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Based on the notes by Susan J. Sierra, Section 5.1

1 Abelian Groups from Direct Products

1.1 Internal Direct Products

1.1.1 Definition: Internal Direct Products

Let G be a group, with H,K ◁ G. Then, G is the internal direct prod-
uct of H and K if:

1.
G = HK = {hk | h ∈ H, k ∈ K}

2.
H ∩K = {e}

3.
∀h ∈ H, k ∈ K, hk = kh

A more general statement can be found here, where for a internal direct product, given Hi, i ∈ [1, n]
subgroups of G we require that:

1. G = H1H2 . . . Hn

2. Hi ◁ G

3. Ĥi = H1H2 . . . Hi−1Hi+1 . . . Hn =⇒ Hi ∩ Ĥi = {e}

and they show that the commutativity condition hihj = hjhi follows from the above properties.

1.1.2 Theorem: Internal Direct Products are Isomorphic to External Direct Products

Let G be a group with H,K ◁ G, such that G is an internal direct prod-
uct of H and K. Then:

G ∼= H ×K

More generally, if G is a internal direct product of n groups Hi, then:

G ∼= H1 ×H2 × . . .×Hn
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We prove the claim for n = 2, with the more general claim following by an inductive argument.

Define a homomorphism:
ϕ : H ×K → G

via:
ϕ(h, k) = hk

We claim that ϕ is an isomorphism.

1 Injectivity

Let (h, k) ∈ ker(ϕ). That is:
ϕ(h, k) = hk = e

This is true if and only if :
h = k−1

But H,K are subgroups, which are closed under inverses, and since H ∩ K = {e}, we know that h ̸∈ K
unless h = e. Hence, we must have that:

(h, k) = (e, e)

Thus, ker(ϕ) = {e}, and ϕ is injective.

2 Surjectivity

Let g ∈ G. Since G is an internal direct product, ∃h ∈ H, k ∈ K such that:

g = hk

Hence:
ϕ(h, k) = g

and ϕ is surjective.

3 Homomorphism

Let (h1, k1), (h2, k2) ∈ H ×K. Then:

ϕ((h1, k1)(h2, k2)) = ϕ(h1h2, k1k2)

= (h1h2)(k1k2)

= (h1k1)(h2k2), (since hk = kh by assumption of IDP)

= ϕ(h1, k1)ϕ(h2, k2)

so ϕ is a homomorphism.

Thus, we have shown that ϕ defines an isomorphism, and so:

H ×K ∼= G

as required.
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1.2 Constructing Abelian Groups from Sylow Subgroups

1.2.1 Lemma: Order of Group Products

Let H,K be finite subgroups of G. Then:

|HK| = |H||K|
|H ∩K|

Proof. We can partition HK by using cosets:

HK = ∪h∈HhK

This is because clearly K ≤ H, and any element hk ∈ HK must belong to a given coset hK.

Since cosets are either identical (h1K = h′
1K) or disjoint (h1K ∩ h2K = ∅), we see that |HK| will be

defined by the number of distinct cosets of K.

Let’s assume 2 cosets are equal. That is, we have for h, h′ ∈ H,h ̸= h′:

hK = h′K =⇒ h′−1h ∈ K

By subgroup closure h′−1h ∈ H, so we must have:

h′−1h ∈ H ∩K

Moreover, ∀k ∈ K, defining h′ = hk ensures that h′K = hK. In other words, for each element h ∈ H, if
h ∈ H ∩K, we are overcounting it by a factor of |H ∩K| (since there are |H ∩K| many elements ensuring
that if h′ ∈ H ∩K, then ∃k ∈ K such that h′ = hk, so we will have equal cosets). Hence, the total number
of distinct cosets will be:

|H|
|H ∩K|

Since each coset is such that |hK| = |K|, it follows that:

|HK| = |H||K|
|H ∩K|

as required.

