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Based on the notes by Susan J. Sierra, Chapter 6

1 Symmetric Groups

1.1 Definition: Symmetric Group

The symmetric group Sn is the group containing all bijections (also
known as permutations):

σ : {1, 2, . . . , n} → {1, 2, . . . , n}

We often represent permutations via cycle notation:

(1243) ⇐⇒



1 7→ 2

2 7→ 4

4 7→ 3

3 7→ 1


1.2 Lemma: Permutations as Products of Disjoint Cycles

Every permutation can be written as a product of disjoint cycles.
This product is unique up to re-ordering of the factors.
(Lemma 6.1.1)

1.3 Transpositions

1.3.1 Definition: Transposition

A transposition is a 2-cycle. That is, a cycle containing only 2 ele-
ments.
An adjacent transposition is a transposition of the form (i i+ 1).
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1.3.2 Lemma: Permutations as Products of Transpositions

Sn is generated by transpositions.
That is, every permutation can be written as a product of transposi-
tions.

For instance:
(1243) = (13)(14)(12)

(Lemma 6.1.2)

1.3.3 Definition: Even and Odd Permutations

A permutation is even if it can be written as a product of an even
number of transpositions.
If it is odd otherwise.
The identity permutation is even (it is written as a product of 0 transpo-
sitions)

For instance:
(1243) = (13)(14)(12)

is even, whilst:
(154)(23) = (14)(15)(23)

is odd.

In particular, this means that if σ has odd cycle length, it is an even per-
mutation, whilst if the cycle length is even, σ is odd.

1.3.4 Lemma: Parity of Product of Permutations

The product of:

• 2 even permutations

• 2 odd permutations

is even.
The product of an odd and an even permutation is odd.
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1.4 Conjugate Permutations

1.4.1 Definition: Cycle Type

Let:
σ = c1c2 . . . ck

be a product of k disjoint cycles of length:

l1, l2, . . . , lk, l1 ≥ l2 ≥ . . . ≥ lk

Then, the cycle type of σ is the k-tuple:

(l1, l2, . . . , lk)

(Definition 6.1.3)

1.4.2 Lemma: Effect of Conjugating Permutations

Let:
σ = (a1 a2 . . . ak) ∈ Sn

and τ ∈ Sn.
Then:

τστ−1 = (τ(a1) τ(a2) . . . τ(ak))

(Lemma 6.1.7)

1.4.3 Theorem: Conjugate Permutations Have the Same Cycle Type

Two permutations in Sn are conjugate if and only if they have the
same cycle type.
(Theorem 6.1.8)

2 Alternating Groups

2.1 Definition: The Alternating Group (1)

The alternating group is a the subgroup An ≤ Sn containing all the
even permutations of Sn.
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2.2 Definition: The Alternating Group (2)

Let x1, . . . , xn be variables, and define an object:

P =
∏

1≤i≤j≤n

(xi − xj)

If X = {P,−P}, Sn acts on X via:

σ · P =
∏

1≤i≤j≤n

(xσ(i) − xσ(i))

In particular, if σ is even:
σ · P = P

and if σ is odd:
σ · P = −P

Hence, An is the stabiliser of the action of Sn on X.

2.3 Theorem: The Alternating Group is a Normal Subgroup

Let n ≥ 2. Then An ◁ Sn, and:

|Sn| = 2|An| =⇒ |An| =
n!

2

(Theorem 6.2.3)

Proof. By definition, An is the stabiliser of the action of Sn on X, so by the Orbit-Stabilizer Theorem:

|Sn| = |StabSn(P )||OrbSn(P )|

The orbit of P over Sn is clearly X (since n ≥ 2, Sn contains the identity (even permutation) and a
transposition (odd permutation).

Hence:
|Sn| = 2|An|

as required.

We now show that An is a normal subgroup. Define a homomorphism:

sgn : Sn → C2
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sgn(σ) =

{
1, σ is even

−1, σ is odd

If σ, τ have the same parity, their product is even, so:

sgn(στ) = 1 = sgn(σ)sgn(τ)

Otherwise, their product is odd:
sgn(στ) = −1 = sgn(σ)sgn(τ)

so sgn is indeed a homomorphism.

Moreover, by definition of An:
ker(sgn) = An

Since the kernel of a homomorphism is a normal subgroup, it follows that An is a normal subgroup of Sn.

