Group Theory - Week 1 - Group Theory Recap: Group Properties, Subgroups and Lagrange's Theorem

Antonio León Villares

September 2022

Contents

1	Gro	pups	3
	1.1	Definition: Groups	3
	1.2	Definition: Abelian Group	3
	1.3	Theorem: Group Properties	4
	1.4	Definition: The Product Group	5
	1.5	Examples of Groups	5
		1.5.1 Symmetric Group	5
		1.5.2 Dihedral Group	6
		1.5.3 Free Group	6
		1.5.4 Integers Under Addition	6
2	Sub	ogroups	6
	2.1	Definition: Subgroups	6
	2.2	Theorem: Test for Subgroup	7
	2.3	Examples of Subgroups	7
	2.4	Cyclic Groups	7
	2.5	Worked Exercises	8
3	Cos	eets	8
	3.1	Definition: Left and Right Cosets	8
		3.1.1 Worked Exercises	8
	3.2	Normal Subgroups	9
		3.2.1 Definition: Normal Subgroups	9
		3.2.2 Theorem: Equivalent Definitions for Normal Subgroups	9
		3.2.3 Theorem: Another Definition for a Normal Subgroup	10
4	Lag	range's Theorem	10
	4.1		10
			11
			11
	4.2		12
	4.3	Theorem: Cosets Have Same Order as Subgroup	13
	4.4	Theorem: Lagrange's Theorem	13
		4.4.1 Remark: Differences Between Left and Right Cosets	14
	4.5	Corollaries of Lagrange's Theorem	14
		4.5.1 Theorem: Cauchy's Theorem	14
		4.5.2 Corollary: Order of Group Elements	14

		4.5.5 Theorem: Fermat's Little Theorem	15 15 15 15
5	Gro	oup Homomorphisms	16
	5.1	Definition: Group Homomorphisms and Endomorphisms	16
	5.2		16
			16
			17
	5.3		17
		5.3.1 Theorem: Isomorphic Prime Groups	18
	5.4	The Kernel of a Homomorphism	18
		5.4.1 Definition: The Kernel	18
		5.4.2 Theorem: Properties of the Kernel	18
	5.5	The Image of a Homomorphism	19
		5.5.1 Definition: The Image	19
		5.5.2 Lemma: The Image is a Subgroup	19
	5.6	Definition: The Automorphism Group	20
		5.6.1 Worked Example: Automorphism Group of Cyclic Group of Prime Order	20
6	Exe	ercises for Chapter 1	2 1
7	Use	eful Exercises & Proofs from FPM	22
	7.1	Theorem: Cyclic Groups are Abelian	22
	7.2	Theorem: Abelian if Square is Identity	22
	7.3	Theorem: Product of Cyclic Groups with Coprime Order	22
	7.4	Theorem: Subgroup of Cyclic Group	23

1 Groups

1.1 Definition: Groups

Consider a set G, and let \star be a **binary function**:

$$\star:G\times G\to G$$

$$(g,h) \mapsto g \star h \in G, \quad \forall g, h \in G$$

A group (G, \star) satisfies 3 axioms:

1. Associativity:

$$g \star (h \star k) = (g \star h) \star k, \qquad g, h, k \in G$$

2. Existence of Identity:

$$\exists e \in G : e \star g = g \star e = g, \quad \forall g \in G$$

3. Existence of Inverse:

$$\forall g \in G, \exists h \in G : g \star h = h \star g = e$$

We write $h = g^{-1}$.

By letting \star be a function, we ensure that (G, \star) is **closed** under \star . (Definition 1.1.1)

- What is the order of a group?
 - the number of elements in G
 - we denote the order via |G|

1.2 Definition: Abelian Group

A group (G, \star) is **abelian** if:

$$g\star h=h\star g, \qquad \forall g,h\in G$$

1.3 Theorem: Group Properties

Let (G, \star) be a group. Then:

1. Existence and Uniqueness of Group Products: if $g, h \in G$, then there are unique elements k_1, k_2 such that:

$$k_1 \star q = h$$
 $q \star k_2 = h$

2. Cancellation Law: let $g, s, t \in G$. Then:

$$g \star s = g \star t \implies s = t$$

$$s \star g = t \star g \implies s = t$$

- 3. **Uniqueness of Identity**: e is the only identity element. $\forall g, h \in G$ if $g \star h = h$, then g = e.
- 4. **Uniqueness of Inverse**: g^{-1} is the only inverse of $g \in G$. $\forall g, h \in G$ if $g \star h = e$, then $h = g^{-1}$.
- 5. **Inverse of Identity**: the inverse of the identity element is the identity element

$$e^{-1} = e$$

6. Inverse of Inverse: if $g \in G$, then $(g^{-1})^{-1} = g$

(Revision Exercises 1, 2 + FPM Notes)

Proof. 1. Existence and Uniqueness of Group Products

We prove the first statement: if $g, h \in G$, there is a **unique** $k \in G$ such that $k \star g = h$. Define $k := hg^{-1}$. Clearly, $k \in G$. Moreover:

$$kg = (hg^{-1})g = h(g^{-1}g) = h$$

Moreover, k is unique: assume $\exists k' \in G$ such that k'g = h. Then:

$$k = hg^{-1} = (k'g)g^{-1} = k'(gg^{-1}) = k'$$

2. Cancellation Law

Assume gs = gt. By uniqueness, this is only possible if s = t. Alternatively:

$$gs = gt \implies g^{-1}(gs) = g^{-1}(gt) \implies s = t$$

3. Uniqueness of Identity

(a) assume $\exists g, h$ such that:

$$qh = h$$

But since eh = h, it follows by cancellation law/uniqueness that g = e, as required.

