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Based on the notes by Susan J. Sierra, Chapter 1

1 Groups

1.1 Definition: Groups

Consider a set G, and let ⋆ be a binary function:

⋆ : G×G → G

(g, h) 7→ g ⋆ h ∈ G, ∀g, h ∈ G

A group (G, ⋆) satisfies 3 axioms:

1. Associativity:

g ⋆ (h ⋆ k) = (g ⋆ h) ⋆ k, g, h, k ∈ G

2. Existence of Identity:

∃e ∈ G : e ⋆ g = g ⋆ e = g, ∀g ∈ G

3. Existence of Inverse:

∀g ∈ G,∃h ∈ G : g ⋆ h = h ⋆ g = e

We write h = g−1.

By letting ⋆ be a function, we ensure that (G, ⋆) is closed under ⋆.
(Definition 1.1.1)

• What is the order of a group?

– the number of elements in G

– we denote the order via |G|

1.2 Definition: Abelian Group

A group (G, ⋆) is abelian if:

g ⋆ h = h ⋆ g, ∀g, h ∈ G
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1.3 Theorem: Group Properties

Let (G, ⋆) be a group. Then:

1. Existence and Uniqueness of Group Products: if g, h ∈ G,
then there are unique elements k1, k2 such that:

k1 ⋆ g = h g ⋆ k2 = h

2. Cancellation Law: let g, s, t ∈ G. Then:

g ⋆ s = g ⋆ t =⇒ s = t

s ⋆ g = t ⋆ g =⇒ s = t

3. Uniqueness of Identity: e is the only identity element. ∀g, h ∈ G
if g ⋆ h = h, then g = e.

4. Uniqueness of Inverse: g−1 is the only inverse of g ∈ G.
∀g, h ∈ G if g ⋆ h = e, then h = g−1.

5. Inverse of Identity: the inverse of the identity element is the
identity element

e−1 = e

6. Inverse of Inverse: if g ∈ G, then (g−1)−1 = g

(Revision Exercises 1, 2 + FPM Notes)

Proof. 1. Existence and Uniqueness of Group Products
We prove the first statement: if g, h ∈ G, there is a unique k ∈ G such that k ⋆ g = h.
Define k := hg−1. Clearly, k ∈ G. Moreover:

kg = (hg−1)g = h(g−1g) = h

Moreover, k is unique: assume ∃k′ ∈ G such that k′g = h. Then:

k = hg−1 = (k′g)g−1 = k′(gg−1) = k′

2. Cancellation Law
Assume gs = gt. By uniqueness, this is only possible if s = t. Alternatively:

gs = gt =⇒ g−1(gs) = g−1(gt) =⇒ s = t

3. Uniqueness of Identity

(a) assume ∃g, h such that:
gh = h

But since eh = h, it follows by cancellation law/uniqueness that g = e, as required.
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(b) assume e′ is another identity. Then:

e′g = eg

=⇒ (e′g)g−1 = (eg)g−1

=⇒ e′(gg−1) = e(gg−1)

=⇒ e′ = e

(c) assume e′ is another identity. Then we must have that:

ee′ = e ee′ = e′

But by uniqueness of products, we must then have e = e′.

4. Uniqueness of Inverse

(a) follows directly from existence and uniqueness, by using g, e, and the fact that by the group
axioms, gg−1 = e

(b) assume h, k are 2 inverses of g. Then:

gh = e gk = e =⇒ gk = gh

so by cancellation/uniqueness, k = h

5. Inverse of Identity
Since ee = e and ee−1 = e, and inverses are unique, e = e−1

6. Inverse of Inverse
Since g−1(g−1)−1 = e and g−1g = e, and inverses are unique, g = (g−1)−1

1.4 Definition: The Product Group

Let (G, ⋆G) and (H, ⋆H) be groups. The direct product G×H is a prod-
uct group under operation ⋆, defined by:

(g, h) ⋆ (g′, h′) = (g ⋆G g′, h ⋆H h′)

(Definition 1.4.8)

1.5 Examples of Groups

1.5.1 Symmetric Group

• Sn is the symmetric group

• corresponds to the set of all permutations of the set {1, . . . , n}

• ⋆ is permutation composition

• contains n! elements
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1.5.2 Dihedral Group