1.2.2 Lemma: Order of an Element as the Greatest Common Divisor

Let G be a group and g ∈ G. If:

gα = gβ = e

then:
ggcd(α,β) = e
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Proof. Recall Bezout’s Lemma, which states that if d is the greatest common divisor of x, y ∈ Z, then a, b ∈ Z
such that:

ax+ by = d

Hence:

ggcd(α,β) = gaα+bβ

= gaαgbβ

= (gα)
a (

gβ
)b

= eaeb

= e

as required.

We are now ready to prove the main theorem of this section: we can deconstruct finite abelian groups by
using its Sylow subgroups.

1.2.3 Theorem: Abelian Group is Isomorphic to Direct Product of Sylow Subgroups

Suppose that A is a finite abelian group of order n, where:

n =
k∏

i=1

psii

where pi are distinct primes, and si ∈ N.
Let Api be the unique Sylow pi-subgroup of A.
Then:

A ∼= Ap1 × Ap2 × . . .× Apk

(Theorem 5.1.3)

Notice, here we are saying that Api
are unique. This is due to the fact that G is abelian, so any subgroup

H is normal:
gHg−1 = gg−1H = H

so by Sylow II, it follows that npi
= number of conjugate Sylow pi subgroups = 1.
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Proof. If we can show that G is an internal direct product of its Sylow p-subgroups, then by the Theorem
above, G will be isomorphic to the direct product of its Sylow p-subgroups.

Notice, the Sylow pi-subgroups are automatically normal by definition (since they are unique), so this
satisfies property 2 of IDPS.

We now claim that if A = Ap1
. . . Api−1

Api+1
. . . Apk

, then:

Api ∩A = {e}

We do so by induction. In the case k = 2, we only have 2 Sylow p-subgroups, so we consider Ap1 ∩Ap2 .
If g ∈ Ap1 ∩Ap2 , then:

g ∈ Ap1
=⇒ g|Ap1 | = gp

s1
1 = e

g ∈ Ap2
=⇒ g|Ap2 | = gp

s2
2 = e

But then, by the Lemma above, it follows that:

ggcd(p
s1
1 ,p

s2
2 ) = e

But since p1, p2 are prime, they (and their powers) will be coprime, so g1 = e and g = e. So we verify the
case k = 2.

Now, assume true for k = m, and consider the case k = m+1, where g ∈ Ai∩A. By inductive hypothesis,
we know that

⋂m+1
j=1,j ̸=i Apj = {e}. In other words, by the Lemma on the order of product groups:

|A| =
m+1∏

j=1,j ̸=i

|Apj
| =

m+1∏
j=1,j ̸=i

p
sj
j

Then:
g ∈ Api =⇒ gp

si
i = e

g ∈ A =⇒ g
∏m+1

j=1,j ̸=i p
sj
j = e

But then:

g
gcd

(
gp

si
i ,

∏m+1
j=1,j ̸=i p

sj
j

)
= e

and since all the values are coprime, we again get g1 = e. Hence:

Api ∩A = {e}

and thus, we have proven property 3 of IDPs.

We now need to show that:
G = Ap1

Ap2
. . . Apk

Notice, since:
Ap1

Ap2
. . . Apk

≤ G

it suffices to show that:
|G| = |Ap1

Ap2
. . . Apk

|
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But notice, since we have property 3 proven, we know that:

k⋂
i=1

Api
= {e}

so:

|Ap1
Ap2

. . . Apk
| =

∏k
i=1 |Api

|∣∣∣⋂k
i=1 Api

∣∣∣ =
k∏

i=1

psii = |G|

Hence, we also have property 1.

Hence, G is a internal direct product of its Sylow subgroups, and so:

A ∼= Ap1
×Ap2

× . . .×Apk

as required.

1.3 Theorem: Abelian Group of Prime Power Order is Isomorphic to Direct
Product of Cyclic Subgroups

Let A be an abelian group with prime-power order:

|A| = pn

Then, A is isomorphic to the direct product of cyclic subgroups
with orders:

pe1 , . . . , pes

where:
e1 ≥ e2 ≥ . . . ≥ es ≥ 1

and:
s∑

i=1

ei = n

This product is unique up to reordering of the factors.
(Theorem 5.1.4)

1.4 Corollary: Fundamental Theorem of Finite Abelian Groups (I)

Let A be a finite abelian group. Then, A is a direct product of
cyclic groups of prime power order. This product is unique up to
reordering of the factors.
(Corollary 5.1.5)
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Proof. We can decompose A into a direct product of its Sylow p-subgroups, each of which with order psii .
By the above Theorem, we can then further decompose each of the Sylow p-subgrouops into a direct product
of cyclic subgroups with orders p

ej
i . Hence, we can decompose A into a direct product of cyclic groups of

prime power order, as required.