2.4 The Alternating Groups A4 and A5

We choose to focus on A4 and A5 because if n ≤ 3, the alternating groups are rather uninteresting:

S1 = {ι} =⇒ A1 = {ι}

S2 = {ι, (12)} =⇒ A2 = {ι}
S3 = {ι, (12), (23), (13), (123) = (13)(12), (132) = (12)(13)} =⇒ A3 = {ι, (123), (132)}

It is once we look at A4 and A5 that we see interesting behaviour. In fact, it is this behaviour which leads to
proving that polynomials of degree ≤ 4 can be solved by radicals, whilst polynomials with degree ≥ 5 can’t!

2.4.1 Recap: Conjugacy Classes and Centralizers

If we let G act on itself via conjugation:
g · a = gag−1

we can define the conjugacy classes of a group, alongside the centralisers.

Let G be a group. The conjugacy class of a ∈ G is the orbit of a:

Cl(a) = OrbG(a) = {gag−1 | g ∈ G}

Let G be a group. The centralizer of a ∈ G is the stabilizer of a:

CG(a) = StabG(a) = {g | gag−1 = a, g ∈ G} = {g | ga = ag, g ∈ G}

That is, the centralizer of a is the set of all elements in G which com-
mute with a.

Let G be a finite group. By the Orbit-Stabilizer Theorem:

∀a ∈ G, |G| = |CG(a)||Cl(a)|

(Lemma 4.2.7)
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2.4.2 Lemma: Normal Groups are Unions of Conjugacy Classes

Let G be a finite group, and suppose that:

H ◁ G

Then, ∃h1, . . . , hk ∈ H such that:

H = ⊔k
i=1ClG(hi)

That is, a normal subgroup can be described as the disjoint union of
conjugacy classes.
(Lemma 6.2.5)

Proof. Let H ◁ G. Then:
∀g ∈ G, gHg−1 = H

Now, let hi ∈ H. The conjugacy class of hi is the set of all elements in g which are conjugate to hi:

Cl(hi) = {ghig
−1 | g ∈ G} ⊆ H

But now, conjugacy classes are disjoint (they are equivalence classes under the equivalence relation of con-
jugation), so there must exist representatives in H, such that the disjoint union of their conjugacy classes
create H.

2.4.3 Proposition: Properties of A4

The following are properties of A4:

1.
|A4| = 12

2. A4 has a unique subgroup N of order 4

3.
N ◁ S4 and N ◁ A4

4.
A4/N ∼= C3 and S4/N ∼= S3
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Proof. 1. |A4| = 12

This follows immediately:

|A4| =
4!

2
= 12

2. The cycle types of elements in S4 are:

• 4 (odd)

• 3,1 (even)

• 2,2 (even)

• 2,1,1 (odd)

• 1,1,1,1 (even)

Moreover, by Sylow I, |A4| = 12 = 4 × 3 has a Sylow 2-subgroup of order 4, call it N . Furthermore,
by Lagrange’s Theorem, elements in N must have an order which divides 4, so σ ∈ N =⇒ o(σ) ∈
{1, 2, 4}. Finally, the order of a permutation is the lcm of cycle lengths of its disjoint cycle decomposi-
tion. Hence, this tells us that elements in N must have cycle type (2, 2) or 4 (the identity is obviously
in N). However, notice that the elements with cycle length 4 are odd permutations, so they aren’t
even part of A4. Hence, there is a unique subgroup of order 4, and it must be formed by the elements
of S4 with cycle shape (2, 2). That is:

N = {ι, (12)(34), (13)(24), (14)(23)}

which indeed has 4 elements, as expected.

3. N ◁ S4, N ◁ A4

Clearly, N must be normal, since it is the unique Sylow 2-subgroup of A4. It is also a subgroup of S4.
It will be a normal subgroup of S4 because N contains all elements of cycle type (2, 2), so in particular,
they are all conjugate. Since a normal subgroup is a disjoint union of conjugacy classes, N must still
be a normal subgroup of S4.

4. A4/N ∼= C3, S4/N ∼= S3

By Lagrange’s Theorem:

|A4/N | = 12

4
= 3

Hence, A4/N is a group of order 3. 3 is prime, so by Lagrange’s Theorem, A4/N is a cyclic group of
order 3, so A4/N ∼= C3.

