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Based on the notes by Susan J. Sierra, Chapter 1

1 Groups

1.1 Definition: Groups

Consider a set G, and let * be a binary function:
*:GxGE—G

(9,h) — gxh € G, Vg,h € G
A group (G, *) satisfies 3 axioms:

1. Associativity:

g* (h*k)=(g*h)x*k, g,h,ked
2. Existence of Identity:

JdeeG : exg=g*xe=yg, Vg e G
3. Existence of Inverse:

Vge G,dhe G : gxh=hxg=c¢e

We write h = g~ *.

By letting * be a function, we ensure that (G, *) is closed under x.
(Definition 1.1.1)

e What is the order of a group?

— the number of elements in G

— we denote the order via |G]|

1.2 Definition: Abelian Group

A group (G, *) is abelian if:
gxh=hxg, Vg, h € G
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1.3 Theorem: Group Properties

Let (G, *) be a group. Then:

1. Existence and Uniqueness of Group Products: if g,h € G,
then there are unique elements k1, ko such that:

kl*g:h g*k‘gzh

2. Cancellation Law: let g,s,t € G. Then:
gxs=g*xt = s=1
sSxg=txg = s=t
3. Uniqueness of Identity: e is the only identity element. Vg, h € G
ifgxh =h, then g = e.

4. Uniqueness of Inverse: g~! is the only inverse of g € G.
Vg,h € Gifgxh=ce, thenh =g .

5. Inverse of Identity: the inverse of the identity element is the
identity element

el=¢

6. Inverse of Inverse: if g € G, then (g71)~!

(Revision Exercises 1, 2 + FPM Notes)

=49

Proof. 1. Existence and Uniqueness of Group Products
We prove the first statement: if g, h € G, there is a unique k € G such that kx g = h.
Define k := hg~!. Clearly, k € G. Moreover:

kg=(hg™")g=hlg"'g)=h
Moreover, k is unique: assume 3k’ € G such that k’g = h. Then:

k=hg ' =gy ' =K(gg")=F

2. Cancellation Law
Assume gs = gt. By uniqueness, this is only possible if s = ¢t. Alternatively:

gs=gt = g '(gs)=g '(gt) = s=t

3. Uniqueness of Identity

(a) assume g, h such that:
gh=nh

But since eh = h, it follows by cancellation law/uniqueness that g = e, as required.
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(b) assume €’ is another identity. Then:

eg=eyg
= ('g)g™" = (eg)g™"
= €'(gg") =e(gg™")
= =e

(c) assume €’ is another identity. Then we must have that:

ee’ =e ee’ = ¢

But by uniqueness of products, we must then have e = €’
4. Uniqueness of Inverse

(a) follows directly from existence and uniqueness, by using g,e, and the fact that by the group

axioms, gg~ ! =e

(b) assume h, k are 2 inverses of g. Then:
gh=e ghk=e = gk=gh
so by cancellation/uniqueness, k = h

5. Inverse of Identity

Since ee = e and ee™! = e, and inverses are unique, e = e~}

6. Inverse of Inverse

Since g71(¢g7!)"! = e and g~ 'g = e, and inverses are unique, g = (g~ *) !

1.4 Definition: The Product Group

Let (G, *¢) and (H,xy) be groups. The direct product G x H is a prod-
uct group under operation %, defined by:

(9,h) x (', 1) = (9% ¢, hxu B)
(Definition 1.4.8)

1.5 Examples of Groups

1.5.1 Symmetric Group
e S, is the symmetric group
e corresponds to the set of all permutations of the set {1,...,n}
e x is permutation composition

e contains n! elements
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1.5.2 Dihedral Group
e D, is the dihedral groups
e corresponds to the set of all symmetries of a regular n-gon

e contains 2n elements: n rotations and n reflections

1.5.3 Free Group

e 2 letters have a free group G = (z,y)
e corresponds to the set of all words which can be generated by combining z,vy, 2",y
e x is letter concatentation:

acaca:*ly*yflsc = :cacmflyyflx =2z = 2°

e the identity element is the empty word (no letters)

1.5.4 Integers Under Addition
e (Z,+) is a group with e =0
e it is a cyclic group generated by 1 (so every element in Z can be written as a sum of 1s)

o (Zy,+) (integers modulo n) are also a group

2  Subgroups
2.1 Definition: Subgroups

Let (G, *) be a group. A non-empty subset H C G is a subgroup if
(H,*) is a group.