• Dn is the dihedral groups

• corresponds to the set of all symmetries of a regular n-gon

• contains 2n elements: n rotations and n reflections

1.5.3 Free Group

• 2 letters have a free group G = ⟨x, y⟩

• corresponds to the set of all words which can be generated by combining x, y, x−1, y−1

• ⋆ is letter concatentation:

xxx−1y ⋆ y−1x = xxx−1yy−1x = xx = x2

• the identity element is the empty word (no letters)

1.5.4 Integers Under Addition

• (Z,+) is a group with e = 0

• it is a cyclic group generated by 1 (so every element in Z can be written as a sum of 1s)

• (Zn,+) (integers modulo n) are also a group

2 Subgroups

2.1 Definition: Subgroups

Let (G, ⋆) be a group. A non-empty subset H ⊆ G is a subgroup if
(H, ⋆) is a group.
In particular, H is a subgroup if its closed under products and in-
verses:

1. hk ∈ H,∀h, k ∈ H

2. h−1 ∈ H,∀h ∈ H

If H is a subgroup of G, we write:

H ≤ G

(Definition 1.3.1)

Notice, the e ∈ H, since h, h−1 ∈ H and there’s multiplicative closure. Moreover, H will be associative, since
G was. So H satisfies the properties of a group!

• Given a finite group, how can we test for a subgroup?

– for finite subsets, it is sufficient to check that H is closed under products
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• What is a proper subgroup?

– a subgroup H which is a proper subset of G

– we write:
H < G

2.2 Theorem: Test for Subgroup

Let G be a group, and H ⊆ G. H is a subgroup if and only if it is non-
empty and:

hk−1 ∈ H, ∀h, k ∈ H

(Revision Exercise 4)

Proof. If H is a subgroup, consider h, k ∈ H. Then, we have that k−1 ∈ H, and by closure, it follows that
hk−1 ∈ H, as required.

Alternatively, let h, k ∈ H, and assume that hk−1 ∈ H. We need to show closure under products and
inverses. Since k ∈ H, let h = k. Then it follows that:

hk−1 ∈ H =⇒ hh−1 = e ∈ H

Hence, it follows that:
hk−1 ∈ H =⇒ ek−1 = k−1 ∈ H

so H is closed under inverses.
Moreover,

hk−1 ∈ H =⇒ h(k−1)−1 = hk ∈ H

so H is closed under products. Hence, H is a subgroup.

2.3 Examples of Subgroups

• {e} is the trivial subgroup for any group G; similarly, G is a subgroup of G

• the set of rotations of an n-gon form a subgroup of Dn

• An is the alternating group, and it’s a subgroup of Sn, constructed by taking the product of an
even number of 2-cycles

• GL(n, F ) is the general linear group over a field F , containing all the invertible n × n matrices.
SL(n, F ) is the special linear group, the set of all invertible n × n matrices with determinant 1.
SL(n, F ) is a subgroup of GL(n, F ).

2.4 Cyclic Groups

• How can we generate subgroups by using elements of groups?

– we can repeatedly apply ⋆ to an element g with itself

– this generates a subgroup:
⟨g⟩ := {gn | n ∈ Z}

known as the subgroup generated by g
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• What is a cyclic group?

– a group which is generated by a single element g ∈ G:

G = ⟨g⟩

• What is the order of a group element?

– the smallest positive integer n such that:

gn = e

(if it doesn’t exist, n = ∞)

– denoted as o(g)

– we have that the order of a cyclic subgroup is the order of the subgroup’s generator:

| ⟨g⟩ | = o(g)

2.5 Worked Exercises

3 Cosets

3.1 Definition: Left and Right Cosets

Let H ⊆ G, and consider g ∈ G. Then:

• the left coset of H determined by g is the set:

gH = {gh | h ∈ H} ⊆ G

• the right coset of H determined by g is the set:

Hg = {hg | h ∈ H} ⊆ G

G/H denotes the set of all left cosets, whilst H \ G denotes the set of all
right cosets.
(Definition 1.3.6)

• What is the index of H in G, where H ≤ G?