(b) assume e' is another identity. Then:

$$e'g = eg$$

$$\Longrightarrow (e'g)g^{-1} = (eg)g^{-1}$$

$$\Longrightarrow e'(gg^{-1}) = e(gg^{-1})$$

$$\Longrightarrow e' = e$$

(c) assume e' is another identity. Then we must have that:

$$ee' = e$$
 $ee' = e'$

But by uniqueness of products, we must then have e = e'.

4. Uniqueness of Inverse

- (a) follows directly from existence and uniqueness, by using g, e, and the fact that by the group axioms, $gg^{-1} = e$
- (b) assume h, k are 2 inverses of g. Then:

$$gh = e$$
 $gk = e$ $\Longrightarrow gk = gh$

so by cancellation/uniqueness, k = h

5. Inverse of Identity

Since ee = e and $ee^{-1} = e$, and inverses are unique, $e = e^{-1}$

6. Inverse of Inverse

Since $g^{-1}(g^{-1})^{-1} = e$ and $g^{-1}g = e$, and inverses are unique, $g = (g^{-1})^{-1}$

1.4 Definition: The Product Group

Let (G, \star_G) and (H, \star_H) be groups. The **direct product** $G \times H$ is a **product group** under operation \star , defined by:

$$(g,h) \star (g',h') = (g \star_G g', h \star_H h')$$

(Definition 1.4.8)

1.5 Examples of Groups

1.5.1 Symmetric Group

- S_n is the symmetric group
- corresponds to the set of all **permutations** of the set $\{1, \ldots, n\}$
- \bullet * is permutation composition
- \bullet contains n! elements

1.5.2 Dihedral Group

- D_n is the dihedral groups
- corresponds to the set of all **symmetries** of a regular n-gon
- \bullet contains 2n elements: n rotations and n reflections

1.5.3 Free Group

- 2 letters have a **free group** $G = \langle x, y \rangle$
- corresponds to the set of all words which can be generated by combining x, y, x^{-1}, y^{-1}
- \star is letter concatentation:

$$xxx^{-1}y \star y^{-1}x = xxx^{-1}yy^{-1}x = xx = x^2$$

• the identity element is the **empty word** (no letters)

1.5.4 Integers Under Addition

- $(\mathbb{Z},+)$ is a group with e=0
- it is a **cyclic group** generated by 1 (so every element in \mathbb{Z} can be written as a sum of 1s)
- $(\mathbb{Z}_n, +)$ (integers modulo n) are also a group

2 Subgroups

2.1 Definition: Subgroups

Let (G, \star) be a group. A **non-empty** subset $H \subseteq G$ is a **subgroup** if (H, \star) is a group.

In particular, H is a subgroup if its **closed** under **products** and **inverses**:

1.
$$hk \in H, \forall h, k \in H$$

$$2. h^{-1} \in H, \forall h \in H$$

If H is a subgroup of G, we write:

(Definition 1.3.1)

Notice, the $e \in H$, since $h, h^{-1} \in H$ and there's multiplicative closure. Moreover, H will be associative, since G was. So H satisfies the properties of a group!

- Given a finite group, how can we test for a subgroup?
 - for **finite** subsets, it is sufficient to check that H is closed under **products**

• What is a proper subgroup?

- a subgroup H which is a proper subset of G
- we write:

2.2 Theorem: Test for Subgroup

Let G be a group, and $H \subseteq G$. H is a subgroup if and only if it is **non-empty** and:

$$hk^{-1} \in H, \quad \forall h, k \in H$$

(Revision Exercise 4)

Proof. If H is a subgroup, consider $h, k \in H$. Then, we have that $k^{-1} \in H$, and by closure, it follows that $hk^{-1} \in H$, as required.

Alternatively, let $h, k \in H$, and assume that $hk^{-1} \in H$. We need to show closure under products and inverses. Since $k \in H$, let h = k. Then it follows that:

$$hk^{-1} \in H \implies hh^{-1} = e \in H$$

Hence, it follows that:

$$hk^{-1} \in H \implies ek^{-1} = k^{-1} \in H$$

so H is closed under inverses.

Moreover,

$$hk^{-1} \in H \implies h(k^{-1})^{-1} = hk \in H$$

so H is closed under products. Hence, H is a subgroup.

2.3 Examples of Subgroups

- $\{e\}$ is the **trivial subgroup** for any group G; similarly, G is a subgroup of G
- the set of rotations of an n-gon form a subgroup of D_n
- A_n is the **alternating group**, and it's a subgroup of S_n , constructed by taking the product of an **even** number of 2-cycles
- GL(n, F) is the **general linear group** over a field F, containing all the **invertible** $n \times n$ matrices. SL(n, F) is the **special linear group**, the set of all invertible $n \times n$ matrices with determinant 1. SL(n, F) is a subgroup of GL(n, F).

