Group Theory - Week 2 - Factor Groups and Isomorphism Theorems

Antonio León Villares

October 2022

Contents

1	Factor Groups		2
	1.1	Defining Factor Groups	2
		1.1.1 Definition: Factor Group	2
		1.1.2 Lemma: Factor Group Operation is Well-Defined	2
		1.1.3 Lemma: Factor Group Satisfies Group Axioms	3
	1.2	Definition: The Canonical Group Homomorphism	4
		1.2.1 Lemma: The Canonical Map is a Surjective Group Homomorphism	4
	1.3	Theorem: Normal Group iff Kernel of Homomorphism	4
	1.4	Factor Group Examples	5
2	The	e First Isomorphism Theorem	6
	2.1	Theorem: The First Isomorphism Theorem for Groups	6
	2.2	Theorem: The Universal Property of Factor Groups	8
	2.3	Corollary: Group Homomorphism Between Images	
3	The	eorem: The Second Isomorphism Theorem	9
4	$Th\epsilon$	e Third Isomorphism Theorem	11
	4.1	Proposition: The Canonical Map and Subgroup Preservation	11
	4.2	Proposition: Mapping Factor Subgroups to Subgroups	13
	4.3	Theorem: The Correspondence Theorem	13
	4.4	Theorem: The Third Isomorphism Theorem	14
	4.5	Worked Examples	15
5	Exe	ercises	16

1 Factor Groups

1.1 Defining Factor Groups

1.1.1 Definition: Factor Group

Let $N \triangleleft G$. Then, the set of **left cosets**:

$$G/N = \{gN \mid g \in G\}$$

(or **right cosets**, since N is normal) defines a group known as the **factor** group (or quotient group).

G/N is a **group** under the operation:

$$g_1N \star g_2N = (g_1g_2)N, \quad \forall g_1, g_2 \in G$$

Notice, in rings, ideals lead to factor rings; in groups, normal subgroups lead to factor groups.

1.1.2 Lemma: Factor Group Operation is Well-Defined

It is important the operation on factor groups is **well-defined**: that is, it doesn't depend on the **particular** representative of the coset which we choose. That is, if we apply the operation on g_1N and g_2N , and we have that $g_1N = g_2N$, we better hope that they both give the same answer.

The operation:

$$q_1N \star q_2N = (q_1q_2)N$$

is well-defined.

Proof. Consider the following elements of G/H:

$$gN = g'N$$
 $hN = h'N$

where g, h, g', h' are distinct. The operation will be **well-defined** if:

$$gN \star hN = g'N \star h'N$$

This is a routine check:

$$gN \star hN = (gh)N$$

$$= g(hN)$$

$$= g(h'N)$$

$$= g(Nh'), \qquad (since \ H \ is \ a \ normal \ subgroup)$$

$$= (gN)h'$$

$$= (g'N)h'$$

$$= g'(Nh')$$

$$= g'(h'N)$$

$$= (g'h')N$$

$$= g'N \star h'N$$

so \star is indeed well-defined.

1.1.3 Lemma: Factor Group Satisfies Group Axioms

The set G/N, where $N \triangleleft G$, is a group under the operation:

$$g_1N \star g_2N = (g_1g_2)N, \qquad \forall g_1, g_2 \in G$$

Proof. (1) Existence of Identity

Consider:

$$eN = N \in G/N$$

then, $\forall g \in G$:

$$N \star gN = (eg)N = gN = (ge)N = gN \star N$$

so eN = N is the identity.

(2) Existence of Inverse

Consider the element $gN \in G/N$ for any $g \in G$. Then, $g^{-1}N \in G/N$ and:

$$gN \star g^{-1}N = (gg^{-1})N = N$$

 $g^{-1}N \star gN = (g^{-1}g)N = N$

so for any $gN \in G/N$, $g^{-1}N$ is an inverse.

(3) Associativity

This will follow from associativity in G:

$$(gN \star hN) \star kN = (gh)N \star kN$$

$$= (gh)kN$$

$$= g(hk)N)$$

$$= gN \star (hk)N$$

$$= gN \star (hN \star kN)$$

as required.

