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Based on the notes by Susan J. Sierra, Chapter 4

1 Group Actions

1.1 Definition: Action of a Group

Let G be a group, and X a set.
An action of G on X is the function:

G×X → X

(g, x) 7→ g · x
satisfying:

1. Trivial Identity:
∀x ∈ X, e · x = x

2. “Associativity”:
g · (h · x) = (gh) · x

1.1.1 Examples: Group Actions

• the symmetric group Sn acts on {1, 2, . . . , n} in a natural way:

σ · i = σ(i)

• the dihedral group Dn acts on {T,B} (the “top” and “bottom” faces of the polygon) in the following
way. If g denotes a reflection, and h denotes a rotation:

g · T = B g ·B = T h · T = T h ·B = B

• the dihedral group Dn acts on {1, 2, . . . , n} in a natural way, if we use the set to label the vertices
of the polygon.

• the trivial action is defined for any set X. Given any group G, we can define:

∀x ∈ X,∀g ∈ G, g · x = x

• let F be a field, n ∈ N, and define the group of n × n, matrices G = GL(F;n). G acts on the set Fn

via matrix multiplication:
A · v = Av
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1.2 Definition: The Orbit

Let G be a group, and X a set.
The orbit of x ∈ X is the subset of X containing all elements which can
be mapped to via a group action:

OrbG(x) = G · x = {g · x | g ∈ G} ⊆ X

1.3 Definition: The Stabilizer

Let G be a group, and X a set.
The stabilizer of x ∈ X is the subset of G containing all group elements
which fix x ∈ X via a group action:

StabG(x) = {g | g · x = x, g ∈ G} ⊆ G

1.3.1 Example: Orbit and Stabilizer for D3

Consider the group D3 of symmetries of a triangle:
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1

2 3

Consider D3 acting on the vertices {1, 2, 3}. Then:

OrbG(1) = {1, 2, 3}

since applying the rotations allow us to map a vertex to every other vertex.
Moreover:

StabG(1) = {e, g}

where g denotes a reflection about the vertex 1. All other elements of the groups are rotations (which clearly
map 1 to some other vertex) or reflections about other vertices.

1.4 Lemma: Orbits as Equivalence Classes

Let G be a group acting on a set X.

1. The following is an equivalence relation:

x ∼ y ⇐⇒ ∃g ∈ G : g · x = y

2. The equivalence classes are orbits:

cl(x) = OrbG(x)

3. Orbits partition X.

(Lemma 4.2.2)

Proof. 1. Equivalence Relation

1 Reflexivity

Clearly x ∼ x, since e · x = x by properties of group actions.

2 Symmetry

Assume that x ∼ y. That is:
∃g ∈ G : g · x = y
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But then:
g−1 · y = g−1 · (g · x) = (gg−1) · x = x

so y ∼ x.

3 Transitivity

Assume x ∼ y and y ∼ z. Then:

∃g1, g2 ∈ G : g1 · x = y, g2 · y = z

Thus:
(g2g1) · x = g2 · (g1 · x) = g2 · y = z

so x ∼ z.

Hence, ∼ is an equivalence relation on X, as required.

2. Orbits as Equivalence Classes

By definition, the equivalence class of x ∈ X is:

cl(x) = {y | g · x = y, g ∈ G} = {g · x | g ∈ X} = OrbG(x)

3. Orbits Partition

Since orbits are equivalence classes, and equivalence classes partition a set, the orbits must partition
the set.

1.5 Lemma: Stabilizers as Subgroups

Let G be a group acting on X.
Then:

∀x ∈ X, StabG(x) ≤ G

(Lemma 4.2.3)

Proof. Firstly, the stabilizer is non-empty, since e · x = x, so:

e ∈ StabG(x)

To show that StabG(x) is a subgroup, let g, h ∈ StabG(x). We now show that gh−1 ∈ StabG(x):

(gh−1) · x = (gh−1) · (h · x)
= g · ((hh−1) · x)
= g · x
= x

so gh−1 ∈ StabG(x) as required.
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1.6 Definition: Transitive Actions

G acts transitively on X if:

∀x, y ∈ X, ∃g ∈ G : y = g · x

In other words, there is an element x ∈ X, such that when G acts on x, it
generates X (so X is in a single orbit).
For example, Dn acts transitively on the set of vertices {1, 2, . . . , n}, since
n rotations allow us to map any vertex to every other vertex.