2.4 Cyclic Groups

- How can we generate subgroups by using elements of groups?
 - we can repeatedly apply \star to an element g with itself
 - this generates a subgroup:

$$\langle g \rangle := \{ g^n \mid n \in \mathbb{Z} \}$$

known as the subgroup generated by g

- What is a cyclic group?
 - a **group** which is generated by a **single** element $g \in G$:

$$G = \langle g \rangle$$

- What is the order of a group element?
 - the smallest positive integer n such that:

$$g^n = e$$

(if it doesn't exist, $n = \infty$)

- denoted as o(g)
- we have that the order of a **cyclic subgroup** is the **order** of the subgroup's generator:

$$|\left\langle g\right\rangle |=o(g)$$

2.5 Worked Exercises

- 3 Cosets
- 3.1 Definition: Left and Right Cosets

Let $H \subseteq G$, and consider $g \in G$. Then:

• the **left coset** of H determined by g is the set:

$$gH = \{gh \mid h \in H\} \subseteq G$$

ullet the $right\ coset$ of H determined by g is the set:

$$Hg = \{hg \mid h \in H\} \subseteq G$$

G/H denotes the set of all **left cosets**, whilst $H \setminus G$ denotes the set of all **right cosets**.

(Definition 1.3.6)

- What is the index of H in G, where $H \leq G$?
 - the number of **left cosets** of H:

$$|G/H| = [G:H]$$

3.1.1 Worked Exercises

• (Revision Exercise 7) Let $G = S_3$ and let $H = \{e, (12)\}$. $H \leq G$. Write down the elements of G/H and $H \setminus G$. What do you notice about these sets?

3.2 Normal Subgroups

3.2.1 Definition: Normal Subgroups

Let $H \leq G$. H is a normal subgroup if it is invariant under conjugation. In other words:

$$gH = Hg, \quad \forall g \in G$$

We write $H \triangleleft G$.

3.2.2 Theorem: Equivalent Definitions for Normal Subgroups

The following are equivalent:

1.
$$H \triangleleft G$$

2.
$$gHg^{-1} = H$$
, $\forall g \in G$

3.
$$gHg^{-1} \subseteq H$$
, $\forall g \in G$

4.
$$H = \bigcap_{g \in G} gHg^{-1}$$

5.
$$H \subseteq \bigcap_{g \in G} gHg^{-1}$$

Proof.

• $H \triangleleft G \iff gHg^{-1} \subseteq H$ (\implies) Let H be a normal subgroup; that is:

$$gH = Hg, \qquad \forall g \in G$$

For any $g \in G$, $\exists h, k \in H$ such that:

$$gh = kg \implies ghg^{-1} = k \in H$$

That is, if $ghg^{-1} \in gHg^{-1}$ then also $ghg^{-1} \in H$, so $gHg^{-1} \subseteq H$. (Alternatively, argue that $gH = Hg \implies gHg^{-1} = H$)

 (\Leftarrow) Assume that $gHg^{-1} \subseteq H, \forall g \in G$.

On the one hand, we have that $\exists h, k \in H$ such that:

$$ghg^{-1} = k \implies gh = kg \in Hg$$

so it follows that $gH \subseteq Hg$.

On the other hand, since $g^{-1} \in G$, $\exists h, k \in H$ such that:

$$(g^{-1})h(g^{-1})^{-1}=k \implies g^{-1}hg=k \implies hg=gk \in gH$$

so it follows that $Hg \subseteq gH$. Hence, we must have that gH = Hg, and H is a normal subgroup.

• $H \triangleleft G \iff gHg^{-1} = H$

$$H \triangleleft G \iff gH = Hg$$

 $\iff (gH)g^{-1} = (Hg)g^{-1}$
 $\iff gHg^{-1} = H$

3.2.3 Theorem: Another Definition for a Normal Subgroup

Let $H \leq G$, and assume that $\forall g \in G$ we have:

$$gHg^{-1} \subseteq H$$
 $g^{-1}Hg \subseteq H$

then:

$$gHg^{-1} = H$$

and so, $H \triangleleft G$.

Proof. Assume that $gHg^{-1} \neq H$. Then, $\exists h \in H$ such that $h \notin gHg^{-1}$. But then, observe:

$$H = (gg^{-1})H(gg^{-1})$$

= $g(g^{-1}Hg)g^{-1}$
 $\subseteq gHg^{-1}$

In other words, any element of H must be in gHg^{-1} . However, this is a contradiction, and so, no such $h \in H$ must exist. Hence, $gHg^{-1} = H$, and by the definition of a normal subgroup:

$$H \triangleleft G$$

as required.