In particular, H is a subgroup if its closed under products and in-
verses:

1. hk € H,VYh,k € H
2. hle HVhe H
If H is a subgroup of G, we write:
H<G
(Definition 1.5.1)

Notice, the e € H, since h,h™' € H and there’s multiplicative closure. Moreover, H will be associative, since
G was. So H satisfies the properties of a group!

e Given a finite group, how can we test for a subgroup?

— for finite subsets, it is sufficient to check that H is closed under products
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e What is a proper subgroup?

— a subgroup H which is a proper subset of G

— we write:

H<G

2.2 Theorem: Test for Subgroup

Let G be a group, and H C G. H s a subgroup if and only if it is non-
empty and:
hk=' e H, Vh k€ H

(Revision Exercise /)

Proof. If H is a subgroup, consider h,k € H. Then, we have that k~' € H, and by closure, it follows that
hk~' € H, as required.

Alternatively, let h,k € H, and assume that hk~' € H. We need to show closure under products and
inverses. Since k € H, let h = k. Then it follows that:

hk'eH = hhl=eecH

Hence, it follows that:
hk'eH = ek '=k'eH

so H is closed under inverses.
Moreover,
hk'e H = hk ') '=hkecH

so H is closed under products. Hence, H is a subgroup.

2.3 Examples of Subgroups
e {e} is the trivial subgroup for any group Gj; similarly, G is a subgroup of G
e the set of rotations of an n-gon form a subgroup of D,

e A, is the alternating group, and it’s a subgroup of S,, constructed by taking the product of an
even number of 2-cycles

e GL(n,F) is the general linear group over a field F, containing all the invertible n x n matrices.
SL(n, F) is the special linear group, the set of all invertible n x n matrices with determinant 1.
SL(n, F) is a subgroup of GL(n, F).

2.4 Cyclic Groups

e How can we generate subgroups by using elements of groups?

— we can repeatedly apply x to an element g with itself

— this generates a subgroup:
(9) :=={g" I n€Z}
known as the subgroup generated by g

Page 7



e What is a cyclic group?

— a group which is generated by a single element g € G:
G={g)

e What is the order of a group element?

— the smallest positive integer n such that:

(if it doesn’t exist, n = c0)
— denoted as o(g)

— we have that the order of a cyclic subgroup is the order of the subgroup’s generator:

2.5 Worked Exercises
3 Cosets

3.1 Definition: Left and Right Cosets

Let H C G, and consider g € G. Then:
o the left coset of H determined by g is the set:

gH ={gh|he H} C G
e the right coset of H determined by g is the set:
Hg={hg|he H} CG

G/H denotes the set of all left cosets, whilst H \ G denotes the set of all

right cosets.
(Definition 1.5.6)

e What is the index of H in G, where H < G?

— the number of left cosets of H:
|G/H| =[G : H|

3.1.1 Worked Exercises

e (Revision Exercise 7) Let G = S3 and let H = {e, (12)}. H < G. Write down the elements of
G/H and H\ G. What do you notice about these sets?
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3.2 Normal Subgroups
3.2.1 Definition: Normal Subgroups

Let H < . H 1s a normal subgroup if it is invariant under conju-
gation. In other words:

gH = Hg, Vg e G
We write H < G.

3.2.2 Theorem: Equivalent Definitions for Normal Subgroups

The following are equivalent:
1. H«<G
2. gHg ' = H, Vge G
3. gHg ' C H, Vg e G
4. H=\,eq9Hg™"
5 H CNyeqgHg™!

Proof.
e HiG <= gHg 'CH
(=) Let H be a normal subgroup; that is:
gH = Hg, Vge G

For any g € G, 3h, k € H such that:

gh=kg — ghg'=kcH
That is, if ghg™! € gHg™! then also ghg~! € H, so gHg~! C H. (Alternatively, argue that gH =
Hg = gHg~'=H)
(<= ) Assume that gHg~! C H,Vg € G.
On the one hand, we have that 3h, k € H such that:

ghg ' =k — gh=kgec Hyg

so it follows that gH C Hyg.
On the other hand, since g~ € G, 3h, k € H such that:

(g (g )=k = g 'hg=k = hg=gkegH

so it follows that Hg C gH. Hence, we must have that gH = Hg, and H is a normal subgroup.
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e HiG < gHg '=H
H<G <= gH=Hg
= (gH)g~' = (Hg)g™"
— gHg '=H
O]

3.2.3 Theorem: Another Definition for a Normal Subgroup

Let H < G, and assume that Vg € G we have:
gHg'CH ¢ 'HgCH

then:
gHg'=H

and so, H<G.