1.7 Definition: Faithful Actions

G acts faithfully on X if the only element which fixes everything is e:

∀x ∈ X, g · x = x =⇒ g = e

Alternatively:
∀x ∈ X,StabG(x) = {e}

Alternatively, if kernel of an action:

N = {g | g · x = x,∀x ∈ X, g ∈ G} =
⋂
x∈X

StabG(x)

is trivial:
N = {e}

1.8 Theorem: The Orbit-Stabilizer Theorem

Let G be a finite group acting on X. Then:

∀x ∈ X, |G| = |StabG(x)||OrbG(x)|

Proof. We exploit Lagrange’s Theorem, which tells us that if H ≤ G:

|G| = |H||G/H|

For some x ∈ X, define:
H = StabG(x)

We claim there exists a bijection:
ϕ : OrbG(x) → G/H
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Indeed, let y ∈ OrbG(x). Then:
∃g ∈ G : g · x = y

Define:
ϕ(y) = gH

This mapping is surjective. Let g1H ∈ G/H. Then, define:

y = g1 · x

Thus:
ϕ(y) = g1H

so ϕ is surjective.

This mapping is injective. Assume that:

ϕ(y1) = ϕ(y2) =⇒ g1H = g2H

where:
y1 = g1 · x y2 = g2 · x

Since g1H = g2H, then ∃h ∈ H such that:
g1h = g2

But then:
y2 = g2 · x = (g1h) · x = g1 · (h · x) = g1 · x = y1

where we have used the fact that h ∈ StabG(x), so h · x = x. Hence, we have shown that:

ϕ(y1) = ϕ(y2) =⇒ y1 = y2

so ϕ is injective.

Thus, ϕ is a bijection, so |G/H| = |OrbG(x)|, and by Lagrange’s Theorem:

|G| = |H||G/H| = |StabG(x)||OrbG(x)|

as required.

1.8.1 Example: Verifying Orbit-Stabilizer for Permutations

Consider the group Sn acting on X = {1, . . . , n}. Let x ∈ X. Then, it is clear that:

OrbG(x) = X

(that is, Sn acts transitively). This is because the transposition σ = (i x) maps x to any i ∈ [1, n].

The stabilizer is the set of all permutations which fix x. That is, all the permutations which don’t include
x in the cycle. But this is just the set of permutations of n− 1 elements:

StabG(x) = Sn−1

Hence:
|StabG(x)||OrbG(x)| = |Sn−1||X| = (n− 1)!n = n! = |Sn|

as expected.
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1.9 Groups Act on Themselves

• How can a group act on itself?

– groups are sets, so they can act on themselves

– there are 3 “natural” definitions for group actions when they act on themselves. Let g, h ∈ G.
Consider:

1. Left Action:
g · h = gh

2. Right Action:
g · h = hg−1

3. Conjugate Action:
g · h = ghg−1

We verify that the conjugate action is indeed a group action. Let a, g, h ∈
G. Then:
1

e · a = eae−1 = h

2

g · (h · a) = g · (hah−1) = g(hah−1)g−1 = (gh)a(gh)−1 = (gh) · a

1.9.1 Definition: Conjugacy Classes

Let G be a group. The conjugacy class of a ∈ G is the orbit of a:

Cl(a) = OrbG(a) = {gag−1 | g ∈ G}

1.9.2 Definition: Centraliser

Let G be a group. The centralizer of a ∈ G is the stabilizer of a:

CG(a) = StabG(a) = {g | gag−1 = a, g ∈ G} = {g | ga = ag, g ∈ G}

That is, the centralizer of a is the set of all elements in G which com-
mute with a.
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1.9.3 Lemma: Orbit-Stabilizer for Conjugate Action

