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Based on the notes by Susan J. Sierra, Chapter 8

1 Solvable Groups

1.1 Definition: Subnormal Series

Subnormal series are a generalisation of composition series.
In particular, a subnormal series of G is a chain of subsequent nor-
mal subgroups:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs = G

(Definition 8.1.1)

1.2 Definition: Solvable Group

A group G is solvable, provided that it has a subnormal series:

{e} = G0 ◁ G1 ◁ . . . ◁ Gs = G

such that each factor:
Gi+1/Gi

is abelian.
(Definition 8.1.2)

1.2.1 Examples of Solvable Groups

• If A is abelian, A is solvable:
{e} ◁ A

is a subnormal series, whose only factor (A) is abelian

• S3 is solvable, but not abelian:
{e} ◁ A3 ◁ S3

where recall:
A3 = {e, (1 2 3), (1 3 2)}

is abelian. Similarly, S4 is also solvable

• A5 is not solvable, since it is a simple group, and A5 isn’t abelian, so the subnormal series contains no
abelian factor

1.2.2 Theorem: Finite p-groups are Solvable

Let G be a p-group, such that |G| = pn. Then, G is solvable.
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Proof. Recall that if G is a p-group, it has a non-trivial centre:

Let G be a non-trivial, finite p-group. Then:

Z(G) ̸= {e}

That is, the centre is non-trivial.
(Theorem 4.2.12)

We now proceed by induction on |G| = pn.

1 |G| = p1

Let G1 = Z(G). Clearly, G1 is abelian, and thus, it is normal in G. Moreover, the quotient G/G1 will
be abelian, since |G| = p implies that G is cyclic (and so abelian), and the quotient of an abelian group will
be abelian. Hence, we have that:

{e} ◁ G1 ◁ G

is a subnormal chain of G with abelian factors.

2 |G| = pk

Assume that if G is a p-group with |G| ≤ pk, then G is solvable. That is:

{e} ◁ G1 ◁ . . . ◁ G

is a subnormal chain, such that Gi+1/Gi is abelian.

3 |G| = pk+1

Since G is a p-group, G has a non-trivial centre Z(G). If G = Z(G), then G is abelian, and thus solvable.

Hence, assume that Z(G) is a proper subgroup. In particular, we know that Z(G) ◁ G. Moreover, since
Z(G) is a subgroup of G, it must be a p-subgroup, and |Z(G)| ≤ pk. Hence, by the inductive hypothesis,
Z(G) is solvable:

{e} ◁ G1 ◁ . . . ◁ Z(G)

If G/Z(G) is abelian, then we are done. Otherwise, since |G/Z(G)| < pk+1, and G/Z(G) is a p-group,
G/Z(G) will be solvable by inductive hypothesis, so:

Z(G) ◁ H1 ◁ . . . ◁ G/Z(G)

By the correspondence theorem, for each Hj ◁ Hj+1 there is a corresponding normal subgroup Kj ◁ Kj+1,
where each Kj is contained in G. Since Hj+1/Hj is abelian, then Kj+1/Kj will also be abelian. In particular,
this means that:

{e} ◁ G1 ◁ . . . ◁ Z(G) ◁ K1 ◁ . . . ◁ G

is a subnormal chain, where each factor is abelian. Thus, G is solvable.
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1.3 Solvability from Composition Series

1.3.1 Lemma: Composition Factors of Abelian Groups

If A is a finite abelian group of order:

|A| = pn1
1 pn2

2 . . . pnk
k

then the composition factors of A are:

• n1 copies of Cp1

• n2 copies of Cp2

• . . .

• nk copies of Cpk

(Lemma 8.1.5)

Proof.

1.3.2 Theorem: Solvability Iff Cyclic Composition Factors

A finite group G is solvable if and only if all the composition fac-
tors of G are cyclic.
(Theorem 8.1.4)

Proof. • ( ⇐= ) Say G has a composition series, with all composition factors being cyclic. In particular,
any composition series is a subnormal series, and every cyclic goup is abelian, so G must be solvable

• ( =⇒ ) Say G is solvable. Then, it has a subnormal series, with each factor being abelian. We now
induct on |G|.

1 |G| = 2

Then G = C2, which is solvable (since abelian), and has composition series {e} ◁C2, with composition
factor C2, as required.

2 |G| = k
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Assume that if |G| = k and G is solvable, then G has cyclic composition factors.

3 |G| = k + 1

Assume that G is solvable. Then, it has a subnormal series:

{e} ◁ G1 ◁ . . . ◁ Gs−1 ◁ G

such that Gi+1/Gi is abelian. By the inductive hypothesis, since |Gs−1| < k + 1, the composition
factors of Gs−1 are cyclic. Moreover, G/Gs−1 is abelian, and by the Lemma above, it follows that the
composition factors of G/Gs−1 are cyclic.