1.2 Definition: The Canonical Group Homomorphism

The canonical map is a function from a group to one of its factor groups:

$$can: G \to G/N$$

defined in the most natural way:

$$can(g) = gN$$

By definition, the canonical map is a surjective mapping.

1.2.1 Lemma: The Canonical Map is a Surjective Group Homomorphism

Let $N \triangleleft G$. The **canonical map** can is a **group homomorphism**:

$$can:G\to G/N$$

Proof.

$$can(gh) = (gh)N$$

$$= gN \star hN$$

$$= can(g) \star can(h)$$

1.3 Theorem: Normal Group iff Kernel of Homomorphism

Let $N \leq G$. Then, $N \triangleleft G$ if and only if N is the **kernel** of a group homomorphism:

$$\phi_N:G\to H$$

where H is some other group.

Proof. • (\iff) We already showed last week that the kernel is a normal subgroup of G.

• (\Longrightarrow) Now, suppose that $N \triangleleft G$. We construct a homomorphism ϕ_N , such that:

$$ker(\phi_N) = N$$

where:

$$\phi_N:G\to H$$

and H is another group.

 ϕ_N is nothing but the **canonical map**:

$$can: G \to G/N$$

Consider any $g \in G$. Then, by definition:

$$g \in ker(can) \iff can(g) = gN = N$$

But then:

$$gN = N$$
 $\iff \exists n_1, n_2 \in N : gn_1 = n_2$
 $\iff g = n_2 n_1^{-1} \quad (by \ existence \ of \ inverse \ in \ subgroup)$
 $\iff g \in N \quad (by \ closure \ of \ group \ operation \ in \ subgroup)$

Hence, we have shown that:

$$g \in ker(can) \iff can(g) = gN = N \iff g \in N$$

so it follows that as required:

$$ker(can) = N$$

1.4 Factor Group Examples

• all subgroups of \mathbb{Z} are **normal subgroups**. For example consider subgroups of the form:

$$n\mathbb{Z} = \{nz \mid z \in \mathbb{Z}\}$$

Then:

$$g(n\mathbb{Z}) = \{g+m \mid m \in n\mathbb{Z}\} = \{m+g \mid m \in n\mathbb{Z}\} = (n\mathbb{Z})g$$

where we have used the fact that \mathbb{Z} is abelian. Then, the factor group $\mathbb{Z}/n\mathbb{Z}$ is **isomorphic** to \mathbb{Z}_n - the integers modulo n, where each element \bar{z} is just a coset $z\mathbb{Z}$.

• \mathbb{Z}_{10} is abelian, so its subgroups will be normal. What is the group $\mathbb{Z}_{10}/\{0,5\}$? We can compute it explicitly:

$$0 + \{0,5\}$$
 $1 + \{0,5\}$ $2 + \{0,5\}$ $3 + \{0,5\}$ $4 + \{0,5\}$

This is an abelian group of prime order 5; in particular, it must be isomorphic to \mathbb{Z}_5 . Indeed, we can see that:

$$(3 + \{0,5\}) + (4 + \{0,5\}) = 7 + \{0,5\} = \{7,12\} = \{2,7\} = 2 + \{0,5\}$$

In \mathbb{Z}_5 we have:

$$\bar{3} + \bar{4} = \bar{7} = \bar{2}$$

as expected.

The above examples show that factor groups tend to have natural isomorphisms for well known groups. This idea is formalised by the **First Isomorphism Theorem**.

2 The First Isomorphism Theorem

2.1 Theorem: The First Isomorphism Theorem for Groups

Let:

 $\theta:G\to H$

be a group homomorphism.

Let:

$$N := ker(\theta)$$

so that $N \triangleleft G$; and, $im(\theta) \leq H$.

