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Based on the notes by Susan J. Sierra, Chapter 3

1 Cayley Tables

A Cayley or multiplication table is an array recording the group
structure of a finite group, by listing all possible products of group el-
ements:

Figure 1: Multiplication table for S3.
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2 Group Presentations

2.1 Definition: Presentation of a Group

A group presentation is defined by a set of generators x1, . . . , xm and
a set of relations on the generators r1, . . . , rn:

⟨x1, . . . , xm | r1, . . . , rn⟩

this defines the following group:

• a group generated by all possible combinations (words) of x1, . . . , xm
and their inverses x−1

1 , . . . , x−1
m (for example, if we use symbols

x, y, z, possible group elements will be x2yz−1 and x−3z5)

• constrained by the relations r1 = e, . . . , rn = e, where
∀i ∈ [1, n], rn ∈ {x1, . . . , xm} (for example, we might require that
z2 = e, in which case x2yz−1 would become x2yz and x−3z5 would
become x−3z)

• satisfying the group axioms (this essentially imposes associativity,
since the remaining axioms are trivially satisfied from definition)

(Definition 3.2.3)

2.2 Definition: Free Groups

A free group on generators x1, . . . , xm is a group which can be defined
via a group presentation without relations.
In other words, it is the group produced by all combinations (words) of
the symbols x1, . . . , xm and their inverses, subject to group axioms and un-
der the operation of concatenation.
A free group can be written as:

⟨x1, . . . , xm | −⟩ = ⟨x1, . . . , xm⟩

2.3 Examples of Group Presentations

2.3.1 Group Presentation of Cyclic Groups

Consider the group presentation:
A = ⟨x | xn = e⟩

Then this defines a set:
{x, x2, . . . , xn−1, e}

which is the form of any cylic group Cn of order n, so A ∼= Cn.
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2.3.2 Group Presentation of the Integers

Consider the group presentation:
A = {x | −}

A is a free group of the form:
{. . . , x−2, x−1, e, x, x2, . . .}

This is just a group which is generated by a single element. In particular:

ϕ : xa → a

defines an isomorphism from A to Z, so A ∼= Z

2.3.3 Group Presentation of Z× Z

Consider the group presentation:
A =

〈
x, y | xyx−1y−1

〉
That is, we have a relation:

xyx−1y−1 = e =⇒ xy = yx

Hence, A will be a commutative group. However, we know more: given any g ∈ A, the fact that we can
permute the symbols x, y implies that ∃i, j ∈ Z such that:

g = xiyj

In particular:
ϕ : xiyj → (i, j)

defines a group isomorphism between A and Z× Z.

2.3.4 Group Presentation of the Trivial Group

Consider the group presentation:

A =
〈
x | x3 = x2

〉
A is a group, so the cancellation property, alongside the relation imply that:

x = e

Hence, A must be the trivial group:
A = {e}

Novikov’s Theorem states that, in general, there is no algorithm which
can decided whether a group presentation defines the trivial group.
This doesn’t mean that there aren’t algorithms for determining this, just
that there is no single algorithm which can decide for all group presenta-
tions.
In fact, in general it is not possible to determine whether a word (like x3

or x2yz−1) is itself the identity, given just the group presentation.
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2.4 Extended Example: The Dihedral Group D5 and the Universal Property of
Free Groups

2.4.1 Defining the Group Presentation E

We now analyse the group presentation:

E =
〈
a, b | a2, b5, (ab)2

〉
We begin by looking at how the relations affect the group structure:

a2 = e =⇒ a−1 = a

b5 = e =⇒ b−1 = b4

(ab)2 = abab = e =⇒ aba = b−1 =⇒ ba = a−1b−1 = ab4

This is a crucially important piece of information: as with Z × Z, the fact that ba = ab4 implies that any
element of E can be written in the form:

aibj , i ∈ [0, 1], j ∈ [0, 4]

In particular, this means that we can list all the elements of E:

E = {e, b, b2, b3, b4, a, ab, ab2, ab3, ab4}

However, the group presentation doesn’t tell us whether all these elements are unique (there might be some
way of combining the relations which allows us to equate 2 elements); all we can say is that |E| ≤ 10.

2.4.2 Proposition: The Universal Property of Free Groups

Now, we take a step back, and define the Universal Property of Free Groups:

Let G be a group generated by a set:

{s1, . . . , sn}

Consider the free group:

F = ⟨S1, . . . , Sn⟩

defined by the letters S1, . . . , Sn.
Then, there exists a unique surjective homomorphism:

π : F → G

given by:
π(Si) = si, ∀i ∈ [1, n]

Here we note that G is a group, so it may have some restrictions on its elements; on the other hand, F
is a free group, so it is composed by all possible words derived from Si.
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2.4.3 Discovering E

Now, we define 2 symbols A,B which generate the free group ⟨A,B⟩. Then, by the universial property of
free groups, we have a unique surjective homomorphism:

π : ⟨A,B⟩ → E

A 7→ a ∈ E

B 7→ b ∈ E

For example,
π(A3B2A5B6) = a3b2a5b6 = ab2ab = a2b8b = b4

This is surjective, since by the definition of E, we can write x ∈ E via aibj , so:

π(AiBj) = x

Now, recall the dihedral group D5, which gives the symmetries of a regular pentagon:

1

2

3 4

5

This is composed of 2 elements: g (reflection about vertex 1) and h (rotation by 2π
5 anticlockwise).

Now, notice D5 has many similarities with E:

• g2 = e (similarly, a2 = e)

• h5 = e (similarly, h5 = e)

• h generates a normal subgroup, and g−1hg = h4. This means that hg = gh4 =⇒ (gh)2 = e.

We can see that g−1hg = h4 geometrically. If we apply g, we reflect the vertices:
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1

2

34

5

We then rotate by 2π
5 anticlockwise:

1

2

3

45

Finally, we reflect again by the top vertex (2):

1

2

3

4 5

Alternatively, if we had done the rotation h4 = h−1 (so a 2π
5 clockwise rotation):
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1

2

3

4 5

Now, in a similar vein to the work above, we can define a free group homomorphism:

ψ : ⟨A,B⟩ → D5

ψ(A) = g

ψ(B) = h

We now have the following mappings:

Now, lets consider ker(π). This contains A2, B5, (AB)2, alongside all those elements in ⟨A,B⟩ which,
due to the logical consequences defined by E, are mapped to e ∈ E. Notice, all these elements must also be
contained in ker(ψ), sinceD5 contains all the relations defining E, so in particular all the logical consequences
imposed on π apply to ψ, so ker(π) ⊆ ker(ψ) (since we don’t know all the relations which are applicable to
D5 only).

But now, recall the Corollary to the Universal Property of Factor Groups:
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If:

• ϕ : G→ K is a surjective group homomorphism

• ψ : G→ H is a group homomorphism

• ker(ϕ) ⊆ ker(ψ)

Then, there is a unique group homomorphism:

ψ̄ : K → H

such that:
ψ̄ ◦ ϕ = ψ

(Corollary 2.2.4)

Hence, there exists a unique homomorphism:

ψ̄ : E → D5

ψ̄π = ψ

where:
ψ̄(a) = g ψ̄(b) = h

Notice, this means that ψ̄ is a surjective mapping, and so:

|E| ≥ |D5| = 10

But since |E| ≤ 10, ψ̄ must be an isomorphism, and so, E ∼= D5.

In general:
∀n ≥ 3,

〈
a, b | a2, bn, (ab)2

〉 ∼= Dn
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