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Based on the notes by Susan J. Sierra, Chapter 7

1 Composition Series

1.1 Definition: Composition Series

Let G be a group. A composition series for G is a chain of normal
subgroups:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1 ◁ Gs = G

satisfying:

• Gi ̸= Gi+1

• Gi+1/Gi is simple for any i ∈ [0, s]

Notice, this does not mean that Gi ◁ Gj, j > i+ 1; we only have normality
for immediately adjacent subgroups.

We call s the length of the composition series.
(Definition 7.1.2)

1.2 Definition: Composition Factors

Let G be a group with composition series:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1 ◁ Gs = G

A composition factor is the simple group obtained by taking the quo-
tient Gi+1/Gi.

1.3 Composition Series as Prime Factorisation

We can think of composition series as a “factorisation”. For example:

{0} ◁ 4Z/12Z ◁ 2Z/12Z ◁ Z/12Z

{0} ◁ 6Z/12Z ◁ 3Z/12Z ◁ Z/12Z

(Here for example 2Z/12Z is a group of 6 elements isomorphic to C6:

z̄ = {kz + 12 | k ∈ Z} ∈ 2Z/12Z, z ∈ 2Z

) If we apply the Third and First Isomorphism Theorems:

4Z/12Z ∼= C3
2Z/12Z
4Z/12Z

∼= 2Z/4Z ∼= C2
Z/12Z
2Z/12Z

∼= Z/2Z ∼= C2
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6Z/12Z ∼= C2
3Z/12Z
6Z/12Z

∼= 3Z/6Z ∼= C2
Z/12Z
3Z/12Z

∼= Z/3Z ∼= C3

In the same way as we decompose 12 into 2× 2× 3, we decompose Z12 using C2, C2, C3. Notice, the length
of the composition series are the same ,and the composition factors are also the same (albeit with a
different ordering).

2 The Jordan-Hölder Theorem

2.1 Theorem: Classification of Finite Simple Groups

Let G be a finite, simple group. Then, G is isomorphic to an element in
one of the following families:

1. Family 1: Cp, where p is prime

2. Family 2: An for n ≥ 5

3. ...16 other infinite families

4. 26 sporadic groups (this includes the Monster and Baby
Monster groups)

(Theorem 7.1.4)

2.2 Theorem: The Jordan-Hölder Theorem

Let G be a finite group. Then:

• G has a composition series

• any 2 composition series have:

– the same composition length

– the same composition factors (up to isomorphism of
groups, and ordering of the factors)

(Theorem 7.1.3)

The Jordan-Hölder Theorem, alongside the Classification of Finite Simple Groups tells us
that we can “understand” any finite group, since it can be decomposed into a composition series, whose
composition factors are simple groups, and we can classify all simple groups.
However, this doesn’t mean all of group theory is “solved”: these theorems don’t touch infinite groups.
Moreover, if we think of composition factors as bricks, and the group as a house:

• combining bricks to construct a house is very non-trivial
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• the bricks don’t determine a house

For example:
{e} ◁ C2 ◁ C6

{e} ◁ C3 ◁ C6

So C6 has C2, C3 as composition factors.
On the other hand, S3 only has A3 as a normal subgroup:

{e} ◁ A3 ◁ S3

|A3| = 3, and the only group of order 3 is C3. Moreover:

|S3/A3| = 2

and C2 is the only group of order 2. Hence, S3 and C6 have the same composition series and the same
composition factors, but they’re clearly not isomorphic (one is abelian, the other isn’t).

2.2.1 Lemma: Combining Composition Series

Let G be a group, with N ◁ G.
Let:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs = N

be a composition series for N , and:

N = H0 ◁ H1 ◁ . . . ◁ Hr = G/N

be a composition series for G/N .

Then, there is a composition series for G of length s + r, whose com-
position factors are:

G1, G2/G1, . . . , Gs/Gs−1, H1, H2/H1, . . . , Hr/Hr−1

(Sublemma 7.2.2)

Proof. Recall the Correspondence Theorem:
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Let G be a group, N ◁ G and let:

can : G → G/N

be the canonical map.
The map:

H 7→ can(H)

is a bijection between subgroups of G containing N , and subgroups of
G/N .
Under this bijection, normal subgroups match with normal sub-
groups.
Further, if N ⊆ A,B are subgroups of G, then:

can(A) ⊆ can(B) ⇐⇒ A ⊆ B

(Theorem 2.3.3)

Thus, for i ∈ [0, r], define:
Gi+s = can−1(Hi)

(these shall be the r additional groups which we add to G0, G1, . . . , Gs to create the composition series for
G)

Since Hi ◁ Hi+1, the Correspondence Theorem ensures that Gs+i ◁ Gs+i+1.

