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Based on the notes by Susan J. Sierra, Chapter 3

1 Cayley Tables

A Cayley or multiplication table is an array recording the group
structure of a finite group, by listing all possible products of group el-
ements:
9 g2 In
Gl g 919 919n
92 | 201 93 920n
() (12)  (13) (23) (123) (132)
O 1 0 (2 (13) (23) (123) (132)
(12) | (12) () (132) (123) (23) (13)
(13) | (13) (123) () (132) (12) (23)
(23) | (23) (132) (123) () (13)  (12)
(123) | (123)  (13) (23) (12) (132) ()
(132) | (132) (23) (12) (13) () (123)

Figure 1: Multiplication table for Sjs.
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2 Group Presentations

2.1 Definition: Presentation of a Group

A group presentation is defined by a set of generators x+,...,x,, and
a set of relations on the generatorsry, ... ,ry:
(X1, T | Ty )

this defines the following group:

e a group generated by all possible combinations (words) of 1, ..., xy,
and their inverses 1", ..., x;} (for example, if we use symbols

T,y, 2, possible group elements will be v*yz~1 and x732°)

e constrained by the relationsry =e,...,r, = e, where
Vi€ [1,n],r, € {x1,...,xn} (for example, we might require that
2% = e, in which case x?yz~ would become x*yz and x 32> would
become x732)

e satisfying the group axioms (this essentially imposes associativity,
since the remaining axioms are trivially satisfied from definition)

(Definition 3.2.3)

2.2 Definition: Free Groups

A free group on generators xi,...,x,, is a group which can be defined
via a group presentation without relations.

In other words, it is the group produced by all combinations (words) of
the symbols 1, . . ., x,,, and their inverses, subject to group axioms and un-
der the operation of concatenation.

A free group can be written as:

(1, T | =) = {(T1, .-, )

2.3 Examples of Group Presentations
2.3.1 Group Presentation of Cyclic Groups

Consider the group presentation:
A=(z|z" =¢e)

Then this defines a set:
2 -1
{z,2*,..., 2" " e}

which is the form of any cylic group C,, of order n, so A = C,,.
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2.3.2 Group Presentation of the Integers

Consider the group presentation:
A=A{z| -}

A is a free group of the form:
{. a2 o exa®. .}

This is just a group which is generated by a single element. In particular:
¢:z% —a

defines an isomorphism from A to Z, so A 2 7Z

2.3.3 Group Presentation of Z x Z

Consider the group presentation:
A= (z,y | ayz"ly™")

That is, we have a relation:

myxilyfl =e — IY=yYx

Hence, A will be a commutative group. However, we know more: given any g € A, the fact that we can
permute the symbols x,y implies that Ji, j € Z such that:
g=a'y

In particular: o
¢ x'y’ — (i,])

defines a group isomorphism between A and Z x Z.

2.3.4 Group Presentation of the Trivial Group
Consider the group presentation:
A= (z|2®=2?%
A is a group, so the cancellation property, alongside the relation imply that:
r=e

Hence, A must be the trivial group:

A={e}

Nowvikov’s Theorem states that, in general, there is no algorithm which
can decided whether a group presentation defines the trivial group.

This doesn’t mean that there aren’t algorithms for determining this, just
that there is no single algorithm which can decide for all group presenta-

tions.
In fact, in general it is not possible to determine whether a word, (like x3

or x2yz"1) is itself the identity, given just the group presentation.
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2.4 Extended Example: The Dihedral Group D5 and the Universal Property of
Free Groups

2.4.1 Defining the Group Presentation FE

We now analyse the group presentation:
E = (a,b| a*b°, (ab)*)

We begin by looking at how the relations affect the group structure:

a?=e = al=a
P=e — p1=p
(ab)2 —abab=e¢ — aba=b"'! =— ba=a b ! =ab?

This is a crucially important piece of information: as with Z x Z, the fact that ba = ab* implies that any
element of E can be written in the form:

a'ty, i €[0,1],5 € [0,4]
In particular, this means that we can list all the elements of E:
E = {e,b,b*,b%,b* a,ab, ab®, ab®, ab*}

However, the group presentation doesn’t tell us whether all these elements are unique (there might be some
way of combining the relations which allows us to equate 2 elements); all we can say is that |E| < 10.

2.4.2 Proposition: The Universal Property of Free Groups
Now, we take a step back, and define the Universal Property of Free Groups:

Let G be a group generated by a set:

{s1,...,8n}
Consider the free group:
F={(5,...,5)

defined by the letters Sy, ..., S,.
Then, there exists a unique surjective homomorphism:

T:F — G

given by:
7(S;) = si, Vi € [1,n]

Here we note that G is a group, so it may have some restrictions on its elements; on the other hand, F
is a free group, so it is composed by all possible words derived from S;.
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2.4.3 Discovering F

Now, we define 2 symbols A, B which generate the free group (A, B). Then, by the universial property of
free groups, we have a unique surjective homomorphism:

7:{(A,B) > F

A—~a€eF
B—beFE

For example,
7(A3B2A°BY) = a®b%a®1® = ab®ab = a*b%b = b*

This is surjective, since by the definition of E, we can write € E via a’d’, so:

7m(A'BY) =z

Now, recall the dihedral group Ds, which gives the symmetries of a regular pentagon:

2

This is composed of 2 elements: g (reflection about vertex 1) and h (rotation by % anticlockwise).

Now, notice D5 has many similarities with E:
e g% = ¢ (similarly, a® = ¢)
e h5 = e (similarly, h® = ¢)

e h generates a normal subgroup, and g~'hg = h*. This means that hg = gh* = (gh)? =e.

We can see that g~'hg = h* geometrically. If we apply g, we reflect the vertices:
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We then rotate by %’T anticlockwise:

Finally, we reflect again by the top vertex (2):

Alternatively, if we had done the rotation h* = h=! (so a %’T clockwise rotation):
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Now, in a similar vein to the work above, we can define a free group homomorphism:

¢1<A>B>HD5

9
Y(B) =h

We now have the following mappings:

Now, lets consider ker(r). This contains A%, B®, (AB)?, alongside all those elements in (A, B) which,
due to the logical consequences defined by E, are mapped to e € E. Notice, all these elements must also be
contained in ker(1), since D5 contains all the relations defining F, so in particular all the logical consequences
imposed on 7 apply to v, so ker(w) C ker() (since we don’t know all the relations which are applicable to
D5 only).

But now, recall the Corollary to the Universal Property of Factor Groups:
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If:
e ¢ : G — K is a surjective group homomorphism
e Y : G — H is a group homomorphism
o ker(¢) C ker(y)
Then, there is a unique group homomorphism:
v:K—H
such that:
Yop=1
(Corollary 2.2.4)

Hence, there exists a unique homomorphism:

1/;5E—>D5

Y =1

where:

ba)=g POb)=h
Notice, this means that 1) is a surjective mapping, and so:

|E| > |Ds| = 10

But since |E| < 10, ¢ must be an isomorphism, and so, E 2 Ds.

In general:
Vn > 3, {(a,b]a®b", (ab)?) = D,
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