Now, recall the Lemma:

Let G be a group, with N ◁ G.
Let:

{e} = G0 ◁ G1 ◁ . . . ◁ ◁Gs = N

be a composition series for N , and:

N = H0 ◁ H1 ◁ . . . ◁ ◁Hr = G/N

be a composition series for G/N .

Then, there is a composition series for G of length s + r, whose com-
position factors are:

G1, G2/G1, . . . , Gs/Gs−1, H1, H2/H1, . . . , Hr/Hr−1

(Sublemma 7.2.2)

This means that the composition factors ofG are precisely the composition factors ofGs−1 andG/Gs−1.
Hence, the composition factors of G must all be cyclic.

2 Solvable Groups from Subgroups

2.1 Theorem: Solvability Iff Normal Subgroup Solvable

Let G be a group, and let N ◁ G. Then, G is solvable if and only if:

• N is solvable

• G/N is solvable

(Theorem 8.1.6)
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Proof. Let N ◁ G. By the Theorem above, G is solvable if and only if its composition factors are cyclic.
By the sublemma:

Let G be a group, with N ◁ G.
Let:

{e} = G0 ◁ G1 ◁ . . . ◁ ◁Gs = N

be a composition series for N , and:

N = H0 ◁ H1 ◁ . . . ◁ ◁Hr = G/N

be a composition series for G/N .

Then, there is a composition series for G of length s + r, whose com-
position factors are:

G1, G2/G1, . . . , Gs/Gs−1, H1, H2/H1, . . . , Hr/Hr−1

(Sublemma 7.2.2)

the composition factors of G are precisely those of G and G/N . Hence, G is solvable if and only if G
has cylic composition factors if and only if N and G/N have cyclic composition factors, as required.

2.1.1 Worked Exercise: Solvability of Groups of Order 40

Let G be a group of order 40. By Sylow I, G has a Sylow 5-subgroup, call it N . By Sylow III:

n5 | 8 n5 ≡ 1 (mod 5)

This only allows n5 = 1, so N is normal in G. Since |N | = 5, N has prime order, and thus, is cyclic, so
abelian, so solvable. Moreover, |G/N | = 8 = 23. Hence, G/N is a p-group, so it is solvable. Hence, since N
and G/N are solvable, G must be solvable.

2.2 Theorem: Solvable Groups Have Solvable Subgroups

If G is solvable and H ≤ G, then H is solvable.
(Theorem 8.1.7)
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Proof. Let G have subnormal series:
{e} ◁ G1 ◁ . . . ◁ G

such that Gi+1/Gi is an abelian group.

If H ≤ G, define:
Hi = H ∩Gi

Since Gi ◁ Gi+1, if a ∈ Gi:
∀g ∈ Gi+1, gag

−1 ∈ Gi

Now, let b ∈ Hi and h ∈ Hi+1 and consider hbh−1, since h ∈ Hi+1, in particular h ∈ Gi+1. Similarly, since
b ∈ Hi, also b ∈ Gi, so:

hbh−1 ∈ Gi ∩H

(since b.h are also in H). Hence, hbh−1 ∈ Hi, so Hi ◁ Hi+1.

Now, define:
θ : Hi+1 → Gi+1/Gi

by the canonical map:
θ(h) = hGi

Then:
ker(θ) = Hi+1 ∩Gi = (Gi+1 ∩H) ∩Gi = H ∩Gi = Hi

Hence, by the First Isomorphism Theorem:

Hi+1/ker(θ) ∼= im(θ) =⇒ Hi+1/Hi
∼= im(θ) ≤ Gi+1/Gi

But since G is solvable, Gi+1/Gi is abelian, and any subgroup of an abelian group is abelian. Hence,
im(θ) ∼= Hi+1/Hi is abelian.

Hence, we have found a subnormal series for H:

{e} ◁ H1 ◁ . . . ◁ H

such that Hi+1/Hi is abelian. Thus, H is solvable, as required.

3 Derived Subgroups

3.1 Commutators

3.1.1 Definition: The Commutator

Let G be a group. The commutator of a, b ∈ G is the element:

[a, b] = aba−1b−1

(Definition 8.2.1)
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3.1.2 Definition: The Derived/Commutator Subgroup

The derived subgroup (or commutator subgroup) of G is the sub-
group generated by all possible commutators in G:

G′ = ⟨[a, b] | a, b ∈ G⟩ = [G,G]

(Definition 8.2.1)

3.1.3 Remark: Properties of the Derived Subgroup

1. Inverses and conjugates of commutators are commutators:

[a, b]−1 = [b, a] z[a, b]z−1 = [zaz−1, zbz−1]

2. Every element in G′ is a product of commutators. However, it is
not true that a product of 2 commutators is a commutator:
that is, the set of all commutators doesn’t form a group

3. The derived subgroup is a normal subgroup in G:

G′ ◁ G

Proof.

