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Based on the notes by Susan J. Sierra, Chapter 2

1 Factor Groups

1.1 Defining Factor Groups
1.1.1 Definition: Factor Group

Let N <« GG. Then, the set of left cosets:
G/N ={gN | g € G}

(or right cosets, since N is normal) defines a group known as the factor
group (or quotient group).
G/N is a group under the operation:

91N x goN = (g192) N, Vg1,92 € G

Notice, in rings, tdeals lead to factor rings; in groups, normal sub-
groups lead to factor groups.

1.1.2 Lemma: Factor Group Operation is Well-Defined

It is important the the operation on factor groups is well-defined: that is, it doesn’t depend on the particular
representative of the coset which we choose. That is, if we apply the operation on g1N and goN, and we
have that gt N = goIN, we better hope that they both give the same answer.

The operation:
BN * g2 N = (g192) N
is well-defined.

Proof. Consider the following elements of G/H:
gN =g¢g'N hN = h'N
where g, h,¢’, h' are distinct. The operation will be well-defined if:

gN «hN =g Nxh'N
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This is a routine check:

NR), (since H is a normal subgroup)
)

S0 * is indeed well-defined.

1.1.3 Lemma: Factor Group Satisfies Group Axioms

The set G/N, where N <G, is a group under the operation:
g1 N x goN = (g192)N, Vagi,92 € G

Proof. @ Existence of Identity

Consider:
eN=NecG/N

then, Vg € G:
N xgN = (eg)N = gN = (ge)N = gN x N

so eN = N is the identity.

@ Existence of Inverse

Consider the element gN € G/N for any g € G. Then, g~'!N € G/N and:
gN*g~'N = (997" )N=N
g 'NxgN=(g'g)N=N
so for any gN € G/N, g~ !N is an inverse.

@ Associativity
This will follow from associativity in G:

(gN x* hN) x kN = (gh)N x kN
= (gh)kN
= g(hk)N)
= gN x (hk)N
=gN % (hN xkN)
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as required.

1.2 Definition: The Canonical Group Homomorphism

The canonical map is a function from a group to one of its factor
groups:
can : G — G/N

defined in the most natural way:
can(g) = gN

By definition, the canonical map is a surjective mapping.

1.2.1 Lemma: The Canonical Map is a Surjective Group Homomorphism

Let N < GG. The canonical map can is a group homomorphism:

can : G — G/N

Proof.

can(gh) = (gh)N
=gN x hN
= can(g) x can(h)

1.3 Theorem: Normal Group iff Kernel of Homomorphism

Let N < G. Then, N < G if and only if N is the kernel of a group
homomorphism:
ng :G—H

where H is some other group.

Proof. e (<) We already showed last week that the kernel is a normal subgroup of G.

e (=) Now, suppose that N < G. We construct a homomorphism ¢y, such that:
ker(¢n) =N

where:
¢N :G—H
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1.4

and H is another group.
¢n is nothing but the canonical map:

can: G — G/N
Consider any g € G. Then, by definition:
g € ker(can) <= can(g) =gN =N
But then:

gN =N

<= dny,no € N : gny = no

1

= g =nan] (by existence of inverse in subgroup)

< geN (by closure of group operation in subgroup)
Hence, we have shown that:
g € ker(can) < can(g)=gN =N <= geN

so it follows that as required:
ker(can) = N

Factor Group Examples
all subgroups of Z are normal subgroups. For example consider subgroups of the form:
nZ={nz|z€Z}
Then:
gnZ)={g+m|menZ}={m+g|menL}=(nZ)yg

where we have used the fact that Z is abelian. Then, the factor group Z/nZ is isomorphic to Z,, -
the integers modulo n, where each element Z is just a coset zZ.