4 Lagrange's Theorem

4.1 Recap: Equivalence Relations and Equivalence Classes

- What is an equivalence relation?
 - consider a set X
 - for $s, t \in X$, we write $s \sim t$ to say "s is related to t"
 - $-\sim$ defines an **equivalence relation** if it's:
 - * reflexive: $x \sim x, \forall x \in X$
 - * symmetric: $x \sim y \implies y \sim x, \forall x, y \in X$
 - * transitive: $x \sim y, y \sim z \implies x \sim z, \quad \forall x, y, z \in X$
- What is an equivalence class?
 - for some $x \in X$, its **equivalence class** is the set of all elements in X which are related to x via an **equivalence relation**:

$$cl(x) = \{ y \mid x \sim y, y \in X \}$$

4.1.1 Theorem: Properties of Equivalence Classes

Consider a set X with equivalence relation \sim . Then:

1.
$$cl(x) \neq \emptyset$$

2. $x \sim y, x, y \in X$ if and only if:

$$cl(x) = cl(y)$$

if and only if:

$$cl(x) \cap cl(y) \neq \emptyset$$

In other words, 2 equivalence classes are either the exact same, or completely disjoint.

Proof. 1. This follows from the fact that $x \in cl(x)$ by **reflexivity**

2. Assume $x \sim y$. Let $z \in cl(y)$, so that $y \sim z$. Since $x \sim y$, by transitivity it follows that $x \sim z$, so $z \in cl(x) \implies cl(y) \subseteq cl(x)$. By similar arguments, $cl(x) \subseteq cl(y)$, so:

$$cl(x) = cl(y)$$

Otherwise, if cl(x) = cl(y), since $x \in cl(x)$ and $y \in cl(y)$, it follows that $x \in cl(y)$, $y \in cl(x)$, so $x \sim y$.

Assume $x \sim y$. We know that $x \in cl(y)$ and $y \in cl(x)$, so in particular $x \in cl(x) \cap cl(y)$, so $cl(x) \cap cl(y) \neq \emptyset$.

Otherwise if $cl(x) \cap cl(y) \neq \emptyset$, then $\exists z \in cl(x) \cap cl(y)$, so $x \sim z$ and $z \sim y$. By transitivity, $x \sim y$, as required.

4.1.2 Theorem: Equivalence Classes Partition Sets

Let X be a set with an equivalence relation \sim . Then, the equivalence classes generated by \sim partition X. In other words, each element of X can be put into a unique equivalence class (which is non-empty), such that the union of equivalence classes gives X.

Proof. Any 2 equivalence classes are either the same set (if they have a common representative), or completely disjoint. Moreover, each element of x belongs to at least one equivalence class (cl(x)). Thus:

$$X = \bigcup_{x \in X} cl(x)$$

4.2 Theorem: Cosets as Equivalence Classes

Let G be a group, and $H \leq G$. The relation \sim , given by:

$$g_1 \sim g_2 \iff \exists g_2 : g_1 \in g_2 H, \qquad g_1, g_2 \in G$$

is an equivalence relation on G.

The equivalence classes are the cosets gH; in other words, the cosets gH partition the group, so $\exists g_1, \ldots, g_n \in G$ such that:

$$G = \bigcup_{i=1}^{n} g_i H$$

As a bonus, if $h \in H$, then we have that:

$$hH = H$$

Proof. We verify the properties of an equivalence relation:

1. Reflexivity

Notice, since $e \in H$, then $g \in gH$, so it follows that $g \sim g$.

2. Symmetry

Assume that $g_1 \in g_2H$. Then, $\exists h \in H$ such that $g_1 = g_2h$. Consider the coset g_1H . We must have that:

$$g_1H = (g_2h)H = g_2(hH)$$

Now, H is closed under multiplication, so clearly $hH \subseteq H$. Suppose $t \in H$. We can write:

$$t = h(h^{-1}t), \qquad h^{-1}t \in H$$

Then, $t \in hH$, so $H \subseteq hH$. Thus, hH = H.

This shows that if $g_1 \in g_2H$, then $g_1H = g_2H$, so in particular $g_2 \in g_1H$ (as $g_2 \in g_2H$) so $g_1 \sim g_2 \implies g_2 \sim g_1$.

3. Transitivity

Assume that $g_1 \in g_2H$ and $g_2 \in g_3H$. Then, $\exists h, k \in H$ such that:

$$g_1 = g_2 h \qquad g_2 = g_3 k$$

So:

$$g_1 = g_2 h = (g_3 k) h = g_3(kh) \in g_3 H$$

since $kh \in H$. Thus, $g_1 \sim g_3$, as required.

Notice, this then means that given 2 cosets, either:

- $\bullet \ g_1H = g_2H$
- $g_1H \cap g_2H = \emptyset$

4.3 Theorem: Cosets Have Same Order as Subgroup

Let
$$H \leq G$$
. Then:

$$|gH| = |H|, \quad \forall g \in G$$

Proof. Consider the map:

$$f: H \to gH$$

defined by:

$$f(h) = qh$$

It is sufficient to show that f is a bijection. It is clearly surjective from definition:

$$gH = \{gh \mid h \in H\} = \{f(h) \mid h \in H\}$$

It is also injective, by the uniqueness of group products/cancellation law:

$$f(h_1) = f(h_2) \iff gh_1 = gh_2 \iff h_1 = h_2$$

Hence, it follows that f is a bijection, and |gH| = |H|.