– the number of left cosets of H:
|G/H| = [G : H]

3.1.1 Worked Exercises

• (Revision Exercise 7) Let G = S3 and let H = {e, (12)}. H ≤ G. Write down the elements of
G/H and H \G. What do you notice about these sets?
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3.2 Normal Subgroups

3.2.1 Definition: Normal Subgroups

Let H ≤ G. H is a normal subgroup if it is invariant under conju-
gation. In other words:

gH = Hg, ∀g ∈ G

We write H ◁ G.

3.2.2 Theorem: Equivalent Definitions for Normal Subgroups

The following are equivalent:

1. H ◁ G

2. gHg−1 = H, ∀g ∈ G

3. gHg−1 ⊆ H, ∀g ∈ G

4. H =
⋂

g∈G gHg−1

5. H ⊆
⋂

g∈G gHg−1

Proof.

• H ◁ G ⇐⇒ gHg−1 ⊆ H
( =⇒ ) Let H be a normal subgroup; that is:

gH = Hg, ∀g ∈ G

For any g ∈ G, ∃h, k ∈ H such that:

gh = kg =⇒ ghg−1 = k ∈ H

That is, if ghg−1 ∈ gHg−1 then also ghg−1 ∈ H, so gHg−1 ⊆ H. (Alternatively, argue that gH =
Hg =⇒ gHg−1 = H)
( ⇐= ) Assume that gHg−1 ⊆ H,∀g ∈ G.
On the one hand, we have that ∃h, k ∈ H such that:

ghg−1 = k =⇒ gh = kg ∈ Hg

so it follows that gH ⊆ Hg.
On the other hand, since g−1 ∈ G, ∃h, k ∈ H such that:

(g−1)h(g−1)−1 = k =⇒ g−1hg = k =⇒ hg = gk ∈ gH

so it follows that Hg ⊆ gH. Hence, we must have that gH = Hg, and H is a normal subgroup.
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• H ◁ G ⇐⇒ gHg−1 = H

H ◁ G ⇐⇒ gH = Hg

⇐⇒ (gH)g−1 = (Hg)g−1

⇐⇒ gHg−1 = H

3.2.3 Theorem: Another Definition for a Normal Subgroup

Let H ≤ G, and assume that ∀g ∈ G we have:

gHg−1 ⊆ H g−1Hg ⊆ H

then:
gHg−1 = H

and so, H ◁ G.

Proof. Assume that gHg−1 ̸= H. Then, ∃h ∈ H such that h ̸∈ gHg−1. But then, observe:

H = (gg−1)H(gg−1)

= g(g−1Hg)g−1

⊆ gHg−1

In other words, any element of H must be in gHg−1. However, this is a contradiction, and so, no such h ∈ H
must exist. Hence, gHg−1 = H, and by the definition of a normal subgroup:

H ◁ G

as required.

4 Lagrange’s Theorem

4.1 Recap: Equivalence Relations and Equivalence Classes

• What is an equivalence relation?

– consider a set X

– for s, t ∈ X, we write s ∼ t to say “s is related to t”

– ∼ defines an equivalence relation if it’s:

∗ reflexive: x ∼ x,∀x ∈ X

∗ symmetric: x ∼ y =⇒ y ∼ x, ∀x, y ∈ X

∗ transitive: x ∼ y, y ∼ z =⇒ x ∼ z, ∀x, y, z ∈ X

• What is an equivalence class?

– for some x ∈ X, its equivalence class is the set of all elements in X which are related to x via
an equivalence relation:

cl(x) = {y | x ∼ y, y ∈ X}
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4.1.1 Theorem: Properties of Equivalence Classes

Consider a set X with equivalence relation ∼. Then:

1. cl(x) ̸= ∅

2. x ∼ y, x, y ∈ X if and only if:

cl(x) = cl(y)

if and only if:
cl(x) ∩ cl(y) ̸= ∅

In other words, 2 equivalence classes are either the exact same, or com-
pletely disjoint.

Proof. 1. This follows from the fact that x ∈ cl(x) by reflexivity

2. Assume x ∼ y. Let z ∈ cl(y), so that y ∼ z. Since x ∼ y, by transitivity it follows that x ∼ z, so
z ∈ cl(x) =⇒ cl(y) ⊆ cl(x). By similar arguments, cl(x) ⊆ cl(y), so:

cl(x) = cl(y)

Otherwise, if cl(x) = cl(y), since x ∈ cl(x) and y ∈ cl(y), it follows that x ∈ cl(y), y ∈ cl(x), so x ∼ y.