Z19 is abelian, so its subgroups will be normal. What is the group Z10/{0,5}? We can compute it
explicitly:
0+{0,5} 1+4{0,5} 2+{0,5} 3+{0,5} 4+{0,5}

This is an abelian group of prime order 5; in particular, it must be isomorphic to Zs. Indeed, we can
see that:
(3+{0,5})+(4+{0,5}) =74+10,5} ={7,12} ={2,7} =2+ {0,5}

In Zs we have:
34+4=7=2

as expected.

The above examples show that factor groups tend to have natural isomor-
phisms for well known groups. This idea is formalised by the First Iso-
morphism Theorem.
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2 The First Isomorphism Theorem

2.1 Theorem: The First Isomorphism Theorem for Groups

Let:

0:G—H
be a group homomorphism.
Let:

N = ker(0)

so that N <« G; and, im(0) < H.
There is an tsomorphism:

Y G/ker(8) — im(0)

defined by:
»(gN) = 0(g)

If 0 is surjective, then im(0) = H, and so:
G/ker(0) = H
(Theorem 2.2.1)

Proof. We explicitly show that ¢ is an isomorphism. For this we need to:
1. Verify it is well-defined
2. Verify it is a group homomorphism
3. Verify that it is injective
4. Verify that it is surjective
@ Well-Defined
We need to show that for 2 different representatives g1, go € GG such that:
QN =g N

we have:

Y(g1N) = ¥(g2N)
Notice, if g1 /N = go N, this is equivalent to saying that:

91 'g2 €N
Since g; *ga € ker(0), it follows that:
091 92) = 0(g1) '0(g2) =enr = 0(91) = 0(g2)

SO:
N =g N = (g1N) =1(g2N)

Page 6



and v is well-defined.

@ Group Homomorphism

Let g1,92 € G. Then:

V(1N x g2N) = 1¥((9192)N)
=0(9192)
= 0(g91)0(g2)
= (g1 N)Y(g2N)

so 1 is a group homomorphism.

@ Injective

This is essentially the inverse argument of what we did at @ Assuming that ¢¥(¢g1 V) = ¥(g2N), we
claim that:
GiN = g2 N
Indeed:

Y(g1N) = (g2N)
= 0(g1) = 0(g2)
= 0(91) " '0(g2) = 097 '92) = em
— gl_lgg eN
= 1N = g2N

so 1) is injective.

@ Surjective

Let h € im(¢). Then, 3g € G such that:
0(g) = h
Hence:

Y(gN) =h

so any element in m(6) can be mapped to by ¥, so it is surjective.

Hence, we have shown that ¢ is a well-defined group isomorphism, and so:
G/ker(0) = im(0)

as required.
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2.2 Theorem: The Universal Property of Factor Groups

Turns out that the First Isomorphism Theorem is just a nice consequence of the following universal
property.

Let G be a group and let N < G.
For any homomorphism:

v:G—H
with:
N C ker(y)
there exists a unique homomorphism:
Y:G/N - H
such that: B
Y =1 ocan

where can : G — G/N is the canonical homomorphism.
This can be visualised by the following diagram:

can G/N
31 | %
H.

(&

(Theorem 2.2.3)
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2.3 Corollary: Group Homomorphism Between Images

If:
e ¢ : G — K is a surjective group homomorphism
e Y : G — H is a group homomorphism
o ker(¢) € ker()
Then, there is a unique group homomorphism:
VK > H

such that:
Ypop=1
(Corollary 2.2.4)

Proof. By the first isomorphism theorem, and since ¢ is surjective, we have that:
G/ker(¢) 2im(¢) = K

Let N = ker(¢). Then, the universal property of factor rings applies, and there exists a unique homomor-
phism: -
Y G/ker(¢) — H

or alternatively: B
Y. K —H
given by: ~
Yo =1

(we don’t need the canonical mapping, since ¢ already maps us to the factor group)

3 Theorem: The Second Isomorphism Theorem

Let N <G and H < G. Then:
1. HN < (@

2. N<HN

3. HON<H

4. there exists an isomorphism.:
H/(HNN)= HN/N

(Theorem 2.3.7)
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Proof. 1. HN < @

