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Based on the notes by Susan J. Sierra, Chapter 2

1 Factor Groups

1.1 Defining Factor Groups

1.1.1 Definition: Factor Group

Let N ◁ G. Then, the set of left cosets:

G/N = {gN | g ∈ G}

(or right cosets, since N is normal) defines a group known as the factor
group (or quotient group).
G/N is a group under the operation:

g1N ⋆ g2N = (g1g2)N, ∀g1, g2 ∈ G

Notice, in rings, ideals lead to factor rings; in groups, normal sub-
groups lead to factor groups.

1.1.2 Lemma: Factor Group Operation is Well-Defined

It is important the the operation on factor groups is well-defined: that is, it doesn’t depend on the particular
representative of the coset which we choose. That is, if we apply the operation on g1N and g2N , and we
have that g1N = g2N , we better hope that they both give the same answer.

The operation:
g1N ⋆ g2N = (g1g2)N

is well-defined.

Proof. Consider the following elements of G/H:

gN = g′N hN = h′N

where g, h, g′, h′ are distinct. The operation will be well-defined if:

gN ⋆ hN = g′N ⋆ h′N
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This is a routine check:

gN ⋆ hN = (gh)N

= g(hN)

= g(h′N)

= g(Nh′), (since H is a normal subgroup)

= (gN)h′

= (g′N)h′

= g′(Nh′)

= g′(h′N)

= (g′h′)N

= g′N ⋆ h′N

so ⋆ is indeed well-defined.

1.1.3 Lemma: Factor Group Satisfies Group Axioms

The set G/N , where N ◁ G, is a group under the operation:

g1N ⋆ g2N = (g1g2)N, ∀g1, g2 ∈ G

Proof. 1 Existence of Identity

Consider:
eN = N ∈ G/N

then, ∀g ∈ G:
N ⋆ gN = (eg)N = gN = (ge)N = gN ⋆ N

so eN = N is the identity.

2 Existence of Inverse

Consider the element gN ∈ G/N for any g ∈ G. Then, g−1N ∈ G/N and:

gN ⋆ g−1N = (gg−1)N = N

g−1N ⋆ gN = (g−1g)N = N

so for any gN ∈ G/N , g−1N is an inverse.

3 Associativity

This will follow from associativity in G:

(gN ⋆ hN) ⋆ kN = (gh)N ⋆ kN

= (gh)kN

= g(hk)N)

= gN ⋆ (hk)N

= gN ⋆ (hN ⋆ kN)
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as required.

1.2 Definition: The Canonical Group Homomorphism

The canonical map is a function from a group to one of its factor
groups:

can : G→ G/N

defined in the most natural way:

can(g) = gN

By definition, the canonical map is a surjective mapping.

1.2.1 Lemma: The Canonical Map is a Surjective Group Homomorphism

Let N ◁ G. The canonical map can is a group homomorphism:

can : G→ G/N

Proof.

can(gh) = (gh)N

= gN ⋆ hN

= can(g) ⋆ can(h)

1.3 Theorem: Normal Group iff Kernel of Homomorphism

Let N ≤ G. Then, N ◁ G if and only if N is the kernel of a group
homomorphism:

ϕN : G→ H

where H is some other group.

Proof. • ( ⇐= ) We already showed last week that the kernel is a normal subgroup of G.

• ( =⇒ ) Now, suppose that N ◁ G. We construct a homomorphism ϕN , such that:

ker(ϕN ) = N

where:
ϕN : G→ H
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and H is another group.
ϕN is nothing but the canonical map:

can : G→ G/N

Consider any g ∈ G. Then, by definition:

g ∈ ker(can) ⇐⇒ can(g) = gN = N

But then:

gN = N

⇐⇒ ∃n1, n2 ∈ N : gn1 = n2

⇐⇒ g = n2n
−1
1 (by existence of inverse in subgroup)

⇐⇒ g ∈ N (by closure of group operation in subgroup)

Hence, we have shown that:

g ∈ ker(can) ⇐⇒ can(g) = gN = N ⇐⇒ g ∈ N

so it follows that as required:
ker(can) = N

1.4 Factor Group Examples

• all subgroups of Z are normal subgroups. For example consider subgroups of the form:

nZ = {nz | z ∈ Z}

Then:
g(nZ) = {g +m | m ∈ nZ} = {m+ g | m ∈ nZ} = (nZ)g

where we have used the fact that Z is abelian. Then, the factor group Z/nZ is isomorphic to Zn -
the integers modulo n, where each element z̄ is just a coset zZ.