This is known as the **canonical map**, and we will see more next week, when defining the **Isomorphism Theorems**.

4.4 Theorem: Lagrange's Theorem

Let $H \subset G$, where G is a **finite** group. Then, the **order** of H divides the **order** of G.

More precisely:

$$|G| = |G/H||H|$$

(Theorem~1.3.8)

Proof. We showed about that the relation $g_1 \sim g_2 \iff g_1 = g_2 H$ is an equivalence relation, with equivalence classes gH, the left cosets of H. These cosets partition the group:

$$G = \bigcup_{i=1}^{n} g_i H$$

where $g_i \in G$ are representatives of the equivalence classes.

Then, since the equivalence classes are disjoint:

$$|G| = \sum_{i=1}^{n} |g_i H| = \sum_{i=1}^{n} |H| = nH$$

where we have used the theorem above, whereby $|gH| = |H|, \forall g \in G$. But here n is the number of distinct left cosets of H, which is |G/H| so:

$$|G| = |G/H||H|$$

as required

4.4.1 Remark: Differences Between Left and Right Cosets

When developing Lagrange's Theorem, we have just used **left cosets**. However, it is easy to verify that:

$$g_1 \sim g_2 \iff g_1 \in Hg_2$$

is an equivalence relation, with equivalence classes Hg - the **right cosets**. Thus, **Lagrange's Theorem** also applies to **right cosets**:

$$|G| = |H \setminus G||H|$$

and this also means that if H is a **subgroup**, it has the **same** number of left and right cosets.

4.5 Corollaries of Lagrange's Theorem

4.5.1 Theorem: Cauchy's Theorem

Lagrange's Theorem imposes restrictions on the possible orders of subgroups. However, it doesn't imply the existence of said subgroups. This changes for prime ordered subgroups.

If G is a **finite group** and p is **prime**, such that p divides |G|, then G has a subgroup of order p. (Theorem 1.3.9)

The proof requires the Orbit-Stabilizer Theorem, done in FPM.

4.5.2 Corollary: Order of Group Elements

Let G be a group, and $g \in G$. Then:

1. o(g) divides |G|

2. $q^{|G|} = e$

Proof. $\langle g \rangle$ is a subgrop of order o(g), so by Lagrange's Theorem:

$$|G| = |G/\langle g \rangle |o(g)|$$

This places a restriction on the order of group elements! By the above:

$$g^{|G|} = g^{|G/\langle g \rangle|o(g)} = (g^{o(g)})^{|G/\langle g \rangle|} = e^{|G/\langle g \rangle|} = e$$

4.5.3 Corollary: Cyclic Group if Order is Prime

If |G| is **prime**, then G is **cyclic**. (Corollary 1.3.11)

Proof. Let |G| be prime. By Lagrange's Theorem:

$$|G| = |G/H||H|$$

Now, consider $g \in G, g \neq e$, and in particular, the subgroup $H = \langle g \rangle$. Since o(g) must divide |G|, $g \neq e$ and |G| is prime, this is only possible if o(g) = |G|. Hence, $H = \langle g \rangle = G$, and G is cyclic.

4.5.4 Corollary: Groups of Order 5 or Less Are Abelian

Let G be a group. If |G| < 6, then G is **abelian**.

4.5.5 Theorem: Fermat's Little Theorem

If p is prime, and $a \in \mathbb{Z}$, then:

$$a^p \equiv a \bmod p$$

Proof. If $a \equiv 0$, then the result follows, so assume this is not the case.

We can think of a as an element of the group \mathbb{Z}_p^{\times} under the operation of multiplication modulo p, with identity e = 1.

This group has p-1 elements, so by the corollary on the order of group elements:

$$g^{|\mathbb{Z}_p^{\times}|} = g^{p-1} = 1, \quad \forall g \in \mathbb{Z}_p^{\times}$$

Moving back to a, it follows that:

$$a^{p-1} \equiv 1 \mod p$$

so multiplying through by a yields the desired result.

4.5.6 Worked Exercises

• (Revision Exercise 13) Provide the details for the following example. Let $G = \mathbb{Z}_{10}^+$, and $H = \{0, 2, 4, 6, 8\}$. $H \leq G$ and in fact it is a normal subgroup. Show why. Verify that the left cosets of H are the same as the right cosets. Another coset is 1 + H (odd numbers mod 10). Verify that this is what Lagrange predicts. Finally, consider $K = \{0, 5\}$, which is also a normal subgroup. What are the 5 cosets of K?

5 Group Homomorphisms

5.1 Definition: Group Homomorphisms and Endomorphisms

Let G, H be groups.

A function:

$$\phi: G \to H$$

such that

$$\phi(a \star_G b) = \phi(a) \star_H \phi(b), \quad \forall a, b \in G$$

is a group homomorphism.

If $\phi: G \to G$, then ϕ is a **group endomorphism**. (Definition 1.4.1)

5.2 Definition: Group Isomorphisms and Automorphisms

Let G, H be groups.