HN is clearly non-empty, since:
ecHee N = ee=ec HN
Let hi,hs € N and nq,ns € N. Then it is sufficient to show that:
(hiny)(hang) ™' € HN

We have that:
(hlnl)(hgng)_l = hlnlnglh;]‘

Now, notice that:
niny' € N = niny'hy' € Nhy*

Since N is a normal subgroup, it thus follows that:
niny 'hyt € hy'N

In other words, Ing € N such that:
ning ‘hyt = hy'ng

Hence:
(hlnl)(hzng)fl = hlanLQ_th_l = (hlhgl)ng € HN

as required.
2. N<HN
We first note that N < HN. This is simple, since e € H and eN = N, so N C HN. Moreover, N is a

group, so N < HN.
Moreover, let g € HN. Then, by group closure we also have g € G. Since N <G, it is immediate that:

gNg~ ' =N, Vg€ HN
so N < HN as required.
3. HhN<H

Let a € HN N and h € H. Notice:

e hah™' € H, since a,h € H
e hah ' € N,sincehe€ H<G,anda € NG

Thus, it follows that Vh € H:
hah™' € HNN

so HN N < H as required.
4. H/(HNN)>= HN/N

We need to find a surjective homomorphism of the form:
0:H— HN/N

such that:
ker(§)=HNN
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Consider the canonical mapping:
can: H— HN/N

given by:
can(h) = hN

We know that this is a well-defined homomorphism, so we just need to determine its surjectivity and

its kernel.
Let (hn)N € HN/N. Since nN = N, it follows that:

(hn)N = hN = 0(h)

so 6 is a surjective mapping.

Moreover:
he€ker(d) < 6h) =hN=N <= heN

But h € ker(f) <= h € H, so it follows that:

he€ker(d) < heHNN

and so:
ker(§)=HNN

Thus, by the First Isomorphism Theorem, it follows that:
H/ker(0) =2 im() — H/(HNN)= HN/N

as required.

4 The Third Isomorphism Theorem

The third isomorphism theorem gives us tools to identify how subgroups of factor groups G/N relate to
subgroups of G.

4.1 Proposition: The Canonical Map and Subgroup Preservation

Let G be a group and N <« G. Consider the canonical map:
can : G — G/N

and let:
K <G/N

Then:
1. can ™ (K) < G, with N C can™!(K)
2. can ' (K)<G <= K<G/N
(Proposition 2.5.1)

Proof.
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1. can ' (K) < G, with N C can™}(K)

Firstly, can=!(K) is non-empty, since eN € K < G/N, and can(eg) = eN = N, so eg € can™ ! (K).
We now check closure. Let:
hi,hy € can™ (K)
so that:
can(hy),can(hs) € K

Then:
can(hy)can(hy) = can(hihs)

But can(hy),can(hs) € K, so can(h1hs) € K, by closure of the subgroup, so:
hihy € can™ (K)
and so, can(K) is closed.
We now check existence of inverse. Let:
h € can™ ' (K)
so that:

can(h) € K

L exists

Since k is a subgroup, can(h)~
can(h) ™t =can(h™') € K = h™' € can *(K)

Hence, can 1 (K) < G
Finally, notice that since K < G/N, in particular N € K, so Vn € N, since can(n) = N, then
can(n) € K = n € can 1 (K), so N C can™}(K).