There is an **isomorphism**:

$$\psi: G/ker(\theta) \to im(\theta)$$

defined by:

$$\psi(gN) = \theta(g)$$

If θ is **surjective**, then $im(\theta) = H$, and so:

$$G/ker(\theta) \cong H$$

(Theorem 2.2.1)

Proof. We explicitly show that ψ is an isomorphism. For this we need to:

- 1. Verify it is well-defined
- 2. Verify it is a group homomorphism
- 3. Verify that it is **injective**
- 4. Verify that it is **surjective**
- (1) Well-Defined

We need to show that for 2 different representatives $g_1, g_2 \in G$ such that:

$$g_1N = g_2N$$

we have:

$$\psi(g_1N) = \psi(g_2N)$$

Notice, if $g_1N = g_2N$, this is equivalent to saying that:

$$g_1^{-1}g_2 \in N$$

Since $g_1^{-1}g_2 \in ker(\theta)$, it follows that:

$$\theta(g_1^{-1}g_2) = \theta(g_1)^{-1}\theta(g_2) = e_H \implies \theta(g_1) = \theta(g_2)$$

so:

$$g_1N = g_2N \implies \psi(g_1N) = \psi(g_2N)$$

and ψ is well-defined.

(2) Group Homomorphism

Let $g_1, g_2 \in G$. Then:

$$\psi(g_1N \star g_2N) = \psi((g_1g_2)N)$$

$$= \theta(g_1g_2)$$

$$= \theta(g_1)\theta(g_2)$$

$$= \psi(g_1N)\psi(g_2N)$$

so ψ is a group homomorphism.

(3) Injective

This is essentially the inverse argument of what we did at $\widehat{\ }$ 1. Assuming that $\psi(g_1N)=\psi(g_2N),$ we claim that:

$$g_1N = g_2N$$

Indeed:

$$\psi(g_1N) = \psi(g_2N)$$

$$\Longrightarrow \theta(g_1) = \theta(g_2)$$

$$\Longrightarrow \theta(g_1)^{-1}\theta(g_2) = \theta(g_1^{-1}g_2) = e_H$$

$$\Longrightarrow g_1^{-1}g_2 \in N$$

$$\Longrightarrow g_1N = g_2N$$

so ψ is **injective**.

(4) Surjective

Let $h \in im(\theta)$. Then, $\exists g \in G$ such that:

$$\theta(g) = h$$

Hence:

$$\psi(gN) = h$$

so any element in $im(\theta)$ can be mapped to by ψ , so it is **surjective**.

Hence, we have shown that ψ is a well-defined group isomorphism, and so:

$$G/ker(\theta) \cong im(\theta)$$

as required.

2.2 Theorem: The Universal Property of Factor Groups

Turns out that the **First Isomorphism Theorem** is just a nice consequence of the following **universal** property.

Let G be a group and let $N \triangleleft G$.

For **any** homomorphism:

$$\psi: G \to H$$

with:

$$N \subseteq ker(\psi)$$

there exists a unique homomorphism:

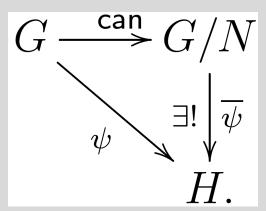
$$\bar{\psi}:G/N\to H$$

such that:

$$\psi = \bar{\psi} \circ can$$

where can : $G \rightarrow G/N$ is the **canonical homomorphism**.

This can be visualised by the following diagram:



(Theorem 2.2.3)

2.3 Corollary: Group Homomorphism Between Images

If:

- $\phi: G \to K$ is a **surjective** group homomorphism
- $\psi: G \to H$ is a group homomorphism
- $ker(\phi) \subseteq ker(\psi)$

Then, there is a **unique** group homomorphism:

 $\bar{\psi}:K\to H$

such that:

 $\bar{\psi}\circ\phi=\psi$

(Corollary 2.2.4)

Proof. By the first isomorphism theorem, and since ϕ is surjective, we have that:

$$G/ker(\phi) \cong im(\phi) = K$$

Let $N = ker(\phi)$. Then, the universal property of factor rings applies, and there exists a unique homomorphism:

 $\bar{\psi}: G/ker(\phi) \to H$

or alternatively:

