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Based on the notes by Susan J. Sierra, Section 5.2 & 5.3

1 Recap: R-Modules

1.1 Definition: Ring

A ring is a set equipped with 2 operations:
(R> - )

known as addition and multiplication.
In particular:

1. (R, +) is an abelian group
2. (R,-) is a monoid:
e multiplication is associative

e there is an identity element 1 such that:
VreR, a-lg=1g-a=a
3. the distributive law holds in R:
a-(b+c)=(a-b)*(a-a)
(a+b)-c=(a-c)+(b-c)
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1.2 Definition: R-Module

An R-module is an abelian group:
M = (M, +)
equipped with a mapping over a ring R:
Rx Mw— M
(r,m) — rm
such that the following hold:
1. Distributivity:
r(a+0b) =ra+rd, Vr € r,Va,b e M
(r + s)a =ra+ sa, Vr,s € R,Na € M
2. Associativity:

r(sa) = (rs)a, Vr,s € R,Ya € M

3. Unatal:
1lra = a, l1p € R,Ya e M

(Definition 5.2.1)

1.2.1 Examples

e a Z-module is the same as an abelian group. If we define scalar multiplication by Z via:

at+a+...4+a, n>0
—_——

na — n times
0, n=
—(—n)a, n <0

then this is precisely the structure of an abelian group

e modules formalise many ideas, such as scalar multiplication in vectors/matrices. In fact, if K is a field
(a non-zero, commutative ring in which every element has a multiplicative inverse), a K-Module
is a K-vector space
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1.3 Definition: Submodule

Let M be an R-Module. Then, a non-empty subset M' C M is a sub-
module if M’ is also a module over R.
In particular, M' is a submodule if and only if:

1.
OMEM,
2.
a,be M —> a—be M
3.

reRaeM = raehM

1.3.1 Examples

e submodules of vector spaces are subscpaces

e submodules of Z-modules are subgroups

1.4 Definition: Free R-Module

Let R be a ring, and letn € N.
A free R-module of rank n is the module R", obtained by applying the
cartesian product n times, and endowed with the operation.:

r(ai,as,...,a,) = (raj,ras,...,ray,), r€ R,a; € R

(Definition 5.2.4)
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2 The Fundamental Theorem of Finitely (Generated Abelian Groups

2.1 Theorem: Fundamental Theorem of Finitely Generated Abelian Groups

Let A be a finitely generated abelian group. That is, Jaq, ..., as such
that:
A={ay,...,as)

Then:
A2 Ty X Ly X ... X L, X T, kL{eN, r,€Z

and such that:
rylre| ool |k

Here, we think of A, Z,, as Z-modules, not abelian groups.
(Theorem 5.2.5)

2.2 Intuition: Invertible Operations on Matrices Preserve Isomorphism

2.2.1 A Homomorphism for Finitely Generated Abelian Groups

Let A be a finitely generated abelian group, such that Jaq, ..., a
such that:
A={ay,...,as)

Then 0 is a Z-module homomorphism:

0:7°— A

S
(Tla °©ao 7TS) = Zriai
=1

This is clearly a homomorphism; in fact, it is surjective, since A is finitely generated, and 6 contemplates
all possible linear combinations of its generators.

What we are more interest in is the kernel, K = ker(6), since by the First Isomorphism Theorem
for Modules:
A=7°/K

which means that knowing how K “behaves” tells us everything we need to know about our finitely gen-
erated abelian group A.

To this regard, we need to acknowledge the fact that:
e K is a submodule of A (this is immediate from the definition of a submodule)

e K is finitely generated (this is hard to prove, so we take it as given)
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2.2.2 Lemma: Automorphisms Preserve Quotients

Let o« be a Z-module automorphism of Z°:
a1’ =77
Then:
Z’/K =2 7°/a(K)

That s, applying an automorphism to a kernel preserves the structure
of the quotient 7% | K .
(Lemma 5.2.6)

Proof. Define a mapping:
p:Z° > 7°a(K)

z—z+ a(K)

where:
a(K) ={a(k) | k€ K}

and K = ker(0), and « is an automorphism of Z*.

 is well-defined (since it has the same structure as the canonical map)

We now compute the kernel. Notice, x € ker(y) if and only if:
o) =04+ a(K) <= z€a(K)
In other words, there exists a unique k € ker() such that:
x = alk)

But « is an automorphism, so k € ker(f) if and only if = € ker(d). We prove this now. If k € ker(6),
then:

i=1

Thus:

O(x) = inai = Za(kzi)ai =« <Z kim) =0

Hence, k € ker() = 1z = a(k) € ker(0).