If $\phi: G \to H$ is a bijective group homomorphism, then ϕ is a group isomorphism

If $G = \hat{H}$, so that $\phi : G \to G$, then ϕ is a **group automorphism**.

- What are isomorphic groups?
 - groups whereby there is an **isomorphism** between them
 - if G, H are **isomorphic**, then:

$$G \cong H$$

5.2.1 Theorem: Cylic Groups are Isomorphic

Let $n \in \mathbb{N}$. Any 2 cyclic groups of order n are isomorphic.

Proof. Let $G = \langle g \rangle$, $H = \langle h \rangle$. Consider the mapping:

$$\phi: G \to H$$

$$\phi(q^t) = h^t$$

We first verify that this is a **homomorphism**. Without loss of generality, let $s, t \in \mathbb{N}$ (group composition can involve powers of inverses, but these can be expressed with positive powers, since the group is cyclic). Then:

$$\phi(g^t g^s) = \phi(g^{t+s}) = h^{t+s} = h^t h^s = \phi(g^t)\phi(g^s)$$

So ϕ is a group homomorphism.

Moreover, it is surjective, since $\forall h^t \in H$, $\phi(g^t) = h^t$. Since |G| = |H| and ϕ is surjective, it follows that ϕ is also injective, and so, it's a bijection, so ϕ is an isomorphism.

Thus, any 2 cyclic groups of the same order are isomorphic.

5.2.2 Examples of Group Isomorphisms

• (\mathbb{R}^+, \times) has an isomorphism:

$$exp: \mathbb{R} \to \mathbb{R}^+$$

 $exp(x+y) = exp(x)exp(y)$

- the map $\phi: D_3 \to S_3$, mapping the symmetries of a triangle to the permutation of the vertices under the symmetry is an isomorphism
- if we think of \mathbb{Z}_p as a field, consider the group of **units**, \mathbb{Z}_p^{\times} (that is, the group of all elements in \mathbb{Z}_p with an inverse). Then, $Z_p^{\times} \cong C_{p-1}$: that is, the group of units is a cyclic group of order p-1

5.3 Theorem: Properties of Group Homomorphisms

Let $\phi: G \to H$ be a group homomorphism. Then:

1.
$$\phi(e_G) = e_H$$

2.
$$\phi(g^{-1}) = \phi(g)^{-1}$$

3. If ϕ is a **group isomorphism**, then so is ϕ^{-1} .

Proof. 1.

$$\phi(e_G) = \phi(e_G \star_G e_G)$$

$$\implies \phi(e_G) = \phi(e_G) \star_H \phi(e_G)$$

$$\implies (\phi(e_G))^{-1} \star_H \phi(e_G) = (\phi(e_G))^{-1} (\phi(e_G) \star_H \phi(e_G))$$

$$\implies e_H = \phi(e_G)$$

2.

$$\phi(g) \star_H \phi(g^{-1}) = \phi(g \star_G g^{-1})$$
$$= \phi(e_G)$$
$$= e_H$$

$$\phi(g^{-1}) \star_H \phi(g) = \phi(g^{-1} \star_G g)$$
$$= \phi(e_G)$$
$$= e_H$$

Since inverses are unique, and $\phi(g^{-1})$ is an inverse to $\phi(g)$, it follows that:

$$(\phi(g))^{-1} = \phi(g^{-1})$$

3. Since ϕ is an isomorphism, $\phi^{-1}: H \to G$ is a well-defined, bijective function. Now, consider:

$$h = \phi(g)$$
 $h' = \phi(g'),$ $g, g' \in G, h, h' \in H$

Then:

$$\phi^{-1}(h \star_H h') = \phi^{-1}(\phi(g) \star_H \phi(g'))$$
$$= \phi^{-1}(\phi(g \star_G g'))$$
$$= g \star_G g'$$
$$= \phi^{-1}(h) \star_G \phi^{-1}(h')$$

so ϕ is a group homormorphism; since its bijective, its an isomorphism.

5.3.1 Theorem: Isomorphic Prime Groups

All groups of **prime** order are **isomorphic**.

Proof. We showed that by Lagrange's Theorem, if G is of prime order, it is cyclic. We further showed above that all cyclic groups are isomorphic, so it follows that all groups of prime order are isomorphic.

5.4 The Kernel of a Homomorphism

5.4.1 Definition: The Kernel

Let $\phi: G \to H$ be a **group homormorphism**. The **kernel** of ϕ is a **subgroup** of G, defined by:

$$ker(\phi) = \{g \mid \phi(g) = 0, g \in G\}$$

5.4.2 Theorem: Properties of the Kernel

Let $\phi: G \to H$ be a group homomorphism.

- 1. $\ker(\phi) \leq G$ (in fact, $\ker(\phi) \triangleleft G$)
- 2. ϕ is injective if and only if:

$$\ker(\phi) = \{e\}$$

Proof. 1. We first show $ker(\phi)$ is a subgroup. We need to verify closure under product and inverse. Let $g_1, g_2 \in ker(\phi)$. Then:

$$\phi(g_1) = \phi(g_2) = e_H$$

Thus:

$$e_H = e_H \star_H e_H = \phi(g_1) \star_H \phi(g_2) = \phi(g_1 \star_G g_2)$$

Hence, if $g_1, g_2 \in ker(\phi)$, then $g_1g_2 \in ker(\phi)$.