Let G be a finite group. By the Orbit-Stabilizer Theorem:

∀a ∈ G, |G| = |CG(a)||Cl(a)|

(Lemma 4.2.7)

1.9.4 Theorem: The Class Equation

Let G be a group, and consider a set of representatives a1, . . . , an ∈ G.
Then:

G = Cl(a1) ⊔ . . . ⊔ Cl(an)

where ⊔ is the disjoint union. This just says that the conjugacy
classes partition a group (since they are orbits).
This means that:

|G| =
n∑

i=1

|Cl(ai)|

1.9.5 Example: Conjugate Actions and the Dihedral Group

Consider D5 acting on its vertices:

1

2

3 4

5

We fix notation: let g be the reflection through the vertical line bisecting vertex 1; let h be the anticlock-
wise rotation by 2π

5 radians.

What is the centralizer of h? This is the set of all elements in D5 which commute with h. This clearly
includes all powers of h:

hnh = hn+1 = hhn

so:
{e, h, h2, h3, h4} ⊆ CG(h)

Moreover, g ̸∈ CG(h). This is because ghn represents a reflection, so:

(ghk)2 = e =⇒ ghkghk = e =⇒ ghk = hn−kg

In particular, we must have:
gh = h4g = h−1g ̸= hg
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so g doesn’t commute with h.
But since |CG(h)| divides |G| by the Theorem above, |CG(h)| = 5 or |CG(h)| = 10 (since it contains at least
5 elements). Since g ̸∈ CG(h) it can only contain 5 elements, so:

{e, h, h2, h3, h4} = CG(h)

What about the conjugacy classes? Which elements are generated by conjugating with h?

aha−1

By the theorem above, we must have 2 elements. If a = e, then we generate h:

ehe−1 = h

In fact, since rotations commute, they will always generate h:

hk(h)h−k = h(hkh−k) = h

What about reflection?
ghg−1 = h−1 = h4

(here we use ghkg = h−k).
Hence:

Cl(h) = {h, h4}

1.10 The Centre of Prime Groups

1.10.1 Definition: p-group

A p-group is a group in which each element has an order of a power of
p, where p is prime.

1.10.2 Lemma: Finite p-group

Let G be finite, then:

G is a p-group ⇐⇒ ∃n ∈ N : |G| = pn

Proof. • ( =⇒ ): assume G is a finite p-group, and that every element has an order of the form pk, for
some k ∈ N. Now, assume there is a prime q which divides |G|. By Cauchy’s Theorem, this implies
that there exists an element g ∈ G with order q. But all elements in G have orders of the form pk, so
q = pk. Hence, any divisor of |G| must be a power of p, so |G| is a power of p.

• ( ⇐= ): assume that |G| = pn. All the elements of G must have an order which divides |G| by
Lagrange’s Theorem, so every element must be a power of p.
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1.10.3 Definition: Centre of a Group

The centre of a group G is the set of all g ∈ G which commute with every
element of G:

Z(G) = {g | ∀h ∈ G, gh = hg, g ∈ G}

1.10.4 Theorem: p-groups Have Non-Trivial Centres

Let G be a non-trivial, finite p-group. Then:

Z(G) ̸= {e}

That is, the centre is non-trivial.
(Theorem 4.2.12)

We will use the class equation, which tells us that there are representatives ai ∈ G such that:

|G| =
n∑

i=1

|Cl(ai)|

. Notice, by Lagrange’s Theorem:
|G| = |CG(ai)||Cl(ai)|

Since G is a p-group, |G| = pk, and it must be the case that:

p | |Cl(ai)| =⇒ ∃ri : |Cl(ai)| = pri

Now, notice that if a ∈ Z(G), a commutes with every element of G, so:

Cl(a) = {gag−1 | g ∈ G} = {a(gg−1) | g ∈ G} = {a}

Similarly, if Cl(a) = {a}, then:
∀g ∈ G, gag−1 = a =⇒ ga = ag

so a commutes with every element in G.