Now, assume that = = a(k) € ker(). Then:

O(z) = i:xiai =0
i=1
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But this means that:

w

Z oz(k:i)ai =« (Z k‘la,> =0

i=1

Now, since « is an automorphism, and «(0zs) = 0z- (thinking about Z° as a group). Hence:
> kia; =0(k) =0
i=1

so k € ker(0) <= z=a(k) € ker(0)

Hence, we have shown that:
ker(p) = ker(0) = K

Moreover, ¢ is trivially surjective, so by the first isomorphism theorem we have:
7°/K 27°/a(K)

as required.

2.2.3 From Kernel to Matrix

You might be wondering: what was the point of the above lemma? Well, notice, our kernel K = ker(f) is
finitely generated, say with generators x1,xo,...,x,. Then, we can write each x; € Z° using the standard

basis {€;}je,s:

S
T; = Zaijej = (aﬂ,aig, .. .,ais), aij € Z, 1€ [17’)"}, _j S [1, S]
j=1
This immediately reminds us of representation matrices in Honours Algebra.

Indeed, define the matrix:
M= (aij) </

In this way, the kernel M can be represented by a matrix M (notice, M won’t be unique, since the generators
Z1,...,%, need not be unique, so many possible a;; may be used). However, we can easily go from kernel
(or more generally, submodule) to matrix, and from matrix to kernel/submodule:

(b”) — yi:Zbijej

Again, you might still be wondering how these 2 are related. Well, one particular instance of an au-
tomorphism on Z° (thinking about Z° as a vector) is matrix multiplication (by invertible matrices).
What the Lemma above tells us is that we can apply matrix multiplication (or in general, some invertible
transformation) to our representative matrix M, which won’t affect the structure of the quotient:

7° 1K = 7° Jo(K)
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In particular, if we are clever, we can “chain” automorphisms «, such that K’ = a(K) corresponds with
a “convenient” matrix for computation, which will then give us an equivalent, but more convenient way of

looking at:
A2Z°/K

This is all rather abstract, so lets consider a particular example. Suppose we have a submodule K of Z?2
generated by 21 = (0,6), 22 = (6,8), 23 = (3,1). In terms of groups:

K = <(Ov 6)7 (67 S)v (37 1)>

and in terms of modules:
K =17(0,6) + Z(6,8) + Z(3,1)

Now, the representative matrix for K will be:
0 6
M=16 8
3 1

Now, we consider the effect of applying invertible row operations to M, and how these affect the corre-
sponding submodule associated to the matrix.

@ Row Swap

Say we act on M by swapping it’s first 2 rows:

6 8
MEBSE g 6
3 1

It is easy to M’ has the same row space as M, so by swapping rows we preserve the submodule, since we
operate over abelian groups over addition:

K =7(0,6) + Z(6,8) + Z(3,1) = Z(6,8) + Z(0,6) + Z(3,1)

(2) Row Addition

Say we act on M by adding it’s first 2 rows:

6 14
MR e g
3 1

Again, is easy to M’ has the same row space as M, so by adding rows we preserve the submodule. In
particular, the submodule associated to M’ is:

K' = 7(6,14) + Z(6,8) + Z(3,1)
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but:
7(0,6) = Z(6,14) — Z(6, 8) Z(6,14) = Z(0,6) + Z(6, 8)

which means that:
K=K

In general, invertible row operations won’t change the submodule K: they simply change the gen-
erators we use. This is the same as the linear algebra statement “row equivalent matrices have the same

row space”.

Moreover, notice these invertible row operations can be represented by left matrix multiplication.
For example, swapping the first 2 rows is given by:

01 0\ [0 6 6 8
DM=11 0 0o||6 8|=]0 6|[=0M
00 1/\3 1 31
and row addition:
1 1 0\ (0 6 6 14
DM=10 1 0||6 8l=]6 8|=M
00 1/\3 1 31

Indeed, these matrix multiplications represent automorphisms of Z*, so we’d expect that:
7° /K = 7° /K’

but in the case of invertible row operations, we get the bonus that our submodule doesn’t even change!

Notice, we aren’t including scalar multiplication as part of our invertible
operations. This is because we are operating over Z-modules, whereby the

inverse of a product is not always defined (i.e 4~ ¢ 7).
However, performing operations of the form R; + zR; is invertible (just

subtract zR; from the resulting R; ).

Now, what happens to our submodule K if we apply invertible column operations to our matrix
M?
@ Column Swap

Say we act on M by swapping its 2 columns:

8 06
MB2 M =6 o
1 3
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Now, whilst the column space is preserved, its row space changes completely. Indeed, the associated
submodule will be:
K' =7(8,6) + 7(6,0) + Z(1,2)

This is completely different from K. For instance:
(6,0) = 0(8,6) + 1(6,0) +0(1,3) € K’
but (6,0) € K, since K = Z(0,6) + Z(6,8) + Z(3,1), so we’d require:

x(0,6) +y(6,8) + z(3,1) = (6,0)
=06y +32=06 6z +8y+2z=0
= 6x+8y+2-2y=20
= 6z 46y = -2
= 6(z+y)=-2

and there is no integer satisfying 6a = —2.