1 One can directly check:

[a, b][b, a] = (aba−1b−1)(bab−1a−1) = eG

[b, a][a, b] = (bab−1a−1)(aba−1b−1) = eG

[zaz−1, zbz−1] = zaz−1zbz−1(zaz−1)−1(zbz−1)−1 = (zabz−1)(za−1b−1z−1) = z[a, b]z−1

2 By definition, G′ is generated by all commutators, so all of its elements are products of commutators.

[a, b], [c, d] ∈ G =⇒ [a, b][c, d]

However, any set containing commutators needn’t be a group:

• What is a simple example of a group in which the product of commutators need not be a commutator?

• Commutator subgroup does not consist only of commutators

• Why is the set of commutators not a subgroup?
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3

Let x = [a, b] ∈ G′, and let g ∈ G. Then:

gxg−1 = [gag−1, gbg−1] ∈ G′

so ∀g ∈ G, gG′g−1 ⊆ G, so G′ ◁ G as required. Alternatively, we have that:

gxg−1 = xx−1gxg−1 = x[x−1, g] ∈ G′

where we use the fact that x, [x−1, g] are both commutators.

3.2 Theorem: Abelian Factor Groups from Derived Subgroups

Let G be a group. Then, N is a normal subgroup and G/N is abelian
if and only if G′ ⊆ N .
In particular, N = G′ is the smallest subgroup, such that G/N is abelian.
(Theorem 8.2.2)

Proof.

• ( =⇒ ) Assume N is a normal subgroup, such that G/N is abelian. We seek to show that G′ ⊆ N . Let
a, b ∈ G. Then:

[a, b]N = (aba−1b−1)N

= (aN)(bN)(a−1N)(b−1N)

= (aN)(a−1N)(bN)(b−1N)

= eN

= N

so [a, b] ∈ N =⇒ G′ ⊆ N as required.

• ( ⇐= ). Assume that G′ ⊆ N . We first show that N ◁G, and then that G/N is abelian. The first part
is similar to how we showed that G′ is a normal subgroup. Indeed, let g ∈ G, and let x ∈ N . Then:

gxg−1 = gxg−1x−1x = [g, x]x

Since [g, x] ∈ G′ ⊆ N and x ∈ N , it follows that gxg−1 ∈ N , so N ◁ G.

Now, consider G/N . Let a, b ∈ G. Then:

(aN)(bN) = abN = (baa−1b−1)(abN) = (ba[a−1, b−1])N = baN = (bN)(aN)

where we have used the fact that [a−1, b−1] ∈ N
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3.3 Derived Series

3.3.1 Definition: Derived Series of a Group

Let G be a group. Set G0 = G. Then, define:

∀i ≥ 0, G(i+1) = (G(i))′ = [G(i), G(i)]

The derived series of G is the sequence:

G = G(0) ▷ G(1) = G′ ▷ G(2) ▷ . . .

(Definition 8.2.3)

3.3.2 Remark: Properties of Derived Series

1.
∃i ≥ 0 : G(i+1) = G(i) =⇒ ∀j ≥ i, G(j) = G(i)

2. If |G| < ∞, then ∃i ≥ 0 : G(i+1) = G(i), but this doesn’t necessarily
mean that G(i) = {eG}

3. If there is some n ≥ 0 such that G(n) = {eG}, then G is solvable

Proof.

1 Assume that for some i ≥ 0, G(i+1) = G(i). By definition, (G(i))′ = G(i+1) = G(i). In other words,

the derived subgroup of G(i) is itself, so if we continue computing its derived subgroup, we will continue
obtain itself, as required.

2 The derived subgroup is a normal subgroup, so its order will be less than the original group. If the

original group is finite, in particular this means that eventually there must exist an i such that G(i), upon
taking its derived subgroup, can not decrease in order anymore.

To show that this last derived subgroup need not be trivial, consider G = A5. A5 is simple, so its only
normal subgroups are trivial. In particular, G′ = {e} or G′ = A5. Since G‘ is a derived subgroup, it is the
smallest subgroup such that G/G′ is abelian. Since A5 isn’t abelian, G′ ̸= {e}, and so, G′ = A5. Thus,
∀i ≥ 0, G(i) = A5. This argument works for any non-abelian simple group.