Assume x ∼ y. We know that x ∈ cl(y) and y ∈ cl(x), so in particular x ∈ cl(x)∩cl(y), so cl(x)∩cl(y) ̸=
∅.
Otherwise if cl(x) ∩ cl(y) ̸= ∅, then ∃z ∈ cl(x) ∩ cl(y), so x ∼ z and z ∼ y. By transitivity, x ∼ y, as
required.

4.1.2 Theorem: Equivalence Classes Partition Sets

Let X be a set with an equivalence relation ∼. Then, the equivalence
classes generated by ∼ partition X. In other words, each element of X
can be put into a unique equivalence class (which is non-empty), such that
the union of equivalence classes gives X.

Proof. Any 2 equivalence classes are either the same set (if they have a common representative), or completely
disjoint. Moreover, each element of x belongs to at least one equivalence class (cl(x)). Thus:

X =
⋃
x∈X

cl(x)
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4.2 Theorem: Cosets as Equivalence Classes

Let G be a group, and H ≤ G. The relation ∼, given by:

g1 ∼ g2 ⇐⇒ ∃g2 : g1 ∈ g2H, g1, g2 ∈ G

is an equivalence relation on G.
The equivalence classes are the cosets gH; in other words, the cosets gH
partition the group, so ∃g1, . . . , gn ∈ G such that:

G =
n⋃

i=1

giH

As a bonus, if h ∈ H, then we have that:

hH = H

Proof. We verify the properties of an equivalence relation:

1. Reflexivity
Notice, since e ∈ H, then g ∈ gH, so it follows that g ∼ g.

2. Symmetry
Assume that g1 ∈ g2H. Then, ∃h ∈ H such that g1 = g2h. Consider the coset g1H. We must have
that:

g1H = (g2h)H = g2(hH)

Now, H is closed under multiplication, so clearly hH ⊆ H. Suppose t ∈ H. We can write:

t = h(h−1t), h−1t ∈ H

Then, t ∈ hH, so H ⊆ hH. Thus, hH = H.
This shows that if g1 ∈ g2H, then g1H = g2H, so in particular g2 ∈ g1H (as g2 ∈ g2H) so g1 ∼ g2 =⇒
g2 ∼ g1.

3. Transitivity
Assume that g1 ∈ g2H and g2 ∈ g3H. Then, ∃h, k ∈ H such that:

g1 = g2h g2 = g3k

So:
g1 = g2h = (g3k)h = g3(kh) ∈ g3H

since kh ∈ H. Thus, g1 ∼ g3, as required.

Notice, this then means that given 2 cosets, either:

• g1H = g2H

• g1H ∩ g2H = ∅
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4.3 Theorem: Cosets Have Same Order as Subgroup

Let H ≤ G. Then:
|gH| = |H|, ∀g ∈ G

Proof. Consider the map:
f : H → gH

defined by:
f(h) = gh

It is sufficient to show that f is a bijection. It is clearly surjective from definition:

gH = {gh | h ∈ H} = {f(h) | h ∈ H}

It is also injective, by the uniqueness of group products/cancellation law:

f(h1) = f(h2) ⇐⇒ gh1 = gh2 ⇐⇒ h1 = h2

Hence, it follows that f is a bijection, and |gH| = |H|.

This is known as the canonical map, and we will see more next week,
when defining the Isomorphism Theorems.

4.4 Theorem: Lagrange’s Theorem

Let H ⊂ G, where G is a finite group. Then, the order of H divides the
order of G.
More precisely:

|G| = |G/H||H|
(Theorem 1.3.8)

Proof. We showed about that the relation g1 ∼ g2 ⇐⇒ g1 = g2H is an equivalence relation, with equivalence
classes gH, the left cosets of H. These cosets partition the group:

G =

n⋃
i=1

giH

where gi ∈ G are representatives of the equivalence classes.
Then, since the equivalence classes are disjoint:

|G| =
n∑

i=1

|giH| =
n∑

i=1

|H| = nH
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where we have used the theorem above, whereby |gH| = |H|,∀g ∈ G.
But here n is the number of distinct left cosets of H, which is |G/H| so:

|G| = |G/H||H|

as required

4.4.1 Remark: Differences Between Left and Right Cosets

When developing Lagrange’s Theorem, we have just used left cosets.
However, it is easy to verify that:

g1 ∼ g2 ⇐⇒ g1 ∈ Hg2

is an equivalence relation, with equivalence classes Hg - the right cosets.
Thus, Lagrange’s Theorem also applies to right cosets:

|G| = |H \G||H|

and this also means that if H is a subgroup, it has the same number of
left and right cosets.