Hence, we have that:
a ∈ Z(G) ⇐⇒ Cl(a) = {a}

But then, we can rewrite the class equation as:

|G| = pk =
∑

ai∈Z(G)

|Cl(ai)|+
∑

ai ̸∈Z(G)

|Cl(ai)| = |Z(G)|+
∑

ai ̸∈Z(G)

|Cl(ai)|

But |Cl(ai)| = pri > 1 (since ai isn’t in the centraliser, so the conjugacy class contains more than 1 element),
and |G| = pk, so p divides their difference; in other words:

p | |Z(G)|

Hence, |Z(G)| ≥ 2, so Z(G) is non-trivial.
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1.10.5 Revision Exercises

1. Show that if G is a group with |G| = p2, where p is prime, then G is abelian.

2 The Sylow Theorems

2.1 Motivation for the Sylow Theorems

The Sylow Theorems can be thought of as generalising Cauchy’s Theorem to powers of p. They are par-
ticularly useful in the study of normal subgroups. Normal subgroups are very important, because they
help define simple groups, which in turn can be used to “decompose” all finite group. So understanding
simple groups is fundamental to understanding the structure of all finite groups. To study simple groups,
we require the tools provided by the Sylow Theorems.

2.2 Definition: p-Subgroups

Let G be a finite group. A p-subgroup is subgroup of G which is a p-
group (so its order is a power of p, where p is prime).

2.3 Definition: Sylow p-Subgroups

Let G be a finite group. A Sylow p-subgroup is a p-subgroup whose
order is the highest power of p which divides |G|.
If p doesn’t divide |G|, then {e} is the unique Sylow p-subgroup, known as
the trivial Sylow p-subgroup.

2.4 Theorem: Sylow I

The First Sylow Theorem states that non-trivial Sylow p-subgroups always exist.

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Then, there exists at least one Sylow p-subgroup, which will be a sub-
group of order pm.
(Theorem 4.1.2)
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2.5 Theorem: Sylow II

The Second Sylow Theorem states that all Sylow p-subgroups are conjugate.

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Suppose that P is a Sylow p-subgroup and that:

H ≤ G

is any p-subgroup of G.
Then:

∃x ∈ G : H ⊆ xPx−1

In particular, if P, P ′ are Sylow p-subgroups, since:

|xPx−1| = |P |

and:
|P | = |P ′|

it follows that: this means that:

∃x ∈ G : P ′ ⊆ xPx−1 =⇒ ∃x ∈ G : P ′ = xPx−1

Hence, any 2 Sylow p-subgroups of G are conjugate in G.
(Theorem 4.1.3)

2.5.1 Corollary: Normal Subgroups and Unique Sylow p-Subgroups

Let |G| = pmr where p doesn’t divide r.
Let P be a Sylow p-subgroup of G.
Then:

P ◁ G ⇐⇒ P is the unique Sylow p-subgroup

That is, a Sylow p-subgroup is normal if and only if it is the unique Sy-
low p-subgroup:

P ◁ G ⇐⇒ np = 1

(Lemma 4.19 & Corollary 4.3.2)
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Proof. • ( =⇒ ) Assume that P ◁ G. By Sylow II, all Sylow p-subgroups are conjugate to P . np is
the number of Sylow p-subgroups, so in particular, it is the number of Sylow p-subgroups which are
conjugate to P . But by definition, a subgroup is normal if and only if it has a unique conjugate, so
np = 1, and thus, P must be a normal subgroup.

• ( ⇐= ) Let P the unique Sylow p-subgroup. Then for any g ∈ G, gPg−1 is a subgroup of order |P |.
Since P is the only such subgroup:

∀g ∈ G, gPg−1 = P

so P will be a normal subgroup.

2.6 Theorem: Sylow III

The Third Sylow Theorem gives us information about the number of Sylow p-subgroups.