Moreover, for $g \in ker(\phi)$:

$$\phi(g) = e_H \implies \phi(g) = \phi(g) \star_H (\phi(g))^{-1} = \phi(g) \star_H \phi(g^{-1})$$

Hence, by the cancellation law:

$$\phi(g^{-1}) = e_H$$

so if $g \in ker(\phi), g^{-1} \in ker(\phi)$.

Thus, it follows that $ker(\phi) \leq G$.

Lastly, recall, a subgroup $K \subseteq G$ is a normal subgroup **if and only if**:

$$gKg^{-1} \subseteq K$$

Let $K = ker(\phi)$. For any $g \in G, k \in K$:

$$\phi(g \star_G k \star_G g^{-1}) = \phi(g) \star_H \phi(k) \star_H \phi(g^{-1}) = \phi(g) \star_H e_H \star_H \phi(g^{-1}) = e_H$$

so it follows that $gkg^{-1} \in K$ so $gKg^{-1} \subseteq K$, and so, $ker(\phi) \triangleleft G$.

2. (\Longrightarrow) Assume that $ker(\phi) = \{e\}$. Then, for $g_1, g_2 \in G$:

$$\phi(g_1) = \phi(g_2)$$

$$\Rightarrow \phi(g_1^{-1}) \star_H \phi(g_1) = \phi(g_1^{-1}) \star_H \phi(g_2)$$

$$\Rightarrow \phi(g_1^{-1} \star_G g_1) = \phi(g_1^{-1} \star_G g_2)$$

$$\Rightarrow \phi(e_G) = \phi(g_1^{-1} \star_G g_2)$$

$$\Rightarrow e_H = \phi(g_1^{-1} \star_G g_2)$$

Thus, it must be the case that $g_1^{-1}g_2 \in ker(\phi)$. But by assumption, $ker(\phi) = \{e_G\}$, so:

$$g_1^{-1}g_2 = e_G \iff g_1 = g_2$$

so it follows that ϕ is injective.

(\Leftarrow) Assume that ϕ is injective. Since we know that $\phi(e_G) = e_H$, it can't be the case that any other $g \in G$ maps to e_H by injectivity, so:

$$ker(\phi) = \{e_G\}$$

as required.

5.5 The Image of a Homomorphism

5.5.1 Definition: The Image

Let $\phi: G \to H$ be a **group homomorphism**. The **image** of ϕ is a **subgroup** of H, defined by:

$$im(\phi) = \{h \mid h = \phi(g), g \in G\}$$

5.5.2 Lemma: The Image is a Subgroup

If $\phi: G \to H$ is a **group homomorphism**, then $im(\phi) \leq H$.

Proof. Firstly, $im(\phi)$ is non-empty, since:

$$\phi(e_G) = e_H \in H$$

We now verify closure. If $h_1, h_2 \in im(\phi)$ then:

$$\exists g_1, g_2 \in G : \phi(g_1) = h_1 \qquad \phi(g_2) = h_2$$

So:

$$h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2)$$

so $h_1h_2 \in im(\phi)$, so $im(\phi)$ is closed.

We now verify the existence of inverse. Let $h \in im(\phi)$, so that $\exists g \in G : \phi(g) = h$. But the homomorphism maps inverses to inverses, so:

$$\phi(g^{-1}) = h^{-1} \implies h^{-1} \in im(\phi)$$

5.6 Definition: The Automorphism Group

Let G be a group.

The **set** of all **automorphisms**, $\phi : G \to G$ forms the **automorphism group** of G, written Aut(G). This is a **group** under **function composition**.

5.6.1 Worked Example: Automorphism Group of Cyclic Group of Prime Order

Consider a cyclic group $G = C_p$, where p is prime. It can be shown that:

$$Aut(G) \cong \mathbb{Z}_p^{\times} \cong C_{p-1}$$

We can check this when p = 5. We can think of G as:

$$G = \{e, g, g^2, g^3, g^4\}$$

If $\phi \in Aut(G)$, and since G only has 5 elements, we must have one of the following cases:

$$\phi(g) = e, g, g^2, g^3, g^3$$

If $\phi(g) = e$, then ϕ won't be an automorphism, since it won't be bijective (as $\phi(e) = e$ already). Hence, we have 4 remaining possibilities:

$$\phi(g) = g, g^2, g^3, g^3$$

 $\phi(g)=g$ is the identity automorphism, which works. What about $\phi(g)=g^2$. Then:

- $\phi(e) = e^2 = e$
- $\phi(q) = q^2$
- $\phi(q^2) = q^4$
- $\phi(g^3) = g^6 = g$
- $\phi(q^4) = q^8 = q^3$

Hence, this defines a bijection. Similarly, we can check that $\phi_i(g) = g^i$ defines automorphisms. We have then found 4 automorphisms for G, which are the only possibilities, so |Aut(G)| = 4. We can now look at the structure of Aut(G). For instance, how it behaves under the group action:

$$\phi_i(\phi_j(g)) = \phi_i(g^j) = (\phi_i(g))^j = (g^i)^j = g^{ij} = \phi_{ij}(g)$$

Here, ij needs to be interpreted modulo 5, so we see that Aut(G) has structure similar to multiplication in the field \mathbb{Z}_5 , so indeed $Aut(G) \cong \mathbb{Z}_5^{\times}$ (we can't have isomorphisms from fields to groups, since fields have more structure; however, the units do form a group, with the same elements as the field).