4.5 Corollaries of Lagrange’s Theorem

4.5.1 Theorem: Cauchy’s Theorem

Lagrange’s Theorem imposes restrictions on the possible orders of subgroups. However, it doesn’t imply the
existence of said subgroups. This changes for prime ordered subgroups.

If G is a finite group and p is prime, such that p divides |G|, then G
has a subgroup of order p.
(Theorem 1.3.9)

The proof requires the Orbit-Stabilizer Theorem, done in FPM.

4.5.2 Corollary: Order of Group Elements

Let G be a group, and g ∈ G. Then:

1. o(g) divides |G|

2. g|G| = e

Proof. ⟨g⟩ is a subgrop of order o(g), so by Lagrange’s Theorem:

|G| = |G/ ⟨g⟩ |o(g)
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This places a restriction on the order of group elements!
By the above:

g|G| = g|G/⟨g⟩|o(g) = (go(g))|G/⟨g⟩| = e|G/⟨g⟩| = e

4.5.3 Corollary: Cyclic Group if Order is Prime

If |G| is prime, then G is cyclic.
(Corollary 1.3.11)

Proof. Let |G| be prime. By Lagrange’s Theorem:

|G| = |G/H||H|

Now, consider g ∈ G, g ̸= e, and in particular, the subgroup H = ⟨g⟩. Since o(g) must divide |G|, g ̸= e and
|G| is prime, this is only possible if o(g) = |G|. Hence, H = ⟨g⟩ = G, and G is cyclic.

4.5.4 Corollary: Groups of Order 5 or Less Are Abelian

Let G be a group. If |G| < 6, then G is abelian.

4.5.5 Theorem: Fermat’s Little Theorem

If p is prime, and a ∈ Z, then:

ap ≡ a mod p

Proof. If a ≡ 0, then the result follows, so assume this is not the case.
We can think of a as an element of the group Z×

p under the operation of multiplication modulo p, with
identity e = 1.
This group has p− 1 elements, so by the corollary on the order of group elements:

g|Z
×
p | = gp−1 = 1, ∀g ∈ Z×

p

Moving back to a, it follows that:
ap−1 ≡ 1 mod p

so multiplying through by a yields the desired result.

4.5.6 Worked Exercises

• (Revision Exercise 13) Provide the details for the following example. Let G = Z+
10, and

H = {0, 2, 4, 6, 8}. H ≤ G and in fact it is a normal subgroup. Show why. Verify that the
left cosets of H are the same as the right cosets. Another coset is 1 + H (odd numbers
mod 10). Verify that this is what Lagrange predicts. Finally, consider K = {0, 5}, which
is also a normal subgroup. What are the 5 cosets of K?
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5 Group Homomorphisms

5.1 Definition: Group Homomorphisms and Endomorphisms

Let G,H be groups.
A function:

ϕ : G → H

such that
ϕ(a ⋆G b) = ϕ(a) ⋆H ϕ(b), ∀a, b ∈ G

is a group homomorphism.
If ϕ : G → G, then ϕ is a group endomorphism.
(Definition 1.4.1)

5.2 Definition: Group Isomorphisms and Automorphisms

Let G,H be groups.
If ϕ : G → H is a bijective group homomorphism, then ϕ is a group
isomorphism.
If G = H, so that ϕ : G → G, then ϕ is a group automorphism.

• What are isomorphic groups?

– groups whereby there is an isomorphism between them

– if G,H are isomorphic, then:
G ∼= H

5.2.1 Theorem: Cylic Groups are Isomorphic

Let n ∈ N. Any 2 cyclic groups of order n are isomorphic.