Similarly,

|S4/N | = 24

4
= 6

so S4/N is a group of order 6. There are only 2 groups of order 6: C6 and S3. However, since S4 isn’t
abelian, S4/N won’t be abelian. For instance, if we pick α = (12) and β = (14), then:

αN ∗ βN = (α ◦ β)N = (142)N

βN ∗ αN = (β ◦ α)N = (124)N

Hence, the S4/N ∼= S3.
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2.4.4 Theorem: A5 is Simple

The alternating group A5 is a simple group.
(Theorem 6.3.1)

Proof. We will make use of the following table of cycle types in S5:

Cycle Type Number of Permutations Even/Odd

5 24 E

4,1 - O

3,2 - O

3,1,1 20 E

2,2,1 15 E

2,1,1,1,1 - O

1,1,1,1,1 1 E

Counting the number of permutations of a certain cycle type is a combinatorial problem. For example,
for the cycle type (3, 1, 1), the 3 cycle has a total of 5× 4× 3 possibilities. However, we are overcounting:

(123) = (312) = (231)

so the possibilities for the 3 cycle are:
5× 4× 3

3
= 20

Moreover, once we have chosen the 3-cycle, the whole permutation is decided (since the other 2 elements
are fixed). For the cycle type (2, 2, 1), the first 2-cycle has 5×4

2 = 10 possibilities. The second 2 cycle has
3×2
2 = 3 possibilities. Hence, there are 10 × 3 = 30 total cycles with type (2, 2, 1). However, notice once

again we are overcounting: since the 2 cycles are disjoint, it doesn’t matter which comes first, so we have
30
2 = 15 cycles of type (2, 2, 1).

To show that A5 is a simple group, we need to show that any normal subgroup will either be the trivial
subgroup, or A5. To do this, it is sufficient to compute the conjugacy classes in A5, since their union will
determine any potential normal subgroup. We need to be careful though: a conjugacy class in S5 is simply
determined by the cycle type; however, in A5, there might be permutations which won’t appear.

1 Cycle Type 5

We first consider the conjugacy classes for permutations of cycle type 5. To do this, we exploit the
Orbit-Stabilizer Theorem:

∀a ∈ G, |G| = |CG(a)||Cl(a)|
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In particular, let σ = (1 2 3 4 5). Using the above Theorem, alongside the fact that there are 24 elements of
cycle type 5 in S5:

CS5
(σ) = |S5|/|Cl(σ)| = 120/24 = 5

Hence, the number of elements in S5 which commute with σ is 5. Moreover, consider they cyclic subgroup
generated by σ:

⟨σ⟩ = {σ, σ2, σ3, σ4, σ5 = ι}

Notice, these will be the only permutations which commute with σ (any other permutation τ ∈ S5 won’t be
disjoint with σ, and thus, won’t commute). Hence:

⟨σ⟩ = CS5(σ)

Since the powers of σ are even permutations, they are contained in A5, and so:

⟨σ⟩ = CS5
(σ) = CA5

(σ)

By the Orbit-Stabilizer Theorem:

|Cl(σ)| = |A5|/|CA5
(σ)| = 60/5 = 12

Now, pick σ′ ∈ S5, such that σ′ ̸∈ ⟨σ⟩. Then, by similar logic Cl(σ′) = 12. Hence, the 2 conjugacy classes,
Cl(σ), Cl(σ′) will partition the conjugacy class containing elements of order 5 in A5 (since there are 24 such
elements).

2 Cycle Type (3, 1, 1)

With this cycle type, finding the centraliser is a bit harder. We can still use the Orbit-Stabilizer Theorem.
Let σ have cycle type (3, 1, 1). Then:

|CS5
(σ)| = |S5|/|Cl(σ)| = 120/20 = 6

So we expect 6 elements of S5 to commute with out σ. To be more concrete, lets pick a specific permutation,
σ = (1 2 3). Trivially, we know that τ = (4 5) commutes (since they are disjoint), and σ also commutes.
Similarly:

σ2 = (1 2 3)(1 2 3) = (1 3 2)

and σ3 will just be the identity. Since the centraliser is a subgroup, we must (at least) have that:

CS5
(σ) = {ι, σ, σ2, τ, στ, σ2τ}

This already contains 6 commuting elements, so it must be the centraliser in S5. But notice, some of these
elements are not in A5: τ is odd, and so, any product contraining τ will be odd (since σ is even). Thus, in
A5 the centraliser becomes:

CA5
(σ) = {ι, σ, σ2}

so by the Orbit-Stabilizer Theorem:

Cl(σ) = |A5|/|CA5
(σ)| = 60/3 = 20

Hence, the conjugacy class for cycle type 3 permutations in A5 is the same as in S5.