Now, recall the Third Isomorphism Theorem:

If N ≤ H ≤ G, with N,H ◁ G, then:

(G/N)/(H/N) ∼= G/H

(Theorem 2.3.5)

Hence:

Gs+i+1/Gs+i
∼=

Gs+i+1/N

Gs+i/N
= Hi+1/Hi

In particular, since Hi+1/Hi is simple, then Gs+i+1/Gs+i is also simple.

Thus, we have a composition series for G:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs ◁ Gs+1 ◁ . . . ◁ Gs+r = can−1(G/N) = G

2.2.2 Proposition: Existence of Composition Series

If G is a finite group, then G has a composition series.
(Proposition 7.2.1)
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Proof. We induct on |G| = n.

1 |G| = 2

If |G| = 2, then G will be simple, so e ◁ G is the only possible composition chain.

2 |G| = k

Assume that if 2 ≤ |G| ≤ k, then G has a composition series.

3 |G| = k + 1

Now, consider a group G, such that |G| = k + 1. Then, either G is simple or not. If G is simple, then
e ◁ G is the only possible composition chain. Otherwise, ∃N ◁G such that N ⊂ G. Then, since |N | ≤ k and
|G/N | ≤ k, by the inductive hypothesis N and G/N have a composition chain. By the lemma above, we can
combine these composition chains into a composition chain for G.

Hence, we have shown that for any G, there exists a composition chain, as required.

2.2.3 Theorem: Uniqueness of Composition Series

Let G be a finite group.
Then, any 2 composition series have the same length and the same
composition factors (up to isomorphism and ordering).
More precisely, if:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1 ◁ Gs = G

{e} = H0 ◁ H1 ◁ . . . ◁ Hr−1 ◁ Hr = G

are 2 composition series for G, then:

• s = r

• there is a permutation σ of {0, . . . , s− 1} such that:

∀i ∈ [0, s− 1], Hi+1/Hi
∼= Gσ(i)+1/Gσ(i)
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Proof. Again, we induct on |G| = n

1 |G| = 1, 2

Either G is the trivial group, or G is simple, so there is a unique composition series.

2 |G| = k

Assume that the composition factors are unique for all groups 1 ≤ |G| ≤ k, up to isomorphism and
ordering.

3 |G| = k + 1

We consider 2 cases.

1. Gs−1 = Hr−1

This implies that there are (at least) 2 composition series for Gs−1:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1

{e} = H0 ◁ H1 ◁ . . . ◁ Hr−1 = Gs−1

By the inductive hypothesis, since |Gs−1| < |G| = k+1, it follows that any composition factor of Gs−1

will be unique, so in particular s− 1 = r − 1 and there is a permutation σ on the set {0, 1, . . . , s− 1},
such that:

∀i ∈ [0, s− 2], Hi+1/Hi
∼= Gσ(i)+1/Gσ(i)

But then, since s−1 = r−1, then s = r. Moreover, we can extend σ to a permutation on {1, 2, . . . , s−1},
via σ(s− 1) = s− 1. Then:

Hs/Hs−1 = G/Hs−1 = Gs/Gs−1 = Gσ(s−1)+1/Gσ(s−1)

as required.

2. Gs−1 ̸= Hr−1

We first note that this implies:

Gs−1 ̸⊆ Hr−1 Hr−1 ̸⊆ Gs−1

To see why, assume that Gs−1 ⊆ Hr−1. Note that Hr−1 ◁ G. Moreover, we have that G/Gs−1 will be
simple, so its only normal subgroups are Gs−1 and G/Gs−1. By the Correspondence Theorem, there
must exist a bijection between Hr−1 and one of the normal subgroups of G/Gs−1 (since Gs−1 ⊆ Hr−1

and Hr−1 is normal). But since by assumption Hr−1 ̸= G, we must have that Hr−1 = Gs−1, which is
a contradiction. The same argument shows that Hr−1 ̸⊆ Gs−1.