 $\bar{\psi}:K\to H$

given by:

 $\bar{\psi}\phi = \psi$

(we don't need the canonical mapping, since ϕ already maps us to the factor group)

3 Theorem: The Second Isomorphism Theorem

Let $N \triangleleft G$ and $H \leq G$. Then:

- 1. HN < G
- 2. $N \triangleleft HN$
- 3. $H \cap N \triangleleft H$
- 4. there exists an isomorphism:

$$H/(H \cap N) \cong HN/N$$

(Theorem 2.3.7)

Proof. 1. $HN \leq G$

HN is clearly non-empty, since:

$$e \in H, e \in N \implies ee = e \in HN$$

Let $h_1, h_2 \in N$ and $n_1, n_2 \in N$. Then it is sufficient to show that:

$$(h_1n_1)(h_2n_2)^{-1} \in HN$$

We have that:

$$(h_1 n_1)(h_2 n_2)^{-1} = h_1 n_1 n_2^{-1} h_2^{-1}$$

Now, notice that:

$$n_1 n_2^{-1} \in N \implies n_1 n_2^{-1} h_2^{-1} \in N h_2^{-1}$$

Since N is a normal subgroup, it thus follows that:

$$n_1 n_2^{-1} h_2^{-1} \in h_2^{-1} N$$

In other words, $\exists n_3 \in N$ such that:

$$n_1 n_2^{-1} h_2^{-1} = h_2^{-1} n_3$$

Hence:

$$(h_1n_1)(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2^{-1} = (h_1h_2^{-1})n_3 \in HN$$

as required.

2. $N \triangleleft HN$

We first note that $N \leq HN$. This is simple, since $e \in H$ and eN = N, so $N \subseteq HN$. Moreover, N is a group, so $N \leq HN$.

Moreover, let $g \in HN$. Then, by group closure we also have $g \in G$. Since $N \triangleleft G$, it is immediate that:

$$gNg^{-1} = N, \quad \forall g \in HN$$

so $N \triangleleft HN$ as required.

3. $H \cap N \triangleleft H$

Let $a \in H \cap N$ and $h \in H$. Notice:

- $hah^{-1} \in H$, since $a, h \in H$
- $hah^{-1} \in N$, since $h \in H \leq G$, and $a \in N \triangleleft G$

Thus, it follows that $\forall h \in H$:

$$hah^{-1} \in H \cap N$$

so $H \cap N \triangleleft H$ as required.

4. $H/(H \cap N) \cong HN/N$

We need to find a surjective homomorphism of the form:

$$\theta: H \to HN/N$$

such that:

$$ker(\theta) = H \cap N$$

Consider the canonical mapping:

$$can: H \to HN/N$$

given by:

$$can(h) = hN$$

We know that this is a well-defined homomorphism, so we just need to determine its surjectivity and its kernel.

Let $(hn)N \in HN/N$. Since nN = N, it follows that:

$$(hn)N = hN = \theta(h)$$

so θ is a surjective mapping.

Moreover:

$$h \in ker(\theta) \iff \theta(h) = hN = N \iff h \in N$$

But $h \in ker(\theta) \iff h \in H$, so it follows that:

$$h \in ker(\theta) \iff h \in H \cap N$$

and so:

$$ker(\theta) = H \cap N$$

Thus, by the First Isomorphism Theorem, it follows that:

$$H/ker(\theta) \cong im(\theta) \implies H/(H \cap N) \cong HN/N$$

as required.

4 The Third Isomorphism Theorem

The third isomorphism theorem gives us tools to identify how subgroups of factor groups G/N relate to subgroups of G.

.1 Proposition: The Canonical Map and Subgroup Preservation

Let G be a group and $N \triangleleft G$. Consider the **canonical map**:

$$can: G \to G/N$$

and let:

$$K \leq G/N$$

Then:

1.
$$can^{-1}(K) \leq G$$
, with $N \subseteq can^{-1}(K)$

$$2. \ can^{-1}(K) \triangleleft G \iff K \triangleleft G/N$$

(Proposition 2.3.1)

Proof.

