P(t)u(t))
0

Now, a complex number is 0 if and only if its real and imaginary parts are both 0. Thus, we require:
W'(t) = P(t)u(t) = 0
v'(t) —iP(t)u(t)

which implies that w(t) and v(t) are solutions of z’ = P(t)z. O

3 Solving Homogeneous Systems of Linear ODEs With Constant
Coefficients

For this section, we consider the following system:
' = Az
where A is a constant, n X n matrix.

Furthermore, here are some slides that also discuss the topic, from University of Pennsylvania.
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3.1 Deriving Solutions

To derive solutions to ' = Az, we can extend what we know for linear, first-order, homogeneous ODEs such
as:

which has an exponential solution e**. Thus, we consider solutions of the form:

z = ge’r‘t

where 7, § are constants to be determined.

Substituting into the equation:
' = Az
= 4 (™) = Age™
dt = =
= rée’ = Ale"
= r{ = A§
= A =71

But then this means that r is the eigenvalue of the eigenvector £ of A. We obtain the system:

(A-rD{=0

from which we know that 7 solves det(A —rI) = 0, and then { can be found algebraically!

If all the eigenvalues are different (either they are real, or complex conjugates), then we are guaranteed
that the corresponding eigenvectors are linearly independent. If we evaluate the Wronskian:

Wz®, ... a™)(t) = [(gWert, ... gMWernt)| = ettt )]

1 e(m4mm)t ig always non-zero, and each of the £ () are linearly independent eigenvectors, so the determinant

is non-zero. Thus, since the Wronskian is non-zero, each of the e”tg @) are part of the fundamental set of
solutions.

In general, if the algebraic multiplicity (number of times an eigenvalue appears as a root in the
characteristic equation) is the same as the geometric multiplicity (number of eigenvectors associated with

an eigenvalue) are equal, the solutions will form a fundamental set of solutions.

Using the superposition theorem, the general solution to 2’ = Az will be:

n
T = E cife
=1

Proof: FEigenvectors of Distinct Figenvalues Are Linearly Independent. This proof is from Dr. Peyam.

We proceed by induction. We claim that for a given matrix T, given a set of non-zero n eigenvectors
with n distinct eigenvalues, the eigenvectors are linearly independent.

ITo see why we can extract the constant factor from each of the columns, see this article
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If n = 1 we have a single vector, and it is clearly linearly independent, as:

cz; =0
if and only if ¢; = 0.
Now, assume that n = k is true: there exist a set of k distinct eigenvalues r1,7s, ..., With corresponding
eigenvectors x,,Z,, - .., 2y, and these are all linearly independent.
Now consider the case n = k + 1. Lets first assume that Jcy, co, ..., ck, Ckr1:

1T, + ...+ e + Cp1Tpp1 =0
If we can show that Vi € [1,k+1], ¢; = 0, then we have proven that the eigenvectors are linearly independent.
Apply the transformation T to the expression above to obtain:
T(cixy + ... + kg + cpr12541) = T(0) = crz + ...+ kTrZk + Chp17k+1Zk4+1 = 0
Now multiply the linear combination by the eigenvalue 71, getting:
CITh41T1 + -+ CkTE41Tk + Chgp1Th41Tk41 = 0
If we substract ciyr1z1 + ... 4+ CkTETk + Ck+17k+12k+1 from the above, we get:
cr(r1 —res1)zi+ .o+ et —rpp1)ze =0

Now, the eigenvectors z;, i € [1, k] are linearly independent by the inductive hypothesis, so it must be the
case that:
Vi € [1,]6}, Ci(’f’i — Tk+1) =0

But since all the eigenvalues are distinct, r; — 7511 # 0, so it follows that Vi € [1,k], ¢; = 0. But then our
original linear combination reduces to:

11+ ...+ i+ chr1Tk+1 =0 = cpr1Tk41 =0

and since z;,,; is non-zero, we must have that cyy1 = 0, thus showing that Vi € [1,k + 1], ¢; = 0, and thus,
the set of k + 1 eigenvectors are linearly independent. O

e Further Pointers

— if the eigenvalues are repeated, as long as AM = GM, the system can be easily solved; otherwise,
further techniques need to be applied

— if A is complex, then complex eigenvalues need not occur as complex conjugate pairs; this is not
a problem, so long as the eigenvectors are linearly independent

3.2 Solving Linear, Homogeneous, First Order Systems of ODEs
3.2.1 Real Eigenvalues

1. Consider the system:

/
T =21+ X2

xh = 4x1 + 19

Compute the general solution to the system.
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This is just the system z’ = <411 1) T