1.5 Theorem: Chinese Remainder Theorem

Let m,n be non-zero coprime integers. Then:

Cmn
∼= Cm × Cn

(Theorem 5.1.6)

This theorem was stated without proof in week 1

Proof. Let:
Cm = ⟨a⟩ Cn = ⟨b⟩

and define the following homomorphism:

ϕ : Z → Cm × Cn

via:
ϕ(r) = (ar, br)

This is a homomorphism, since:

ϕ(r1 + r2) = (ar1+r2 , br1+r2)

= (ar1a
r
2, b

r
1, b

r
2)

= (ar1, b
r
1)(a

r
2, b

r
2)

= ϕ(r1)ϕ(r2)

Now, consider the kernel of ϕ. In particular, r ∈ ker(ϕ) if:

ϕ(r) = (e, e) ⇐⇒ ar = br = e

In other words, r must be the smallest natural number which is a multiple of both m and n (which are the
respective orders of a and b). In other words:

r = lcm(m,n)

But m,n are coprime, so:
r = mn
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Hence:
ker(ϕ) = mnZ

Now, we apply the First Isomorphism Theorem:

Z/mnZ ∼= im(ϕ)

But notice:
Z/mnZ = Zmn

∼= Cmn

Moreover:
|im(ϕ)| = |Cmn| = mn = |Cm × Cn|

so it follows that ϕ must be an isomorphism, and so:

Cmn
∼= Cm × Cn

as required.

1.6 Corollary: Fundamental Theorem of Finite Abelian Groups (II)

Any finite abelian group A of order n can be written as a direct prod-
uct of cyclic groups:

A = Cn1 × Cn2 × . . .× Cns

where:

• ∀i ∈ [1, s− 1], ni | ni+1

•
∏s

i=1 ni = n

This product is unique up to reordering of the factors.
(Corollary 5.1.8)

1.7 Worked Examples

1.7.1 Decomposing the Cyclic Group of Order 100

Consider the cyclic group C100. We have 100 = 22 × 52, so Sylow I tells us we should expect a Sylow
2-subgroup of order 4, and a Sylow 5-subgroup of order 25.

By the Fundamental Theorem of Finite Abelian Groups (I), we can write C100 as a direct product of
prime power subgroups. This gives us the 4 following possibilities:

• C4 × C25

• C2 × C2 × C25

• C2 × C2 × C5 × C5

• C4 × C5 × C5

By the Fundamental Theorem of Finite Abelian Groups (II), we can also write C100 as a direct product
of mutually “divisible” cyclic groups. Indeed, using the Chinese Remainder Theorem, we see that:
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• C4 × C25
∼= C100

• C2 × C2 × C25
∼= C2 × C50

• C2 × C2 × C5 × C5
∼= C10 × C10

• C4 × C5 × C5
∼= C5 × C20

1.7.2 Finding Abelian Groups of Order 540

The following is an exercise from the August 2019 exam

• Up to isomorphism, how many abelian groups are there of order 540? Give 2 different
lists of these groups, using the 2 versions of the Fundamental Theorem of Finite Abelian
Groups, and indicate which groups on the 2 lists are isomorphic?

• Let A be an abelian group of order 540 which has no elements of order 20 or 18. How
many elements of order 30 does A have? Justify your answer with a proof.

Assume A is an abelian group of order 540. We can write:

540 = 2× 5× 6× 9 = 22 × 33 × 5

so A has 3 Sylow subgroups: a Sylow 2-subgroup of order 4, a Sylow 3-subgroup of order 27 and a Sylow
5-subgroup of order 5.