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Let np be the number of distinct Sylow p-subgroups of G. Then:

np | r np ≡ 1 (mod p)

(Theorem 4.1.4)

2.7 Applications/Examples of Sylow Theorems

2.7.1 Example: Verifying Sylow on S3

We have that:
|S3| = 6 = 3× 2

So Sylow I predicts subgroups of order 2 and 3.

Since the transpositions are their own inverses, they certainly form subgroups with themselves and the
identity:

{e, (1 2)} {e, (1 3)} {e, (2 3)}

so n2 = 3, and indeed, 3 | 3 and 3 ≡ 1 (mod 2), as predicted by Sylow III. It can also be shown that the
transpositions are conjugate (this is a property of transpositions in Sn).

There is only one subgroups of order 3:

{e, (1 2 3), (1 3 2)}

which is trivially conjugate to itself, and 1 | 3, 1 ≡ 1 (mod 3) as required.
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2.7.2 Example: Verifying Sylow on D6

We have:
|D6| = 12 = 4× 3 = 3× 4

so Sylow I predicts subgroups of order 3 and 4. Moreover:

n2 | 3 n2 ≡ 1 (mod 2)

(so there are 1 or 3 subgroups of order 4)

n3 | 4 n3 ≡ 1 (mod 3)

(so there are 1 or 4 subgroups of order 3)

Let g be reflections, and h be rotations by π/3 anticlockwise. Notice, the subgroups of order 3 must be
cylic. h2 generates a cylic subgroup of order 3. Moreover, any element of D6 which isn’t a power of h will
be a reflection:

(ghk)(ghk) = (ghkg)hk = h−khk = e

Since reflections have order 2, they can’t generate a subgroup or order 3, so
〈
h2

〉
is the only Sylow 3-subgroup.

Now, lets consider the Sylow 2-subgroups. Notice, the ghk are reflections, so theya re their own inverses.
We can consider the sets in which each element are their own inverses:

{e, g, h3, gh3} {e, gh, h3, gh4} {e, gh2, h3, gh5}

These are clearly closed, and inverses exist by construction, so these are all subgroups. There are 3 of them,
as predicted by Sylow III (these groups are isomorphic to Z2 × Z2)

D6 has no element of order 4, so the Sylow 2-subgroups couldn’t have been
isomorphic to Z4. The only remaining group of order 4 is Z2 × Z2.

2.7.3 Proposition: Normal Subgroups in Groups of Order 30

Any group of order 30 has a non-trivial normal subgroup.
(Proposition 4.1.7)

Let G be a group of order 30. We can decompose it into prime factors:

|G| = 30 = 2× 3× 5

Sylow I thus predicts the existence of Sylow 2-subgroups, Sylow 3-subgroups and Sylow 5-subgroups. It is
sufficient to prove that one of the Sylow 3-subgroups or Sylow 5-subgroups is normal.

By Sylow III, we know the following:

n5 | 6 n5 ≡ 1 (mod 5)
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Since n5 ≤ 6, it must thus be the case that n5 = 1 (so there is a unique Sylow 5-subgroup) or n5 = 6 (so
there are 6 Sylow 5-subgroups).

Similarly:
n3 | 10 n3 ≡ 1 (mod 3)

Since n3 ≤ 10, it must thus be the case that n3 = 1 (so there is a unique Sylow 3-subgroup) or n3 = 10 (so
there are 10 Sylow 3-subgroups).

We now claim that at least one of n3, n5 must be 1. We proceed by contradiction: assume neither is 1.
Then:

n3 = 10 n5 = 6

Let Pi, i ∈ [1, 6] be the 6 Sylow 5-subgroups. Since |Pi| = 5 is prime, Pi will be cyclic, by Lagrange’s
Theorem. Since the 6 Sylow 5-subgroups are distinct and cyclic, they can’t share elements in common
(except the identity), so:

∀i, j ∈ [1, 6], i ̸= j =⇒ Pi ∩ Pj = {e}

Similarly, if Qi, i ∈ [1, 10] are the 10 Sylow 3-subgroups, we have |Qi| = 3, so the Qi will also be cyclic, and:

∀i, j ∈ [1, 10], i ̸= j =⇒ Qi ∩Qj = {e}

But now, lets consider how many elements are in these Sylow subgroups. For the Sylow 5-subgroups,
exploiting their disjoint nature tells us:

6⋃
i=1

|Pi| = 1 + (5− 1)× 6 = 25

For the Sylow 3-subgroups:
10⋃
u=1

|Qi| = 1 + (3− 1)× 10 = 21

But since these are subgroups, this implies that:

|G| = 30 ≥ 25 + 21 = 46

which is a contradiction.