3 Cycle Type (2, 2, 1)
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We reach the last non-trivial conjugacy class. In S5, there are 15 elements with this cycle-type, so if σ
has cycle type (2, 2, 1):

|CS5
(σ)| = |S5|/|Cl(σ)| = 120/15 = 8

so we expect 8 elements to commute with σ. Lets consider σ = (1 2)(3 4). σ has order 2 (since it is
composed of 2 cycles of this order). Finding the remaining elements isn’t as easy as above. A systematic
way of checking is to use the fact that:

στ = τσ =⇒ τστ−1 = σ

Alongside:

Let:
σ = (a1 a2 . . . ak) ∈ Sn

and τ ∈ Sn.
Then:

τστ−1 = (τ(a1) τ(a2) . . . τ(ak))

(Lemma 6.1.7)

This tells us that τ commutes with σ if upon conjugating we obtain σ. One can then see that:

CS5(σ) = {ι, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}

Again, not all of these are even, which leads to:

CA5
(σ) = {ι, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

so:
|Cl(σ)| = |A5|/|CS5

(σ)| = 60/4 = 15

so once again, conjugacy classes of elements of cycle type (2, 2, 1, 1) will be the same in A5 as in S5.

All in all, we get the following table relating conjugacy classes in S5 and A5:

Cycle Type |ClS5
(σ)| |CS5

(σ)| |ClA5
(σ)| |CA5

(σ)|

5 24 5 12, 12 5

3,1,1 20 6 20 3

2,2,1 15 8 15 4

1,1,1,1,1 1 120 1 60

Now, any normal subgroup of A5 will be a union of these conjugacy classes. As such we require that:

|N | = 1 + 12α+ 20β + 15ν
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where the values come from the order of the conjugacy classes, and α ∈ [0, 1, 2], β, ν ∈ [0, 1] (the identity
element, which is the only elements in the conjugacy class of the identity must be in N for N to be a
subgroup). We require that |N | divides |A5| = 60 = 60 × 1 = 30 × 2 = 20 × 3 = 15 × 4 = 12 × 5. Notice
given this linear combination, the only possibilities are:

|N | = 1 (α = β = ν = 0)

|N | = 60 (α = 2, β = ν = 1)

Hence, N = {ι} or N = A5, and thus, A5 is simple.

2.5 Simplicity of the Alternating Groups

2.5.1 Lemma: 3-Cycles are Conjugate in Alternating Groups

If n ≥ 5 and σ, σ′ are 3-cycles in An, then σ, σ′ are conjugate in An:

∃τ ∈ An : τστ−1 = σ′

(Lemma 6.3.4)

Proof. Assume ∃τ ∈ Sn, where τ is odd, such that τ commutes with a 3-cycle σ:

τσ = στ =⇒ τστ−1 = σ

Now, let ν be another odd permutation in Sn. Then ντ will be an even permutation. Then:

(ντ)σ(ντ)−1 = ν(τστ−1)ν−1 = νσν−1

In other words, for any odd permutation ν, we can find a corresponding even permutation ντ , such that
they conjugate σ to the same value. In other words, any 2 3-cycles, which will be conjugate in Sn, will also
be conjugate in An, provided that there is an odd permutation with which they commute.

This is because of σ, σ′ are conjugate in Sn then ∃ν ∈ Sn such that:

νσν−1 = σ′

If ν is even, then ν ∈ An, so σ, σ′ are conjugate in An. Otherwise, τν ∈ An, so σ, σ′ are still conjugate in
An.

Now, let σ be a 3-cycle in Sn, where n ≥ 5. Then trivially σ must leave at least 2 elements α, β ∈ {1, . . . , n}
fixed. Hence, if we define τ = (α β), τ and σ will be disjoint, so in particular they must commute. Since τ
is a transposition, it is an odd permutation. Hence, by what we have just shown, 3-cycles are conjugate in
An, as required.
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2.5.2 Lemma: 3-Cycles Generate Alternating Groups

If n ≥ 3, then An is generated by 3-cycles.
(Lemma 6.3.5)

Proof. Let σ ∈ An. Since σ is even, it can be written as an even number of transpositions. Then, it is
sufficient to show that a product of 2 transpositions can be written as a single 3-cycle.