Assuming a solution of the form z = £e", we obtain the following system:

(575 (8) -

Thus, the eigenvalues are given by:

1—r 1 . 2
‘ 4 l—r_(l_r) —4
— (1-7r)2-4=0
Lr=1£2
Lr=-1,3
Let 71 = —1 with corresponding eigenvector § e and let ro = 3 with corresponding eigenvector £ .
We first consider r; = —1. Our system of equations then becomes:

(i 2) (&)=

200+ 86 =0 = & =-24

which implies:

so it follows that:

Now consider r,. = 3. Our system of equations then becomes:

() (@)=

=26+ & =0 = {&H =26

which implies:

so it follows that:

Thus, since the eigenvectors are clearly linearly independent, they conform the fundamental set of
solutions, and thus, the general solution is:

z(t) = Cre™ (12> + Cae™ (;)

(We can check that the Wronskian is indeed never 0:
ot o3t

—2¢7t 2¢3t| T 1% #0
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2. Find the general solution of:

I8

Il
_ = O
—_ O =

Assuming a solution of the form {e”, we must solve the system:

—-r 1 1
1 —r 1]¢=0
1 1 —r
We first find the eigenvalues:
ol R U T T
Lozr =m0l ol Th
1 1 —r
= (=1 —(—r—1+1+7)
=>4 3r42
P —3r—2=0

Letting 1 = —1 and ro = 2, notice that r; has algebraic multiplicity 2, so we require geometric
multiplicity 2 in order to obtain a solution.

Solving the system with r = r1, we get:

1 1 1 &
11 1][&])=0
11 1) \g
which implies:
§1+&+8=0
We can parametrise. Letting s = &1,t = &9, €3 can be written as {3 = —s — t; thus, the eigenvector is:
s 1 0
t =s| 0 |+t 1
—s5—1 -1 -1
Thus, the linearly independent eigenvectors associated with ry = —1 are:
1 0
0 1
-1 -1

Since the algebraic multiplicity is the same as the geometric multiplicity for r1, they lead to valid
solutions.
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We now consider r = rq = 2:

-2 1 110 -2 1 110
= 1 -2 1 (0)=10 -3 310
1 1 =210 1 3 =310
-2 1 110

=10 1 =110

1 0 010

which implies:
—26+&+&6=0

§2—& =0
Again, parametrising s = &, we have &3 = s, so:
26 +&+85=0 = 26 +25=0

so & = s, and the eigenvector associated with ro = 2 is:

1
=11
1
Overall, the general solution thus becomes:
1 0 1
z(t)=Cre” | 0 | +Ce™ | 1 | +C3e* [ 1
-1 -1 1

3.2.2 Complex Eigenvalues

As discussed previously, if the system has complex solutions, then the real and imaginary parts are also
solutions to the system. We show further why this is the case in particular when we have constant coefficients.

Proof: Constructing A Fundmanetal Set From One Complex Solution. Assume that our system 2’ = Ax has
a solution z; = e”§ , derived from a complex eigenvalue r € C, and its associated eigenvector . Recall that:

2€C, z=a+ib = 2z*=a—1b

Then, we must have that:
(A—=rI){=0

But if we take the complex conjugate:
(A-rI)'¢"=0" = (A-r'D{ =0

so r*,£", the complex conjugates, also lead to the solution z, = e’”*tg*.

Now, recall that:




z—2z"

Im(z) = 5

So define:
Z; = Re(z,(t))
Ly = Im(z, (1))
Then, notice that z,,z, are given as linear combinations of known solutions, namely z; and z,, so they

are both solutions. Moreover, it can be shown that they are also linearly independent.
O

1. Find a fundamental set of real-valued solutions of the system:

-1

= 1
x’_—(Z )x

-1 3

Assuming solutions of the form z = "¢, we must solve:

—1
5 T 1 _
( -1 ?r)f‘o

First, we find the eigenvalues 7:

Notice, since we obtain complex conjugate eigenvalues, their eigenvectors will also be complex conjugates,
so we only need to compute the eigenvector for one of the eigenvalues, say r, = f% + 4. Then, we solve:

—i 1
(4 _Jg:o

—i§&1+& =0 = §=1&

which implies:

so the eigenvector is:

Thus, we obtain 2 complex solutions:

Since we want a real solution, we consider only:
_ (e (1) _ —14 (cos(t) +isin(t)
n(t) = e (z) €’ (icos(t) — sin(t)
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and define the new solutions:

So the general solution is:
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