• Z10 is abelian, so its subgroups will be normal. What is the group Z10/{0, 5}? We can compute it
explicitly:

0 + {0, 5} 1 + {0, 5} 2 + {0, 5} 3 + {0, 5} 4 + {0, 5}

This is an abelian group of prime order 5; in particular, it must be isomorphic to Z5. Indeed, we can
see that:

(3 + {0, 5}) + (4 + {0, 5}) = 7 + {0, 5} = {7, 12} = {2, 7} = 2 + {0, 5}

In Z5 we have:
3̄ + 4̄ = 7̄ = 2̄

as expected.

The above examples show that factor groups tend to have natural isomor-
phisms for well known groups. This idea is formalised by the First Iso-
morphism Theorem.
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2 The First Isomorphism Theorem

2.1 Theorem: The First Isomorphism Theorem for Groups

Let:
θ : G→ H

be a group homomorphism.
Let:

N := ker(θ)

so that N ◁ G; and, im(θ) ≤ H.
There is an isomorphism:

ψ : G/ker(θ) → im(θ)

defined by:
ψ(gN) = θ(g)

If θ is surjective, then im(θ) = H, and so:

G/ker(θ) ∼= H

(Theorem 2.2.1)

Proof. We explicitly show that ψ is an isomorphism. For this we need to:

1. Verify it is well-defined

2. Verify it is a group homomorphism

3. Verify that it is injective

4. Verify that it is surjective

1 Well-Defined

We need to show that for 2 different representatives g1, g2 ∈ G such that:

g1N = g2N

we have:
ψ(g1N) = ψ(g2N)

Notice, if g1N = g2N , this is equivalent to saying that:

g−1
1 g2 ∈ N

Since g−1
1 g2 ∈ ker(θ), it follows that:

θ(g−1
1 g2) = θ(g1)

−1θ(g2) = eH =⇒ θ(g1) = θ(g2)

so:
g1N = g2N =⇒ ψ(g1N) = ψ(g2N)
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and ψ is well-defined.

2 Group Homomorphism

Let g1, g2 ∈ G. Then:

ψ(g1N ⋆ g2N) = ψ((g1g2)N)

= θ(g1g2)

= θ(g1)θ(g2)

= ψ(g1N)ψ(g2N)

so ψ is a group homomorphism.

3 Injective

This is essentially the inverse argument of what we did at 1 . Assuming that ψ(g1N) = ψ(g2N), we

claim that:
g1N = g2N

Indeed:

ψ(g1N) = ψ(g2N)

=⇒ θ(g1) = θ(g2)

=⇒ θ(g1)
−1θ(g2) = θ(g−1

1 g2) = eH

=⇒ g−1
1 g2 ∈ N

=⇒ g1N = g2N

so ψ is injective.

4 Surjective

Let h ∈ im(θ). Then, ∃g ∈ G such that:
θ(g) = h

Hence:
ψ(gN) = h

so any element in im(θ) can be mapped to by ψ, so it is surjective.

Hence, we have shown that ψ is a well-defined group isomorphism, and so:

G/ker(θ) ∼= im(θ)

as required.
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2.2 Theorem: The Universal Property of Factor Groups

Turns out that the First Isomorphism Theorem is just a nice consequence of the following universal
property.

Let G be a group and let N ◁ G.
For any homomorphism:

ψ : G→ H

with:
N ⊆ ker(ψ)

there exists a unique homomorphism:

ψ̄ : G/N → H

such that:
ψ = ψ̄ ◦ can

where can : G→ G/N is the canonical homomorphism.
This can be visualised by the following diagram:

(Theorem 2.2.3)
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2.3 Corollary: Group Homomorphism Between Images

If:

• ϕ : G→ K is a surjective group homomorphism

• ψ : G→ H is a group homomorphism

• ker(ϕ) ⊆ ker(ψ)

Then, there is a unique group homomorphism:

ψ̄ : K → H

such that:
ψ̄ ◦ ϕ = ψ

(Corollary 2.2.4)

Proof. By the first isomorphism theorem, and since ϕ is surjective, we have that:

G/ker(ϕ) ∼= im(ϕ) = K

Let N = ker(ϕ). Then, the universal property of factor rings applies, and there exists a unique homomor-
phism:

ψ̄ : G/ker(ϕ) → H

or alternatively:
ψ̄ : K → H

given by:
ψ̄ϕ = ψ

(we don’t need the canonical mapping, since ϕ already maps us to the factor group)

3 Theorem: The Second Isomorphism Theorem

Let N ◁ G and H ≤ G. Then:

1. HN ≤ G

2. N ◁ HN

3. H ∩N ◁ H

4. there exists an isomorphism:

H/(H ∩N) ∼= HN/N

(Theorem 2.3.7)
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Proof. 1. HN ≤ G