Hence, we must have n3 = 1 or n5 = 1.

Lets assume that n3 = 1. Then, G has a unique subgroup of order 3 (namely the Sylow 3-subgroup).
Call it P . But now, for any g ∈ G:

gPg−1 ≤ G

(conjugation always produces subgroups). But |gPg−1| = |P | = 3, so gPg−1 must be a subgroup of order 3.
Since P is the only such subgroup:

∀g ∈ G, gPg−1 = P

so P must be a normal subgroup.

The same argument applies when n5 = 1.

Notice, the intersection of Sylow p-subgroups isn’t always trivial: the
above arguments relied on the fact that the subgroups had prime order. For
instance, as we showed above, the Sylow 2-subgroups of D6 all contain h3.

Page 17



2.8 Simple Groups

2.8.1 Definition: Simple Groups

A group G is simple if the only normal subgroups of G are trivial:

{e} G

3 Proving the Sylow Theorems

3.1 Sylow I

3.1.1 Theorem: Sylow I

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Then, there exists at least one Sylow p-subgroup, which will be a sub-
group of order pm.
(Theorem 4.1.2)

Proof. We shall exploit group actions. Define the following set:

X = {A | A ⊆ G, |A| = pm}

that is, X is the set of all subsets of G with cardinality pm.

Now, for any g ∈ G:
|gA| = |A|, A ∈ X

since the mapping:
A → gA a 7→ ga

is a bijection (the inverse is just ga 7→ g1(ga) = a).

Now, we claim that there exists an orbit when G acts on X, such that the orbit has a cardinality which
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isn’t divisble by p. X is obtained by choosing pm elements from a set of pmr elements, so:

|X| =

pmr

pm


=

(pmr)!

(pm)!(pmr − pm)!

=
pmr(pmr − 1)(pmr − 2) . . . (pmr − (pm − 1))

(pm)!

=
pmr(pmr − 1)(pmr − 2) . . . (pmr − (pm − 1))

pm(pm − 1)(pm − 2) . . . (pm − (pm − 1))

Now, if we let s ∈ [1, pm], let k be the highest power of p dividing both:

pmr − s pm − s

Clearly, pk divides both pmr and pm, so if it divides both, k must be the highest power of p dividing s.
Hence, the numerator and denominator of |X| have as a common factor a power of p. These cancel out,
meaning that p doesn’t divide X. But recall, by the class equation we can partition X into its orbits, such
that ∃A1, A2, . . . , An:

|X| =
n∑

i=1

|OrbG(Ai)|

But since p doesn’t divide |X|, there must be at least one OrbG(A∗) such that p doesn’t divide OrbG(A∗).

Now, we apply the Orbit-Stabilizer Theorem to this element A∗ ∈ X:

|G| = pmr = |StabG(A∗)||OrbG(A∗)|

Since p doesn’t divide |OrbG(A∗)|, we must then have that:

pm | |StabG(A∗)|

(we can’t immediately conclude that |StabG(A∗)| = pm, since if r is composite and r = ab, then it can be
the case that |StabG(A∗)| = apm).