Proof. Let G = ⟨g⟩ , H = ⟨h⟩. Consider the mapping:

ϕ : G → H

ϕ(gt) = ht

We first verify that this is a homomorphism. Without loss of generality, let s, t ∈ N (group composition
can involve powers of inverses, but these can be expressed with positive powers, since the group is cyclic).
Then:

ϕ(gtgs) = ϕ(gt+s) = ht+s = hths = ϕ(gt)ϕ(gs)

So ϕ is a group homomorphism.
Moreover, it is surjective, since ∀ht ∈ H, ϕ(gt) = ht. Since |G| = |H| and ϕ is surjective, it follows that ϕ is
also injective, and so, it’s a bijection, so ϕ is an isomorphism.
Thus, any 2 cyclic groups of the same order are isomorphic.
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5.2.2 Examples of Group Isomorphisms

• (R+,×) has an isomorphism:
exp : R → R+

exp(x+ y) = exp(x)exp(y)

• the map ϕ : D3 → S3, mapping the symmetries of a triangle to the permutation of the vertices under
the symmetry is an isomorphism

• if we think of Zp as a field, consider the group of units, Z×
p (that is, the group of all elements in Zp

with an inverse). Then, Z×
p

∼= Cp−1: that is, the group of units is a cyclic group of order p− 1

5.3 Theorem: Properties of Group Homomorphisms

Let ϕ : G → H be a group homomorphism. Then:

1. ϕ(eG) = eH

2. ϕ(g−1) = ϕ(g)−1

3. If ϕ is a group isomorphism, then so is ϕ−1.

Proof. 1.

ϕ(eG) = ϕ(eG ⋆G eG)

=⇒ ϕ(eG) = ϕ(eG) ⋆H ϕ(eG)

=⇒ (ϕ(eG))
−1 ⋆H ϕ(eG) = (ϕ(eG))

−1(ϕ(eG) ⋆H ϕ(eG))

=⇒ eH = ϕ(eG)

2.

ϕ(g) ⋆H ϕ(g−1) = ϕ(g ⋆G g−1)

= ϕ(eG)

= eH

ϕ(g−1) ⋆H ϕ(g) = ϕ(g−1 ⋆G g)

= ϕ(eG)

= eH

Since inverses are unique, and ϕ(g−1) is an inverse to ϕ(g), it follows that:

(ϕ(g))−1 = ϕ(g−1)

3. Since ϕ is an isomorphism, ϕ−1 : H → G is a well-defined, bijective function. Now, consider:

h = ϕ(g) h′ = ϕ(g′), g, g′ ∈ G, h, h′ ∈ H
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Then:

ϕ−1(h ⋆H h′) = ϕ−1(ϕ(g) ⋆H ϕ(g′))

= ϕ−1(ϕ(g ⋆G g′))

= g ⋆G g′

= ϕ−1(h) ⋆G ϕ−1(h′)

so ϕ is a group homormorphism; since its bijective, its an isomorphism.

5.3.1 Theorem: Isomorphic Prime Groups

All groups of prime order are isomorphic.

Proof. We showed that by Lagrange’s Theorem, if G is of prime order, it is cyclic. We further showed above
that all cyclic groups are isomorphic, so it follows that all groups of prime order are isomorphic.

5.4 The Kernel of a Homomorphism

5.4.1 Definition: The Kernel

Let ϕ : G → H be a group homormorphism.
The kernel of ϕ is a subgroup of G, defined by:

ker(ϕ) = {g | ϕ(g) = 0, g ∈ G}

5.4.2 Theorem: Properties of the Kernel

Let ϕ : G → H be a group homomorphism.

1. ker(ϕ) ≤ G (in fact, ker(ϕ) ◁ G)

2. ϕ is injective if and only if:

ker(ϕ) = {e}

Proof. 1. We first show ker(ϕ) is a subgroup. We need to verify closure under product and inverse.
Let g1, g2 ∈ ker(ϕ). Then:

ϕ(g1) = ϕ(g2) = eH

Thus:
eH = eH ⋆H eH = ϕ(g1) ⋆H ϕ(g2) = ϕ(g1 ⋆G g2)

Hence, if g1, g2 ∈ ker(ϕ), then g1g2 ∈ ker(ϕ).
Moreover, for g ∈ ker(ϕ):