3 Assume there is some n ≥ 0 such that G(n) = {eG}. Then, the derived series is:
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G = G(0) ▷ G(1) = G′ ▷ G(2) ▷ G(n) = {eG}
By definition of derived subgroups, G(i)/G(i+1) is abelian (since G(i+1) = (G(i))′), so the derived series is a
subnormal series with each factor abelian. Thus, G must be solvable.

3.3.3 Theorem: Solvability from Derived Series

Let G be a group. Then, G is solvable if and only if ∃n ≥ 0 : G(n) =
{eG}.
(Theorem 8.2.4)

Proof.

• ( =⇒ ): assume that G is solvable. Then, there is some subnormal series:

G = G0 ▷ G1 ▷ . . . ▷ Gn = {e}

where Gs/Gs+1 is abelian. It is sufficient to show that ∀s ∈ [0, n] we have that G(s) ⊆ Gs. Then,
taking s = n, we’d get that G(n) ⊆ {eG} =⇒ G(n) = {eG}, as required.

We thus proceed by induction on s:

1 Base Case (n = 0)

Notice that G(0) = G = G0, so clearly G(0) ⊆ G0.

2 Inductive Hypothesis (s = k)

Assume that for s ∈ [0, k], we have that G(s) ⊆ Gs.

3 Inductive Step (s = k + 1)

Now, let s = k + 1. By definition of the derived series:

G(k+1) = (G(k))′

Since G(k) ⊆ Gk by the inductive hypothesis, we must have that (G(k))′ ⊆ G′
k. Moreover, Gk/Gk+1 is

abelian, so the derived subgroup of Gk must be a subgroup of Gk+1; in particular, G′
k ⊆ Gk+1. Thus,

we have that:
G(k+1) ⊆ Gk+1

as required.

• ( ⇐= ): this was 3 in the above Remark.
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3.3.4 Definition: Derived Length of a Group

Let G be a solvable group. Then, ∃n ≥ 0 : G(n) = {eG}. The least such
n is the derived length of G.
(Definition 8.2.5)

3.3.5 Example: Derived Length of Dihedral Groups

Let:
G = Dn

∼=
〈
g, h | gn, h2, (gh)2

〉
where n ≥ 3. The subgroup of Dn containing the rotations is ⟨h⟩ ∼= Cn. Since H is abelian (and thus
normal), and |G/H| = 2n/n = 2 =⇒ G/H ∼= C2 is also abelian, they are both solvable, so G is solvable.

Notice:

• the fact that G/H is abelian implies that G′ ⊆ H

• G′ contains the commutator:

[g, h] = ghg−1h−1 = hg−2h−1 = g2hh−1 = g2

• if K =
〈
g2
〉
≤ G, since g2 ∈ G′, then K ⊆ G′

Now, we need to consider 2 cases:

1 n is odd

Then n = 2k + 1, and:
H = {g, g2, . . . , g2k, g2k+1 = e}

Then, notice any element of
〈
g2
〉
has the form g2m+2 for some m ∈ Z. In particular, when m = k:

g2k+2 = g2k+1+1 = g ∈ ⟨g⟩ =⇒ ⟨g⟩ ⊆
〈
g2
〉

Moreover, since clearly
〈
g2
〉
⊆ ⟨g⟩, it follows that K =

〈
g2
〉
= ⟨g⟩ = H. Since G′ ⊆ H = K and K ⊆ G′, we

must have that G′ = H. Then, we have a derived series:

G = Dn ▷ G(1) = G′ = H ▷ G(2)

where, since H is abelian, G(2) = {e}, so the derived length of Dn is 2.

2 n is even

Since n = 2k is even:
H = {g, g2, g2k−1, g2k=e}

in particular, this means that |
〈
g2
〉
| = k

2 , so H ̸= K =
〈
g2
〉
. Now,

〈
g2
〉
commutes with any power of g,

and:
hg2h−1 = g−2 = g2k−2 ∈

〈
g2
〉

Hence,
〈
g2
〉
is a normal subgroup, so K ◁ G. Then, |G/K| = (2k)/(k/2) = 4, which means that:

G/K ∼= C4 or G/K ∼= C2 × C2
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But notice, elements of G/K can only have orders of 1 or 2:

G/K = {K,hK, gK, (gh)K}

Any odd power of g maps into the coset gK; any even power of g maps into the coset K. Any element of the
form hg2m maps into hK, and any element of the form hg2m+1 maps into (gh)K. K has order 1, whereas
the remaining 3 elements have order 2, and are their own inverses. Hence, G/K ∼= C2 × C2, and is abelian,
so G′ ⊆ K. But we saw above that K ⊆ G′, so G′ = K. Thus, we have a derived series:

G = Dn ▷ G(1) = G′ = K ▷ G(2)

where, since K is abelian, G(2) = {e}, so the derived length of Dn is 2.
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