But now, select some a ∈ A∗. Then:

(StabG(A∗)) · a ⊆ A∗

since StabG(A∗) is the set of all g ∈ G which fix A∗:

g ·A∗ = A∗ =⇒ ga ∈ A∗, ∀a ∈ A∗

Hence, we have:
|(StabG(A∗)) · a| = |StabG(A∗)| ≤ |A∗| = pm

Since pm | |StabG(A∗)| but |StabG(A∗)| ≤ pm, it can only be the case that:

|StabG(A∗)| = pm

But recall, a property of the stabilizer is that it is a subgroup of G. Hence, we have found a subgroup of g
of order pm, as required for Sylow I.
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3.2 Sylow II

3.2.1 Theorem: Sylow II

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Suppose that P is a Sylow p-subgroup and that:

H ≤ G

is any p-subgroup of G.
Then:

∃x ∈ G : H ⊆ xPx−1

In particular, if P, P ′ are Sylow p-subgroups, since:

|xPx−1| = |P |

and:
|P | = |P ′|

it follows that:

∃x ∈ G : P ′ ⊆ xPx−1 =⇒ ∃x ∈ G : P ′ = xPx−1

Hence, any 2 Sylow p-subgroups of G are conjugate in G.
(Theorem 4.1.3)

Proof. We begin by proving the following Lemma:

Let p be prime, and let G be a finite p-group, acting on a finite set X.
Then, if X0 is the set of fixed points of X under G:

|X0| ≡ |X| (mod p)

(Lemma 4.3.1)

Consider the representatives of all the orbits of X, which aren’t fixed points: x1, . . . , xn ∈ X \ X0.
Since xi is not a fixed point, |StabG(xi)| < |G|, so StabG(xi) must be a proper subgroup of G, so by the
Orbit-Stabilizer Theorem:

|OrbG(xi)| > 1
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and |OrbG(xi)| must divide |G|. Since G is a finite p-group, we must have that |G| = pn, so |OrbG(xi)| must
be some power of p, pk, k > 0.

Finally, the orbits partition X, so we can write:

X = X0 ⊔OrbG(x1) ⊔ . . . ⊔OrbG(xn)

so

|X| = |X0|+
n∑

i=1

|OrbG(xi)| =⇒ |X0| ≡ |X| (mod p)

where we use the fact that ∀i ∈ [1, n], p | |OrbG(xi)|.

We can now prove Sylow II.

We consider:

• P to be a Sylow p-subgroup, such that |P | = pm

• H to be any other p-subgroup

• the action of H on the set of cosets G/P via:

h · (gP ) = (hg)P

Now, since P is a Sylow p-subgroup, |P | = pm, so by Lagrange’s Theorem:

|G/P | = r

and p doesn’t divide r.

By the Lemma we just proved, if X0 is the set of fixed points of G/P , then:

|X0| ≡ |G/P | (mod p)

Hence, |X0| ≡ r (mod p), so in particular |X0| > 0, so the action of H on G/P has at least one fixed point.

Suppose that xP ∈ X0. Then by definition of a fixed point:

∀h ∈ H h(xP ) = (hx)P = xP

which is true if and only if :
∀h ∈ H, x−1hx ∈ P

Thus, it follows that:
x−1Hx ⊆ P ⇐⇒ H ⊆ xPx−1

as required.

If H is a Sylow p-subgroup, then:
|H| = |P | = |xPx−1|

which forces:
H = xPx−1

and so any 2 Sylow p-subgroups are conjugate.
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3.3 Sylow III

3.3.1 Definition: Normalizer

Let G be a group, and H ≤ G. Define the normalizer of H as the set:

NG(H) = {g | g ∈ G : gHg−1 = H}

3.4 Lemma: Properties of the Normalizer

1. NG(H) ≤ G and H ◁ NG(H) (in fact, NG(H) will be the largest
subgroup of G with H as a normal subgroup)

2.
H ◁ G ⇐⇒ NG(H) = G

We can think of NG(H) as indicating how “close” H is of being a
normal subgroup of G)

3. For any subgroup H ≤ G:

|G/NG(H)| = the number of distinct conjugate subgroups to H

4. Let p | |G| and let P be a Sylow p-subgroup of G. Then:

np = |G/NG(P )|

Proof.