ϕ(g) = eH =⇒ ϕ(g) = ϕ(g) ⋆H (ϕ(g))−1 = ϕ(g) ⋆H ϕ(g−1)
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Hence, by the cancellation law:
ϕ(g−1) = eH

so if g ∈ ker(ϕ), g−1 ∈ ker(ϕ).
Thus, it follows that ker(ϕ) ≤ G.
Lastly, recall, a subgroup K ⊆ G is a normal subgroup if and only if :

gKg−1 ⊆ K

Let K = ker(ϕ). For any g ∈ G, k ∈ K:

ϕ(g ⋆G k ⋆G g−1) = ϕ(g) ⋆H ϕ(k) ⋆H ϕ(g−1) = ϕ(g) ⋆H eH ⋆H ϕ(g−1) = eH

so it follows that gkg−1 ∈ K so gKg−1 ⊆ K, and so, ker(ϕ) ◁ G.

2. ( =⇒ ) Assume that ker(ϕ) = {e}. Then, for g1, g2 ∈ G:

ϕ(g1) = ϕ(g2)

=⇒ ϕ(g−1
1 ) ⋆H ϕ(g1) = ϕ(g−1

1 ) ⋆H ϕ(g2)

=⇒ ϕ(g−1
1 ⋆G g1) = ϕ(g−1

1 ⋆G g2)

=⇒ ϕ(eG) = ϕ(g−1
1 ⋆G g2)

=⇒ eH = ϕ(g−1
1 ⋆G g2)

Thus, it must be the case that g−1
1 g2 ∈ ker(ϕ). But by assumption, ker(ϕ) = {eG}, so:

g−1
1 g2 = eG ⇐⇒ g1 = g2

so it follows that ϕ is injective.
( ⇐= ) Assume that ϕ is injective. Since we know that ϕ(eG) = eH , it can’t be the case that any other
g ∈ G maps to eH by injectivity, so:

ker(ϕ) = {eG}

as required.

5.5 The Image of a Homomorphism

5.5.1 Definition: The Image

Let ϕ : G → H be a group homomorphism.
The image of ϕ is a subgroup of H, defined by:

im(ϕ) = {h | h = ϕ(g), g ∈ G}

5.5.2 Lemma: The Image is a Subgroup

If ϕ : G → H is a group homomorphism, then im(ϕ) ≤ H.

Page 19



Proof. Firstly, im(ϕ) is non-empty, since:

ϕ(eG) = eH ∈ H

We now verify closure. If h1, h2 ∈ im(ϕ) then:

∃g1, g2 ∈ G : ϕ(g1) = h1 ϕ(g2) = h2

So:
h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2)

so h1h2 ∈ im(ϕ), so im(ϕ) is closed.

We now verify the existence of inverse. Let h ∈ im(ϕ), so that ∃g ∈ G : ϕ(g) = h. But the homomorphism
maps inverses to inverses, so:

ϕ(g−1) = h−1 =⇒ h−1 ∈ im(ϕ)

5.6 Definition: The Automorphism Group

Let G be a group.
The set of all automorphisms, ϕ : G → G forms the automorphism
group of G, written Aut(G). This is a group under function composi-
tion.

5.6.1 Worked Example: Automorphism Group of Cyclic Group of Prime Order

Consider a cyclic group G = Cp, where p is prime. It can be shown that:

Aut(G) ∼= Z×
p
∼= Cp−1

We can check this when p = 5. We can think of G as:

G = {e, g, g2, g3, g4}

If ϕ ∈ Aut(G), and since G only has 5 elements, we must have one of the following cases:

ϕ(g) = e, g, g2, g3, g3

If ϕ(g) = e, then ϕ won’t be an automorphism, since it won’t be bijective (as ϕ(e) = e already). Hence, we
have 4 remaining possibilities:

ϕ(g) = g, g2, g3, g3

ϕ(g) = g is the identity automorphism, which works. What about ϕ(g) = g2. Then:

• ϕ(e) = e2 = e

• ϕ(g) = g2

• ϕ(g2) = g4

• ϕ(g3) = g6 = g

• ϕ(g4) = g8 = g3
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Hence, this defines a bijection. Similarly, we can check that ϕi(g) = gi defines automorphisms.
We have then found 4 automorphisms for G, which are the only possibilities, so |Aut(G)| = 4.
We can now look at the structure of Aut(G). For instance, how it behaves under the group action:

ϕi(ϕj(g)) = ϕi(g
j) = (ϕi(g))

j = (gi)j = gij = ϕij(g)

Here, ij needs to be interpreted modulo 5, so we see that Aut(G) has structure similar to multiplication in
the field Z5, so indeed Aut(G) ∼= Z×

5 (we can’t have isomorphisms from fields to groups, since fields have
more structure; however, the units do form a group, with the same elements as the field).