HN is clearly non-empty, since:

e ∈ H, e ∈ N =⇒ ee = e ∈ HN

Let h1, h2 ∈ N and n1, n2 ∈ N . Then it is sufficient to show that:

(h1n1)(h2n2)
−1 ∈ HN

We have that:
(h1n1)(h2n2)

−1 = h1n1n
−1
2 h−1

2

Now, notice that:
n1n

−1
2 ∈ N =⇒ n1n

−1
2 h−1

2 ∈ Nh−1
2

Since N is a normal subgroup, it thus follows that:

n1n
−1
2 h−1

2 ∈ h−1
2 N

In other words, ∃n3 ∈ N such that:
n1n

−1
2 h−1

2 = h−1
2 n3

Hence:
(h1n1)(h2n2)

−1 = h1n1n
−1
2 h−1

2 = (h1h
−1
2 )n3 ∈ HN

as required.

2. N ◁HN

We first note that N ≤ HN . This is simple, since e ∈ H and eN = N , so N ⊆ HN . Moreover, N is a
group, so N ≤ HN .
Moreover, let g ∈ HN . Then, by group closure we also have g ∈ G. Since N ◁G, it is immediate that:

gNg−1 = N, ∀g ∈ HN

so N ◁HN as required.

3. H ∩N ◁H

Let a ∈ H ∩N and h ∈ H. Notice:

• hah−1 ∈ H, since a, h ∈ H

• hah−1 ∈ N , since h ∈ H ≤ G, and a ∈ N ◁ G

Thus, it follows that ∀h ∈ H:
hah−1 ∈ H ∩N

so H ∩N ◁H as required.

4. H/(H ∩N) ∼= HN/N

We need to find a surjective homomorphism of the form:

θ : H → HN/N

such that:
ker(θ) = H ∩N
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Consider the canonical mapping:
can : H → HN/N

given by:
can(h) = hN

We know that this is a well-defined homomorphism, so we just need to determine its surjectivity and
its kernel.
Let (hn)N ∈ HN/N . Since nN = N , it follows that:

(hn)N = hN = θ(h)

so θ is a surjective mapping.
Moreover:

h ∈ ker(θ) ⇐⇒ θ(h) = hN = N ⇐⇒ h ∈ N

But h ∈ ker(θ) ⇐⇒ h ∈ H, so it follows that:

h ∈ ker(θ) ⇐⇒ h ∈ H ∩N

and so:
ker(θ) = H ∩N

Thus, by the First Isomorphism Theorem, it follows that:

H/ker(θ) ∼= im(θ) =⇒ H/(H ∩N) ∼= HN/N

as required.

4 The Third Isomorphism Theorem

The third isomorphism theorem gives us tools to identify how subgroups of factor groups G/N relate to
subgroups of G.

4.1 Proposition: The Canonical Map and Subgroup Preservation

Let G be a group and N ◁ G. Consider the canonical map:

can : G→ G/N

and let:
K ≤ G/N

Then:

1. can−1(K) ≤ G, with N ⊆ can−1(K)

2. can−1(K) ◁ G ⇐⇒ K ◁ G/N

(Proposition 2.3.1)

Proof.
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1. can−1(K) ≤ G, with N ⊆ can−1(K)

Firstly, can−1(K) is non-empty, since eN ∈ K ≤ G/N , and can(eG) = eN = N , so eG ∈ can−1(K).
We now check closure. Let:

h1, h2 ∈ can−1(K)

so that:
can(h1), can(h2) ∈ K

Then:
can(h1)can(h2) = can(h1h2)

But can(h1), can(h2) ∈ K, so can(h1h2) ∈ K, by closure of the subgroup, so:

h1h2 ∈ can−1(K)

and so, can−1(K) is closed.
We now check existence of inverse. Let:

h ∈ can−1(K)

so that:
can(h) ∈ K

Since k is a subgroup, can(h)−1 exists

can(h)−1 = can(h−1) ∈ K =⇒ h−1 ∈ can−1(K)

Hence, can−1(K) ≤ G
Finally, notice that since K ≤ G/N , in particular N ∈ K, so ∀n ∈ N , since can(n) = N , then
can(n) ∈ K =⇒ n ∈ can−1(K), so N ⊆ can−1(K).