Now, define:
K = Gs−1 ∩Hr−1

Recall the Second Isomorphism Theorem:
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Let N ◁ G and H ≤ G. Then:

(a) HN ≤ G

(b) N ◁ HN

(c) H ∩N ◁ H

(d) there exists an isomorphism:

H/(H ∩N) ∼= HN/N

(Theorem 2.3.7)

This tells us that:
K ◁ Gs−1 K ◁Hr−1

Now, consider the factor group Gs−1/K. Again, by the Second Isomorphism Theorem:

Gs−1/K = Gs−1/(Gs−1 ∩Hr−1) ∼= Gs−1Hr−1/Hr−1

We now prove that:
Gs−1Hr−1 = G

To this end, we begin by showing it is a normal subgroup:

Gs−1Hr−1 ◁ G

Indeed, let a ∈ G and gh ∈ Gs−1Hr−1 where g ∈ Gs−1 ◁ G and h ∈ Hr−1 ◁ G. Then:

a(gh)a−1 = agh(a−1a)ha1 = (aga−1)(aha−1) = gh

Thus:
∀a ∈ G, aGs−1Hr−1a

−1 ⊆ Gs−1Hr−1

so Gs−1Hr−1 ◁G. Again, by the Correspondence Theorem, the simplicity of G/Gs−1 means that since
Gs−1 ⊆ Gs−1Hr−1, either Gs−1Hr−1 = Gs−1 or Gs−1Hr−1 = G. But since Hr−1 ̸⊆ Gs−1, we can’t
have that Gs−1Hr−1 = Gs−1. Thus, the only possibility is that:

Gs−1Hr−1 = G

Hence, this tells us that:

Gs−1/K = Gs−1/(Gs−1 ∩Hr−1) ∼= Gs−1Hr−1/Hr−1 = G/Hr−1

Using identical logic:

Hr−1/K = Hr−1/(Gs−1 ∩Hr−1) ∼= Gs−1Hr−1/Gs−1 = G/Gs−1

This also tells us that Gs−1/K and Hr−1/K are simple, since G/Hr−1 and G/Gs−1 are simple.

Now, by the proposition on existence of composition series, we know that K will have a composition
series:

{e} = K0 ◁ K1 ◁ . . . ◁ Kt = K
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We can group together all our composition series into a diagram:

In particular, this allows us to write a new composition series for Gs−1:

{e} = K0 ◁ K1 ◁ . . . ◁ Kt = K ◁ Gs−1

which alongside:
{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1

and the inductive hypothesis tells us that s−1 = t+1. Similarly with H, we will have that r−1 = t+1,
which means that s− 1 = r − 1, and so, s = r.

Overall, we now have 4 composition series for G:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs−1 ◁ Gs = G

{e} = K0 ◁ K1 ◁ . . . ◁ Kt ◁ Gs−1 ◁ Gs = G

{e} = K0 ◁ K1 ◁ . . . ◁ Kt ◁ Hr−1 ◁ Hr = G

{e} = H0 ◁ H1 ◁ . . . ◁ Hr−1 ◁ Hr = G

By Case I, we know that the first 2 composition series produce the same composition factors (up to
isomorphism and ordering):

(G1/G0, . . . , Gs−1/Gs−3, Gs−1/Gs−2, G/Gs−1) = (K1/K0, . . . ,K/Kt−1, Gs−1/K,G/Gs−1)

Likewise, the last 2 composition series product the same composition factors (up to isomorphism and
ordering):

(H1/H0, . . . ,Hs−1/Hs−3, Hs−1/Hs−2, G/Hs−1) = (K1/K0, . . . ,K/Kt−1, Hr−1/K,G/Hr−1)

Notice, looking at the composition factors involving K, the 2 sets of composition factors only differ in
the last 2 terms:

(Gs−1/K,G/Gs−1) vs (Hr−1/K,G/Hr−1)

But recall, we showed above that:

Gs−1/K ∼= G/Hr−1 Hr−1/K ∼= G/Gs−1

Hence:
(Gs−1/K,G/Gs−1) ∼= (G/Hr−1, G/Gs−1)

(Hr−1/K,G/Hr−1) ∼= (G/Gs−1, G/Hr−1)

Thus, the composition factors across the composition series are identical, up to isomorphism and
ordering of composition factors, which is what we required.
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