6 Exercises for Chapter 1

1. True or False

1. Lagrange’s Theorem shows that every group of order 60 has a subgroup of order 15.

2. Every group of order 60 has a subgroup of order 1.

3. Every group of order 60 has a normal subgroup of order 60.

4. Lagrange’s Theorem shows that no group of order 60 has a subgroup of order 24.

2. Let H,K be subgroups of G. Show that H∩K is a subgroup of G. When is H∪K a subgroup
of G?

3. Let H,K be normal subgroups of G. Show that H ∩K is a normal subgroup of G?

4. Suppose that H ≤ G and |G/H| = [G : H] = 2. Show that H ◁ G. You may want to use
properties of cosets to show that the right coset of H is H, and the left coset of H is G \H.

5. Let G be a group, and H ≤ G. Show that N =
⋂

x∈G xHx−1 is the largest normal subgroup
of G contained in H. That is, show that:

1. N ◁ G

2. if N ′ ◁ G, and N ′ ⊆ H, then N ′ ⊆ N .

6. Let G be a finite group, and let H,K be subgorups of G. Suppose that |H|, |K| are coprime.
Show that H ∩K = {e}.

7. Let G be a group, and recall tha tthe centre Z(G) of G is the set:

Z(G) = {z | z ∈ G, zg = gz∀g ∈ G}

If N ≤ Z(G), show that N ◁G. If in addition G/N is cyclic, show that G is abelian. You may
want to show that any element of G can be written as gan for some a ∈ Z, n ∈ N .

8. Let µ8 be the set of eighth roots of unity in C∗. What is |µ8|? Write down the elemnts
of µ8 as complex numbers. Show that µ8 is a cyclic group under multiplication. Find the
elemlents g in µ8, such that ⟨g⟩ = µ8; that is, which elements of µ8 can be used as cyclic
generators of µ8?

9. Let w = e
2πi
3 , so w3 = 1, and w ̸= 1. Since:

a :=

w2 0

0 w

 b :=

0 i

i 0


are invertible, they are in GL(2,C). Find the orders of a and b. Calculate the conjugate
bab−1, and find k so that bab−1 = ak.
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10. Let G ≤ GL(2,C), where G is generated by a, b. Show that G is a finite group, and find its
order. You might want to use the fact that ba = akb, alongside Lagrange’s Theorem.

11. Show that G from the previou problem is not isomorphic to D6. You may want to consider
the order of elements in the different groups.

12. Let F be a finite field with q elements. Show that |GL(2, F )| = (q2 − 1)(q2 − q), and that:

|SL(2, F )| = q(q + 1)(q − 1)

13. Show that Aut(G) is a group under the composition of functions.

14. Find Aut(µ8).

15. Let L be a ring. Let Aut(L) denote the set of ring isomorphisms of L to itself. Show that
Aut(L) forms a group.

16. Let K be a subfield of a field L. The set of elements of Aut(L) that are equal to the identity
when restricted to K is denoted by AutK(L). Show that AutK(L) is a subgroup of Aut(L).

17. Interpret the preceding 2 problems for R ⊆ C. What is AutR(C)

7 Useful Exercises & Proofs from FPM

7.1 Theorem: Cyclic Groups are Abelian

If G is cyclic, then G is abelian.
(Exercise 2.4, FPM)

7.2 Theorem: Abelian if Square is Identity

Let G be a group. If:
g2 = e, ∀g ∈ G

then G is abelian.
(Exercise 1.12, FPM)

7.3 Theorem: Product of Cyclic Groups with Coprime Order

Let G = Cm, H = Cn be cyclic groups of order m,n respectively.
Then, G×H is cyclic if and only if m and n are coprime.
Moreover, Cm × Cn

∼= Cmn if and only if m,n are coprime.
(Theorem 2.3.16, FPM)

Page 22



7.4 Theorem: Subgroup of Cyclic Group

If G is cyclic, then any subgroup H ≤ G is cyclic.
(Theorem 2.3.15)
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