2. can−1(K) ◁ G ⇐⇒ K ◁ G/N

Suppose that K ◁ G/N , and let h ∈ can−1(K), g ∈ G. Then:

can(h) ∈ K

and:
can(ghg−1) = can(g)can(h)can(g−1) = can(g)can(h)can(g)−1

Since can(h) ∈ K ◁ G/N , it follows that:

can(g)can(h)can(g)−1 ∈ K =⇒ ghg−1 ∈ can−1(K)

so it follows that:
g(can−1(K))g−1 ⊆ can−1(K)

and so,
can−1(K) ◁ G

On the other hand, assume that K ̸ ◁G/N . Then:

∃a ∈ G/N, b ∈ K : a−1ba ̸∈ K

Since can is surjective, ∃g ∈ G, h ∈ can−1(K) such that:

can(g) = a can(h) = b

Thus:
can(ghg−1) = can(g)can(h)can(g−1) ̸∈ K

so:
ghg−1 ̸∈ can−1(K)

and so:
can−1(K) ̸ ◁G
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4.2 Proposition: Mapping Factor Subgroups to Subgroups

Let N ◁ G and let:
can : G→ G/N

be the canonical map.
If:

N ≤ H ≤ G

then:
H = can−1(can(H))

That is, if H ≤ G, such that H contains a normal subgroup of G, then
H can be obtained by reverse mapping subgroups of G/N .
(Proposition 2.3.2)

Proof. Let g ∈ can−1(can(H)). Then:
can(g) ∈ can(H)

That is, ∃h ∈ H such that:

can(g) = can(h) ⇐⇒ can(h−1g) = N ⇐⇒ h−1g ∈ N ⇐⇒ g ∈ hN

But since N ≤ H, we have that hN ⊆ H so:
g ∈ H

Hence:
g ∈ can−1can(H)) ⇐⇒ g ∈ H =⇒ can−1can(H)) = H

as required.

4.3 Theorem: The Correspondence Theorem

The propositions above allow us to show that the canonical map maps normal subgroups of G containing N
to normal subgroups of G/N .
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Let G be a group, N ◁ G and let:

can : G→ G/N

be the canonical map.
The map:

H 7→ can(H)

is a bijection between subgroups of G containing N , and subgroups of
G/N .
Under this bijection, normal subgroups match with normal sub-
groups.
Further, if N ⊆ A,B are subgroups of G, then:

can(A) ⊆ can(B) ⇐⇒ A ⊆ B

(Theorem 2.3.3)

Proof. Let K ≤ G/N . Then, can−1(K) ≤ G, and N ⊆ can−1(K) by (4.1). But then it follows by (4.2) that
we have:

H = can−1(can(H)), K = can(H)

In other words, the subgroup H containing N has a direct, bijective mapping to a subgroup can(H) of G/N .
Now, suppose that:

N ≤ A ≤ B ≤ G

This immediately implies:
can(A) ⊆ can(B)

Now, suppose that can(A) ⊆ can(B) and let a ∈ A. Then:

∃b ∈ B : aN = bN =⇒ ab−1 ∈ N

Thus:
∃n ∈ N : ab−1 = n =⇒ a = nb ∈ B

where we have used the fact that that N ⊆ B. Thus, a ∈ B, so:

A ⊆ B

as required.

4.4 Theorem: The Third Isomorphism Theorem

If N ≤ H ≤ G, with N,H ◁ G, then:

(G/N)/(H/N) ∼= G/H

(Theorem 2.3.5)
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Proof. We want to show that there exists a mapping π such that:

π : G/N → G/H

is surjective and has kernel:
ker(π) = H/N

Notice:
ker(canN ) = N ⊆ ker(canH) = H

so we can apply the universal property of factor groups, to get that:

canH = π ◦ canN

Diagrammatically:

canH is surjective, so π will also be surjective.
Now, assume gN ∈ ker(π). Then:

e = π(gN) = π(canN (g)) = canH(g)

Hence:
gN ∈ ker(π) ⇐⇒ g ∈ ker(canH) = H

In other words, gN is in the kernel of π whenever g ∈ H; so the cosets gN are in fact H/N , so:

ker(π) = H/N

Thus, by the First Isomorphism Theorem:

(G/N)/ker(π) ∼= im(π) =⇒ (G/N)/(H/N) ∼= (G/H)

as required.

4.5 Worked Examples

1. Find all subgroups of Z12 together with their inclusions.

We can write:
Z/12Z

By the correspondence theorem, the subgroups of Z12 will be isomorphic to those subgroups of Z which
contain the normal subgroup 12Z.
The subgroups of Z containing 12Z are:
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So by the Correspondence Theorem, the subgroups of Z12 will be:

where:
⟨[n]⟩ = ⟨n̄⟩ = can(n)

is the cyclic subgroup generated by n̄ (i.e ⟨[3]⟩ = {0̄, 3̄, 6̄, 9̄}).

2. Consider the inclusion:
10Z ≤ 5Z ≤ Z

By the Third Isomorphism Theorem:

(Z/10Z)/(5Z/10Z) ∼= Z/5Z

which we already saw above.

5 Exercises
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