2. can Y (K)<G < K<G/N

Suppose that K <G/N, and let h € can™*(K), g € G. Then:
can(h) € K
and:
can(ghg™") = can(g)can(h)can(g™*) = can(g)can(h)can(g)~*
Since can(h) € K <G/N, it follows that:
can(g)can(h)can(g)™* € K = ghg™' € can™ ' (K)

so it follows that:

glean ™ (K))g™" C can™}(K)
and so,

can N (K) <G

On the other hand, assume that K AG/N. Then:

Ja € G/NbeK : a'bad K
Since can is surjective, 3g € G, h € can™'(K) such that:

can(g) = a can(h) =b

Thus:
can(ghg™") = can(g)can(h)can(g™') ¢ K
so:
ghg™! & can™'(K)
and so:

can™ ' (K) AG
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4.2 Proposition: Mapping Factor Subgroups to Subgroups

Let N <G and let:

can : G — G/N
be the canonical map.
If:
N<H<G
then:

H = can™*(can(H))

That is, if H < G, such that H contains a normal subgroup of G, then

H can be obtained by reverse mapping subgroups of G /N .
(Proposition 2.5.2)

Proof. Let g € can™1(can(H)). Then:
can(g) € can(H)

That is, 3h € H such that:
can(g) = can(h) <= can(h"'g)=N <= h'ge N < gehN

But since N < H, we have that hIN C H so:
geH

Hence:
g€can"tean(H)) <= g€ H = can ‘can(H))=H

as required.

4.3 Theorem: The Correspondence Theorem

The propositions above allow us to show that the canonical map maps normal subgroups of G containing N
to normal subgroups of G/N.
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Let G be a group, N <G and let:

can : G — G/N
be the canonical map.
The map:

H — can(H)

s a bijection between subgroups of G containing N, and subgroups of
G/N.
Under this bijection, normal subgroups match with normal sub-
groups.

Further, if N C A, B are subgroups of G, then:
can(A) C can(B) <— ACB

(Theorem 2.3.3)

Proof. Let K < G/N. Then, can™'(K) < G, and N C can™*(K) by (4.1). But then it follows by (4.2) that
we have:
H = can™"(can(H)), K = can(H)

In other words, the subgroup H containing N has a direct, bijective mapping to a subgroup can(H) of G/N.

Now, suppose that:
N<ALB<LG

This immediately implies:
can(A) C can(B)

Now, suppose that can(A) C can(B) and let a € A. Then:

WBeB :aN=bN = ab 'eN

Thus:
ImeN :abl=n = a=nbeB

where we have used the fact that that N C B. Thus, a € B, so:
ACB

as required. O

4.4 Theorem: The Third Isomorphism Theorem

If N < H <G, with N, H <G, then:
(G/N)/(H/N)=G/H
(Theorem 2.3.5)
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Proof. We want to show that there exists a mapping 7 such that:
7m:G/N—G/H

is surjective and has kernel:
ker(m) = H/N

Notice:
ker(cany) = N C ker(cang) = H

so we can apply the universal property of factor groups, to get that:
cang = T o cany

Diagrammatically:

cany

SN GIN
I
| 7T

Y
G/H

cang

cany is surjective, so m will also be surjective.
Now, assume gN € ker(w). Then:

e=m(gN) =n(cann(g)) = cang(g)

Hence:
gN € ker(n) < g¢€ker(cany)=H

In other words, gN is in the kernel of © whenever g € H; so the cosets gNN are in fact H/N, so:
ker(r) = H/N
Thus, by the First Isomorphism Theorem:
(G/N)/ker(r) =2 im(r) = (G/N)/(H/N)=(G/H)

as required.

4.5 Worked Examples

1. Find all subgroups of Z;5 together with their inclusions.

‘We can write:
7./127

By the correspondence theorem, the subgroups of Zi5 will be isomorphic to those subgroups of Z which
contain the normal subgroup 127Z.
The subgroups of Z containing 127 are:
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Zi2
/ \
(12]) (13)
([4]) (16])
\ /
(1)
where:
([n]) = (n) = can(n)
is the cyclic subgroup generated by 7 (i.e ([3]) = {0, 3,6,9})

. Consider the inclusion:
10Z < 5Z < Z

By the Third Isomorphism Theorem:
(Z/10Z)/(5Z2/10Z) = Z/5Z

which we already saw above.

5 Exercises
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