1. $can^{-1}(K) \leq G$, with $N \subseteq can^{-1}(K)$

Firstly, $can^{-1}(K)$ is non-empty, since $eN \in K \leq G/N$, and $can(e_G) = eN = N$, so $e_G \in can^{-1}(K)$. We now check closure. Let:

$$h_1, h_2 \in can^{-1}(K)$$

so that:

$$can(h_1), can(h_2) \in K$$

Then:

$$can(h_1)can(h_2) = can(h_1h_2)$$

But $can(h_1), can(h_2) \in K$, so $can(h_1h_2) \in K$, by closure of the subgroup, so:

$$h_1h_2 \in can^{-1}(K)$$

and so, $can^{-1}(K)$ is closed.

We now check existence of inverse. Let:

$$h \in can^{-1}(K)$$

so that:

$$can(h) \in K$$

Since k is a subgroup, $can(h)^{-1}$ exists

$$can(h)^{-1} = can(h^{-1}) \in K \implies h^{-1} \in can^{-1}(K)$$

Hence, $can^{-1}(K) \leq G$

Finally, notice that since $K \leq G/N$, in particular $N \in K$, so $\forall n \in N$, since can(n) = N, then $can(n) \in K \implies n \in can^{-1}(K)$, so $N \subseteq can^{-1}(K)$.

 $2. \ can^{-1}(K) \triangleleft G \iff K \triangleleft G/N$

Suppose that $K \triangleleft G/N$, and let $h \in can^{-1}(K), g \in G$. Then:

$$can(h) \in K$$

and:

$$\operatorname{can}(ghg^{-1}) = \operatorname{can}(g)\operatorname{can}(h)\operatorname{can}(g^{-1}) = \operatorname{can}(g)\operatorname{can}(h)\operatorname{can}(g)^{-1}$$

Since $can(h) \in K \triangleleft G/N$, it follows that:

$$can(g)can(h)can(g)^{-1} \in K \implies ghg^{-1} \in can^{-1}(K)$$

so it follows that:

$$g(can^{-1}(K))g^{-1} \subseteq can^{-1}(K)$$

and so,

$$can^{-1}(K) \triangleleft G$$

On the other hand, assume that $K \not\subset G/N$. Then:

$$\exists a \in G/N, b \in K : a^{-1}ba \notin K$$

Since can is surjective, $\exists g \in G, h \in can^{-1}(K)$ such that:

$$can(q) = a$$
 $can(h) = b$

Thus:

$$can(ghg^{-1}) = can(g)can(h)can(g^{-1}) \not \in K$$

so:

$$qhq^{-1} \not\in can^{-1}(K)$$

and so:

$$can^{-1}(K) \not AG$$

4.2 Proposition: Mapping Factor Subgroups to Subgroups

Let $N \triangleleft G$ and let:

 $can: G \to G/N$

be the canonical map.

If:

$$N \le H \le G$$

then:

$$H = can^{-1}(can(H))$$

That is, if $H \leq G$, such that H contains a **normal subgroup** of G, then H can be obtained by reverse mapping subgroups of G/N. (Proposition 2.3.2)

Proof. Let $g \in can^{-1}(can(H))$. Then:

$$can(g) \in can(H)$$

That is, $\exists h \in H$ such that:

$$can(g) = can(h) \iff can(h^{-1}g) = N \iff h^{-1}g \in N \iff g \in hN$$

But since $N \leq H$, we have that $hN \subseteq H$ so:

$$g \in H$$

Hence:

$$g \in can^{-1}can(H)) \iff g \in H \implies can^{-1}can(H)) = H$$

as required.

4.3 Theorem: The Correspondence Theorem

The propositions above allow us to show that the canonical map maps normal subgroups of G containing N to normal subgroups of G/N.

Let G be a group, $N \triangleleft G$ and let:

$$can: G \to G/N$$

be the canonical map.

The map:

$$H \mapsto can(H)$$

is a **bijection** between **subgroups** of G containing N, and **subgroups** of G/N.