By the Fundamental Theorem of Finite Abelian Groups (I), we can write A as a direct product of prime
power orders. Thus, we get the following options:

• C4 × C27 × C5

• C2 × C2 × C27 × C5

• C4 × C3 × C3 × C3 × C5

• C2 × C2 × C3 × C3 × C3 × C5

• C4 × C3 × C9 × C5

• C2 × C2 × C3 × C9 × C5

(these are unique up to reordering, so these are the only possible options)

By using the Chinese Remainder Theorem, we get the cyclic groups from the Fundamental Theorem of
Finite Abelian Groups (II) (recall, the order of the cyclic subgroups must divide each other):

• C4 × C27 × C5
∼= C540

• C2 × C2 × C27 × C5
∼= C2 × C270

• C4 × C3 × C3 × C3 × C5
∼= C3 × C3 × C60

• C2 × C2 × C3 × C3 × C3 × C5
∼= C3 × C6 × C30
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• C4 × C3 × C9 × C5
∼= C3 × C180

• C2 × C2 × C3 × C9 × C5
∼= C6 × C90

Now assume that |A| = 540 and that A has no element of order 20 or 18. By CRT, elements of order
20 arise as a result of C4 × C5, whilst groups or order 18 arise as a result of C2 × C9. This means that the
following groups can’t be A:

• C4 × C27 × C5

• C4 × C3 × C3 × C3 × C5

• C4 × C3 × C9 × C5

• C2 × C2 × C3 × C9 × C5

This leaves only 2 possibilities:

• C2 × C2 × C27 × C5

• C2 × C2 × C3 × C3 × C3 × C5

But now, we require a group with elements of order 30. We see that the only group satisfying this is:

C2 × C2 × C3 × C3 × C3 × C5
∼= C3 × C6 × C30

since:
C2 × C2 × C27 × C5

∼= C2 × C270

The elements of order 30 arise from the direct product:

(C2 × C2)× (C3 × C3 × C3)× C5

From C5, there are 4 possible elements of order 5 (discounting the identity). From C3 × C3 × C3, we get
26 elements of order 3 (discounting the identity). Finally, from C2 × C2 we have 3 elements of order 2
(discounting the identity). Thus, we have:

4× 3× 26 = 312

elements of order 30.

2 The Exponent

2.1 Definition: The Exponent of a Group

Let G be a group. We denote with e(G) the exponent of G. e(G) is the
least common multiple of the orders of the elements of G

For example, in S3 the elements have order 1, 2 or 3, so e(S3) = 6.
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2.2 Lemma: Exponent Bounded by Group Order

For any finite group G:
e(G) ≤ |G|

Proof. Let G be a group. By Lagrange’s Theorem, the order o(g) of any element g ∈ G divides |G|. If all
the orders of the group are coprime (ignoring group elements with repeated orders, since repeated orders
won’t contribute to changing the lcm), then:

e(G) = |G|

(this is the case of S3 shown above)

Otherwise, there are at least 2 elements g1, g2 such that o(g1) ̸= o(g2) are not coprime. WLG, we can
assume o(g2) > o(g1), which means that:

e(G) < |G|
This is because the lcm of the remaining elements will be the product of all the (distinct) orders, call it ℓ;
however, lcm(o(g1), o(g2)) = o(g2) < o(g1)o(g2). Thus:

e(G) = ℓ× o(g2) < ℓ× o(g1)o(g2) ≤ |G|

(for example, in D4 group elements have order 1,2,4, so e(D4) = 4 ̸= 8)

2.3 Lemma: Abelian Groups Contain Elements with Order which Divides Ex-
ponent

Let A be a finite abelian group.
If k divides e(A), then:

∃g ∈ A : o(g) = k

Proof. Say that km = e(A), and a ∈ A has order e(A). Then:

ae(A) = e =⇒ (am)k = e

so am ∈ A is an element of order k

The above Lemma is really useful for “filtering” out abelian groups if we have some group order restriction.
For example, in the problem above with abelian groups of order 540, we found the following possibilities:
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• C4 × C27 × C5
∼= C540