1 NG(H) ≤ G and H ◁ NG(H)

Firstly, NG(H) is non-empty, since e ∈ NG(H). Hence, NG(H) ≤ H if n1, n2 ∈ NG(H) implies that
n1n

−1
2 ∈ NG(H). Since n1, n2 ∈ NG(H) then:

n1Hn−1
1 = H n2Hn−1

2 = H

Hence:

(n1n
−1
2 )H(n1n

−1
2 )−1 = (n1n

−1
2 )H(n2n

−1
1 )

= n1Hn−1
1

= H

so NG(H) ≤ G as required.

Page 22



Clearly, H ⊆ NG(H), since for any h ∈ H:

hHh−1 = H

by closure of the subgroup. Moreover, H ≤ G, so it is a subgroup, and H ≤ NG(H). By definition,
∀g ∈ NG(H), gHg−1 = H, so H will be a normal subgroup of NG(H).

2 H ◁ G ⇐⇒ NG(H) = G

If H ◁ G, then ∀g ∈ G:
gHg−1 = H

Hence:
NG(H) = G

On the other hand, if NG(H) = G, then:

∀g ∈ G, gHg−1 = H

so H is normal by definition.

3 The number of conjugate subgroups to H is |G/NG(H)|

Define X to be the set of all subgroups of G which are conjugate to H. That is:

X = {K | K ≤ G ∧ ∃g ∈ G : gHg−1 = K}

Define the action of G on X via conjugation:

a · (bHb−1) = (ab)H(ab)−1

Then:
OrbG(H) = {aHa−1 | a ∈ G} = X

Moreover:
StabG(H) = {a | a ∈ G : aHa−1 = H} = NG(H)

Hence, by the Orbit-Stabilizer Theorem:

|G| = |NG(H)||X| =⇒ |X| = |G|/|NG(H)| = |G/NG(H)|

as required.

4 p | |G| =⇒ np = |G/NG(P )|

Since P is a Sylow p-subgroup, then the number of conjugates to P is precisely np (Sylow II says that
all p-subgroups are conjugates of P ), so from the claim above:

np = |G/NG(P )|

as required.
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3.4.1 Theorem: Sylow III

Let |G| = n and suppose that p is a prime such that:

p | n

We can thus write:
|G| = n = pmr, p ̸ | r

Let np be the number of distinct Sylow p-subgroups of G. Then:

np | r np ≡ 1 (mod p)

(Theorem 4.1.4)

Proof. We have that |G| = pmr, and by the previous lemma, if P is a Sylow p-subgroup, then:

np = |G/NG(P )| = |G|/|NG(P )|

But then:

|G| = pmr =⇒ r =
|G|
|P |

=
|G|

|NG(P )|
|NG(P )|

|P |
= np

|NG(P )|
|P |

Since P ≤ NG(P ), then |P | | |NG(P )| and so |NG(P )|
|P | ∈ Z. Hence, we have that:

np | r

as required.

For the second claim, define X to be the set of all Sylow p-subgroups of G. Consider P ∈ X acting on
X via conjugation.

Recall, when proving Sylow II, we showed that:

Let p be prime, and let G be a finite p-group, acting on a finite set X.
Then, if X0 is the set of fixed points of X under G:

|X0| ≡ |X| (mod p)

(Lemma 4.3.1)

Hence, we will have that the set of fixed points X0 of X under P is such that:

|X0| ≡ np (mod p)
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We claim that:
X0 = {P}

such that |X0| = 1.

Clearly, P ∈ X0, since ∀p ∈ P :
pPp−1 = P

Now, suppose ∃Q ∈ X0. Then:
∀p ∈ P, pQp−1 = Q

In particular, this means that:
P ⊆ NG(Q)

Hence, since P,Q are Sylow p-subgroups of G, it follows that P,Q are also Sylow p-subgroups of NG(Q)
(since |NG(Q)| ≤ |G|, and P,Q are subgroups in G, and subsets of NG(Q)). Moreover, we showed that:

Q ◁ NG(Q)

which is true if and only if np = 1, so Q must be the only Sylow p-subgroup, and so P = Q.

Hence, P is the only fixed point, and so:

1 ≡ np (mod p) =⇒ np ≡ 1 (mod p)

as required.
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