However, not all hope is lost. After all, invertible column operations can be represented by right
matrix multiplication with an invertible matrix. For instance, to swap the columns:

0 6 8 6
M'=MD=|6 8 =16 0
31 1 3

D is an automorphism of Z°, and we can indeed see that:
KD =7(0,6)D + Z(6,8)D + Z(3,1)D = 7Z(8,6) + Z(6,0) + Z(1,2) = K’

so by our Lemma:
7° /K 27°/K'=7° /KD

Hence, whilst invertible column operations do change our submodule K, they don’t change the
isomorphism class:
AxZ7°/K=7°/KD

Since all we care about is A, we can change K as much as we want, so long as this doesn’t affect the
structure of Z° /K.

All this discussion then leads to the following proposition.
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2.2.4 Proposition: Invertible Operations on Matrices Preserve Isomorphism

Suppose that M is the r X s matriz corresponding to the finitely gener-
ated submodule:

K= Za; CZ°
i=1
If we change M — M’ via invertible row and column operations, then
M’ corresponds to a submodule K' of 7%, such that:

7° /K 2 78| K'
(Proposition 5.2.7)

2.3 Proof: Fundamental Theorem of Finitely Generated Abelian Groups

Using the discussions above, we have now developed a sufficient amount of linear algebra to prove the Fun-
damental Theorem of Finitely Generated Abelian Groups. We restate it:

Let A be a finitely generated abelian group. That is, daq, ..., as such
that:
A={ay,...,a,)

Then:
A§ZT1><ZT2><...><Z%><Z€, k.l eN, r,eZ

and such that:
7"1’7“2‘ |7“k

Here, we think of A, Z,, as Z-modules, not abelian groups.
(Theorem 5.2.5)

Proof. Let K be the kernel of the Z-module homomorphism:
0:72°—= A
(T1ye00s1s) = Zriai
i=1

such that:
A=7°/K

Moreover, let M be the matrix associated to K, where K is finitely generated by:

Ty = (aila .- '7ais)
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such that:
M = (a;;)

We then perform the following algorithm:

1. Apply invertible row and column operations on M to ensure that a1 = 1 = ged({a;;}) (this will
always be possible, using Bezout’s lemma)

2. Perform further IRCs, to “clean” the first row and columns. That is turn the first row into:

(n o .. 0)

and the first column into:

0
(again, this will always be possible, since 7y will divide all other entries in the matrix)

3. Repeat this procedure, until M becomes a diagonal matrix:

m 0 ... 0 0 ... 0

0 7o 0 0 0
M:

0 0 0 7 0

0 0 0 0 0

But then this tells us that:
K' =7(r1,0,...,0) + Z(0,72,...,0) + ... + Z(0,0,...,7%,...,0)

and
A7 /K27° /K’

We now claim that this implies that:
AT X .o X Ly X L5
To this regard, consider a mapping:
025 = Ly X .. X Ly X T57F

Define:
[], =z (mod n)

and define ¢ as:
(Zla R} ZS) — ([21]7'1’ [22}7"23 ctt [Zk]Tkvzk-‘rla DR ZS)
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This is clearly a homomorphism, since z; — [2;], is @ homomorphism (and the trivial map z; — z; is too).
Moreover, it is clearly surjective.

Now, lets compute ker(y). We claim that ker(¢) = K'. Indeed:
z € ker(yp)
— ¢(z) =(0,0,...,0)
<~ z = (a171, 0272, ...,a,7L,0,...,0), a; €Z
< z2eK'
where we can rewrite:
K' =7(r1,0,...,0) + Z(0,72,...,0) + ... + Z(0,0,...,7%,...,0)
=Z(r1,0,...,0) +Z(0,ra,...,0) + ... +Z(0,0,...,7%,...,0)
+7Z(0,0,...,0) 4+ ...+ Z(0,0,...,0)

s—k times

Hence, by the First Isomorphism Theorem:

Z°)K' 2Ly X oo X Ly X 57K

Hence, we have that:
A7 )K 2 72°|K' 20 X ... X Ly, X L5

as required.

We prove uniqueness in the following proposition.

2.3.1 Proposition: FTFGAG Provides a Unique Decomposition

Let p be prime, and let:

a1>a22...2am

by >by>... >0,

be positive integers. If:
A:Cpal X ... XCpam gB:A:Cpbl X ...XCpbn

then:

m=n Vi e [1,m],a; =b;
If this is true, then by FTFAG from last week, each Z,, will decompose
uniquely into cyclic groups of prime power order, so our decomposition for

A in terms of Z,,, will be unique.
(Proposition 5.3.2)
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