• C2 × C2 × C27 × C5
∼= C2 × C270

• C4 × C3 × C3 × C3 × C5
∼= C3 × C3 × C60

• C2 × C2 × C3 × C3 × C3 × C5
∼= C3 × C6 × C30

• C4 × C3 × C9 × C5
∼= C3 × C180

• C2 × C2 × C3 × C9 × C5
∼= C6 × C90

We imposed the restriction of having no group of order 20 or 18. Consider, for example, C6 × C90. It is
immediate that the exponent of this group is 90 (we imposed that if A = Cn1 ×Cn2 × . . .×Cns , then ni | ni+1,
so ns must be divisible by all previous group orders, and each such group contains an element of order ni,
so ns must be the lcm).
This then tells us C6 × C90 will have elements of orders which divide 90, namely:

1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90

so C6 × C90 will contain an element of order 18.

2.4 Lemma: Abelian Groups Contain Elements with Exponent Order

Let A be a finite abelian group.
Then A contains an element of order e(A).
(Lemma 5.1.11)

Proof. First, assume that A is a group of order pm, where p is prime. Let a ∈ A be such that:

o(a) = ps, s ≤ m

such that a is the element of highest order. Then, by Lagrange’s Theorem, any other element of A must
have order:

pt, s ≤ t

Hence, it follows that e(A) = ps.

Now, consider a general abelian group A. We can decompose A into a direct product of its Sylow
p-subgroups:

|A| = n =

k∏
i=1

psii =⇒ A ∼= Ap1
× . . .×Apk

Now, let a ∈ Ap1 × . . .×Apk
. Each subgroup has coprime order, so by the Chinese Remainder Theorem we

know that:

a = (a1, . . . , ak) =⇒ o(a) =

k∏
i=1

o(ai)
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Now, pick the components of a, such that ai is the element of greatest order in Api , say o(ai) = ptii . Then:

e(Api
) = o(ai) = ptii

In particular, any element in A must have order less than or equal to:

k∏
i=1

ptii

(since the orders are all coprime), and so:

e(A) =

k∏
i=1

ptii

and thus, a ∈ A is an element of order e(A) as required.

2.5 Corollary: Abelian Group with Exponent Order is Cyclic

If A is a finite abelian group with:

e(A) = |A|

then A is cyclic.
(Corollary 5.1.12)

Proof. Since e(A) = |A|, then ∃a ∈ A such that o(a) = |A| by the Theorem above. But then, this is true if
and only if A is cyclic (the subgroup generated by a has order |A|, so ⟨a⟩ = A, and A is cyclic).

2.6 Theorem: Subgroup of Multiplicative Field is Cyclic

Let A be a finite subgroup of the multiplicative group:

K∗ = K \ {0}

of a field K. Then A is a cylic group.
In particular, K∗ will be cyclic.
(Theorem 5.1.13 & Corollary 5.1.14)
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Recall, a field is a non-zero, commutative ring, where each non-zero element has a multiplicative
inverse. Moreover, a ring is a set:

(R,+, ·)

such that:

1. (R,+) is an abelian group, with identity 0R

2. (R, ·) is a monoid:

• multiplication is associative

• there is an identity element 1R:

∀a ∈ R, a · 1R = 1R · a = a

3. distributive laws hold in R:
a · (b+ c) = (a · b) + (a · c)

(a+ b) · c = (a · c) + (b · c)

Proof. Since K is a field, in particular it is a commutative group under multiplication, so any subgroup will
also be commutative. Thus, A will be abelian.

Now, define:
e = e(A)

Since e is the lowest common multiple of the order of all group elements, we must have:

∀a ∈ A, ae = 1

(1 is the multiplicative identity)

In particular, working with the ring of polynomials over K, K[X], it follows that all the elements of A
are roots of:

Xe − 1 ∈ K[X]

Since Xe − 1 has at most e roots, it follows that:

|A| ≤ e

But recall, a property of the exponent is that e ≤ |A|. Hence, we must have that e = |A|. By the Corollary
above, A must be a cyclic subgroup, as required.
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