6 Exercises for Chapter 1

- 1. True or False
 - 1. Lagrange's Theorem shows that every group of order 60 has a subgroup of order 15.
 - 2. Every group of order 60 has a subgroup of order 1.
 - 3. Every group of order 60 has a normal subgroup of order 60.
 - 4. Lagrange's Theorem shows that no group of order 60 has a subgroup of order 24.
- 2. Let H, K be subgroups of G. Show that $H \cap K$ is a subgroup of G. When is $H \cup K$ a subgroup of G?
- 3. Let H, K be normal subgroups of G. Show that $H \cap K$ is a normal subgroup of G?
- 4. Suppose that $H \leq G$ and |G/H| = [G:H] = 2. Show that $H \triangleleft G$. You may want to use properties of cosets to show that the right coset of H is H, and the left coset of H is $G \setminus H$.
- 5. Let G be a group, and $H \leq G$. Show that $N = \bigcap_{x \in G} xHx^{-1}$ is the largest normal subgroup of G contained in H. That is, show that:
 - 1. $N \triangleleft G$
 - **2.** if $N' \triangleleft G$, and $N' \subseteq H$, then $N' \subseteq N$.
- 6. Let G be a finite group, and let H, K be subgorups of G. Suppose that |H|, |K| are coprime. Show that $H \cap K = \{e\}$.
- 7. Let G be a group, and recall that the centre Z(G) of G is the set:

$$Z(G) = \{z \mid z \in G, zg = gz \forall g \in G\}$$

If $N \leq Z(G)$, show that $N \triangleleft G$. If in addition G/N is cyclic, show that G is abelian. You may want to show that any element of G can be written as $g^a n$ for some $a \in \mathbb{Z}$, $n \in N$.

- 8. Let μ_8 be the set of eighth roots of unity in \mathbb{C}^* . What is $|\mu_8|$? Write down the elemnts of μ_8 as complex numbers. Show that μ_8 is a cyclic group under multiplication. Find the elemlents g in μ_8 , such that $\langle g \rangle = \mu_8$; that is, which elements of μ_8 can be used as cyclic generators of μ_8 ?
- 9. Let $w = e^{\frac{2\pi i}{3}}$, so $w^3 = 1$, and $w \neq 1$. Since:

$$a := \begin{pmatrix} w^2 & 0 \\ 0 & w \end{pmatrix} \qquad b := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

are invertible, they are in $GL(2,\mathbb{C})$. Find the orders of a and b. Calculate the conjugate bab^{-1} , and find k so that $bab^{-1}=a^k$.

- 10. Let $G \leq GL(2,\mathbb{C})$, where G is generated by a,b. Show that G is a finite group, and find its order. You might want to use the fact that $ba = a^k b$, alongside Lagrange's Theorem.
- 11. Show that G from the previou problem is not isomorphic to D^6 . You may want to consider the order of elements in the different groups.
- 12. Let F be a finite field with q elements. Show that $|GL(2,F)| = (q^2 1)(q^2 q)$, and that:

$$|SL(2,F)| = q(q+1)(q-1)$$

- 13. Show that Aut(G) is a group under the composition of functions.
- 14. Find $Aut(\mu_8)$.
- 15. Let L be a ring. Let Aut(L) denote the set of ring isomorphisms of L to itself. Show that Aut(L) forms a group.
- 16. Let K be a subfield of a field L. The set of elements of Aut(L) that are equal to the identity when restricted to K is denoted by $Aut_K(L)$. Show that $Aut_K(L)$ is a subgroup of Aut(L).
- 17. Interpret the preceding 2 problems for $\mathbb{R} \subseteq \mathbb{C}$. What is $Aut_{\mathbb{R}}(\mathbb{C})$

7 Useful Exercises & Proofs from FPM

7.1 Theorem: Cyclic Groups are Abelian

If G is cyclic, then G is abelian. (Exercise 2.4, FPM)

7.2 Theorem: Abelian if Square is Identity

Let G be a group. If:

$$g^2 = e, \quad \forall g \in G$$

then G is **abelian**. (Exercise 1.12, FPM)

7.3 Theorem: Product of Cyclic Groups with Coprime Order

Let $G = C_m$, $H = C_n$ be **cyclic** groups of order m, n respectively. Then, $G \times H$ is **cyclic if and only if** m and n are **coprime**. Moreover, $C_m \times C_n \cong C_{mn}$ **if and only if** m, n are coprime. (Theorem 2.3.16, FPM)

7.4 Theorem: Subgroup of Cyclic Group

If G is **cyclic**, then any subgroup $H \leq G$ is **cyclic**. (Theorem 2.3.15)