Consider 2 disjoint transpositions:

(a b)(c d) = (a c b)(c d a)

If the transpositions are not disjoint, without loss of generality we can assume that their first element is
common:

(a b)(a c) = (a c b)

Since σ decomposes into an even number of transpositions, by the above we can write σ using 3-cycles (just
group transpostions into pairs, and apply the transformations above), and so, any element in An can be
decomposed into 3-cycles, as required.

2.5.3 Lemma: Order of Fixed-Point-Free Subgroups

We say σ ∈ Sn is fixed-point-free if:

∀i ∈ [1, n], σ(i) ̸= i

Then, if H ≤ Sn, and ∀σ ∈ H, σ ̸= ι such that σ is fixed-point-free,
then |H| ≤ n.
(Lemma 6.3.6)

2.5.4 Lemma: Order of Conjugacy Classes of Alternating Groups

If n ≥ 6 and σ ∈ An, with σ ̸= ι, then:

|ClAn(σ)| ≥ n

(Lemma 6.3.7)

Intuitively this lemma says that conjugacy classes in An are big. For instance, the smallest non-trivial
conjugacy class in A6 has 40 elements (A6 has 720 elements).
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2.5.5 Theorem: Alternating Groups are Simple When n ≥ 5

An is a simple group for n ≥ 5.
(Theorem 6.3.3)

Proof. We perform induction on n.

1 Base Case: n = 5

We already proved this!

2 Inductive Hypothesis: n = k

Assume this is true for n = k. That is, A5, A6, . . . , Ak are all simple groups.

3 Inductive Step: n = k + 1

Consider the group Ak+1. Consider a normal subgroup:

H ◁ Ak+1

For i ∈ [1, k + 1] define the set Bi as the set of all even permutations which fix i:

Bi = {σ | σ(i) = i, σ ∈ An}

We claim that:
Bi

∼= Ak

This is simple to see: Bi is defined by fixing a unique element out of a set of k + 1 total elements; in other
words, it permutes all the other k elements, whilst keeping i fixed. This is the definition of a permutation
group of k elements. Since Bi only contains even permutations, it must be isomorphic to Ak.

Moreover, recall the Second Isomorphism Theorem:

Let N ◁ G and H ≤ G. Then:

1. HN ≤ G

2. N ◁ HN

3. H ∩N ◁ H

4. there exists an isomorphism:

H/(H ∩N) ∼= HN/N

(Theorem 2.3.7)
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so since H ◁ Ak and Bi ≤ Ak:
H ∩Bi ◁ Bi

Since Bi
∼= Ak, and Ak is a simple group by inductive hypothesis, it follows that Bi is simple, so:

H ∩Bi = Bi H ∩Bi = ι

First, assume that:
H ∩Bi = Bi

This is true if and only if Bi ⊆ H. Now, since Bi
∼= Ak ⊂ Ak+1, we know that Bi contains at least one

3-cycle (since 3-cycles are even permutations), and so, H contains a 3-cycle.

But H is a normal subgroup of Ak+1, and normal subgroups are unions of conjugacy classes. As such, H
must contain the whole conjugacy class of 3-cycles in Ak+1. But then, since Ak+1 is an alternating group,
it is generated by 3-cycles. Since H contains all the 3-cycles which generate Ak+1, it must be the case that
Ak+1 ⊆ H. Hence, it follows that H = Ak+1.

Secondly, assume that:
H ∩Bi = ι

In other words, if σ ∈ H, then σ fixes no element in i ∈ [1, n]. But then, H is a fixed-point-free subgroup
of Sk+1, so:

H ≤ k + 1

Now take some σ ∈ H such that σ ̸= ι. We also have that:

|ClAk+1
(σ)| ≥ k + 1

But then, recall ClAk+1
(σ) won’t contain the identity, so:

ClAk+1
(σ) ∪ {ι} ⊂ H

which implies:
|H| ≥ (k + 1) + 1

This is a contradiction, and so, no such non-identity must exist. Hence, σ = ι is the only possible element
in H, and so, Ak+1 must be simple.
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