Under this bijection, normal subgroups match with normal subgroups.

Further, if $N \subseteq A, B$ are subgroups of G, then:

$$can(A) \subseteq can(B) \iff A \subseteq B$$

(Theorem 2.3.3)

Proof. Let $K \leq G/N$. Then, $can^{-1}(K) \leq G$, and $N \subseteq can^{-1}(K)$ by (4.1). But then it follows by (4.2) that we have:

$$H = can^{-1}(can(H)), \qquad K = can(H)$$

In other words, the subgroup H containing N has a direct, bijective mapping to a subgroup can(H) of G/N. Now, suppose that:

$$N \le A \le B \le G$$

This immediately implies:

$$can(A) \subseteq can(B)$$

Now, suppose that $can(A) \subseteq can(B)$ and let $a \in A$. Then:

$$\exists b \in B : aN = bN \implies ab^{-1} \in N$$

Thus:

$$\exists n \in N : ab^{-1} = n \implies a = nb \in B$$

where we have used the fact that that $N \subseteq B$. Thus, $a \in B$, so:

$$A\subseteq B$$

as required. \Box

4.4 Theorem: The Third Isomorphism Theorem

If $N \leq H \leq G$, with $N, H \triangleleft G$, then:

$$(G/N)/(H/N) \cong G/H$$

(Theorem 2.3.5)

Proof. We want to show that there exists a mapping π such that:

$$\pi: G/N \to G/H$$

is surjective and has kernel:

$$ker(\pi) = H/N$$

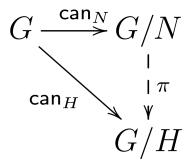
Notice:

$$ker(can_N) = N \subseteq ker(can_H) = H$$

so we can apply the universal property of factor groups, to get that:

$$can_H = \pi \circ can_N$$

Diagrammatically:



 can_H is surjective, so π will also be surjective. Now, assume $gN \in ker(\pi)$. Then:

$$e = \pi(gN) = \pi(can_N(g)) = can_H(g)$$

Hence:

$$gN \in ker(\pi) \iff g \in ker(can_H) = H$$

In other words, gN is in the kernel of π whenever $g \in H$; so the cosets gN are in fact H/N, so:

$$ker(\pi) = H/N$$

Thus, by the First Isomorphism Theorem:

$$(G/N)/ker(\pi) \cong im(\pi) \implies (G/N)/(H/N) \cong (G/H)$$

as required.

4.5 Worked Examples

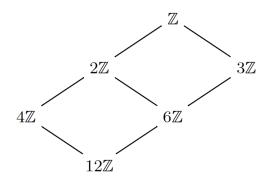
1. Find all subgroups of \mathbb{Z}_{12} together with their inclusions.

We can write:

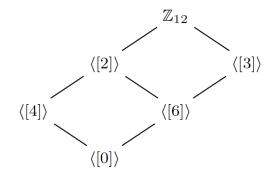
$$\mathbb{Z}/12\mathbb{Z}$$

By the correspondence theorem, the subgroups of \mathbb{Z}_{12} will be isomorphic to those subgroups of \mathbb{Z} which contain the normal subgroup $12\mathbb{Z}$.

The subgroups of \mathbb{Z} containing $12\mathbb{Z}$ are:



So by the Correspondence Theorem, the subgroups of \mathbb{Z}_{12} will be:



where:

$$\langle [n] \rangle = \langle \bar{n} \rangle = can(n)$$

is the cyclic subgroup generated by \bar{n} (i.e $\langle[3]\rangle=\{\bar{0},\bar{3},\bar{6},\bar{9}\}).$

2. Consider the inclusion:

$$10\mathbb{Z} \leq 5\mathbb{Z} \leq \mathbb{Z}$$

By the Third Isomorphism Theorem:

$$(\mathbb{Z}/10\mathbb{Z})/(5\mathbb{Z}/10\mathbb{Z}) \cong \mathbb{Z}/5\mathbb{Z}$$

which we already saw above.

5 Exercises