Proof. Assume that gHg~! # H. Then, 3h € H such that h ¢ gHg~'. But then, observe:
H = (99~ ")H(99™")

=g(g " Hg)g ™"

CgHg™!

In other words, any element of H must be in gHg~'. However, this is a contradiction, and so, no such h € H

must exist. Hence, gHg~' = H, and by the definition of a normal subgroup:
H«G
O

as required.

4 Lagrange’s Theorem
4.1 Recap: Equivalence Relations and Equivalence Classes

e What is an equivalence relation?

— consider a set X
— for s,t € X, we write s ~ t to say “s is related to t”

— ~ defines an equivalence relation if it’s:
x reflexive: x ~ z,Vor € X
* symmetric: z~y — y~z,Vr,ye X
x transitive: x ~y,y~2z = x ~ 2, Vo,y,z € X

¢ What is an equivalence class?
— for some x € X, its equivalence class is the set of all elements in X which are related to x via

an equivalence relation:
cd(z)={y |z ~yyecX}
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4.1.1 Theorem: Properties of Equivalence Classes

Consider a set X with equivalence relation ~. Then:

1. cl(z) #0
2. x ~y,z,y € X if and only if:

cl(z) = cl(y)

if and only if:
c(x)Nel(y) #0

In other words, 2 equivalence classes are either the exact same, or com-
pletely disjoint.

Proof. 1. This follows from the fact that x € cl(z) by reflexivity

2. Assume z ~ y. Let z € cl(y), so that y ~ 2. Since z ~ y, by transitivity it follows that x ~ z, so
z€cl(r) = d(y) Ccl(z). By similar arguments, cl(x) C cl(y), so:

cl(z) = cl(y)
Otherwise, if cl(x) = cl(y), since x € cl(x) and y € cl(y), it follows that z € cl(y),y € cl(x), so x ~ y.

Assume x ~ y. We know that = € cl(y) and y € cl(z), so in particular = € cl(x)Ncl(y), so cl(x)Ncl(y) #
0.

Otherwise if cl(x) Ncl(y) # O, then 3z € cl(z) Ncl(y), so x ~ z and z ~ y. By transitivity, = ~ y, as

required.
O

4.1.2 Theorem: Equivalence Classes Partition Sets

Let X be a set with an equivalence relation ~. Then, the equivalence
classes generated by ~ partition X . In other words, each element of X
can be put into a unique equivalence class (which is non-empty), such that
the union of equivalence classes gives X .

Proof. Any 2 equivalence classes are either the same set (if they have a common representative), or completely
disjoint. Moreover, each element of = belongs to at least one equivalence class (¢l(z)). Thus:

X = U cl(x)

zeX
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4.2 Theorem: Cosets as Equivalence Classes

Let G be a group, and H < G. The relation ~, given by:
g1~g = g g€l g,9€G

1s an equivalence relation on G.
The equivalence classes are the cosets gH ; in other words, the cosets gH
partition the group, so g1, ..., g, € G such that:

i=1

As a bonus, if h € H, then we have that:

hH = H

Proof. We verify the properties of an equivalence relation:

1. Reflexivity
Notice, since e € H, then g € gH, so it follows that g ~ g.

2. Symmetry
Assume that g1 € goH. Then, 3h € H such that g; = goh. Consider the coset g; H. We must have
that:
g1H = (g2h)H = go(hH)

Now, H is closed under multiplication, so clearly hH C H. Suppose t € H. We can write:
t=h(h™'), hlted

Then, t € hH, so H C hH. Thus, hH = H.
This shows that if g1 € goH, then ¢1H = goH, so in particular go € ¢1H (as g2 € goH) so g1 ~ g2 =
g2 ~ 9g1-

3. Transitivity
Assume that g1 € goH and gy € gsH. Then, 3h, k € H such that:

g1 = g2h g2 = g3k

So:
g1 = g2h = (g3k)h = g3(kh) € g3 H

since kh € H. Thus, g1 ~ g3, as required.

Notice, this then means that given 2 cosets, either:
o gl =g H
e iHNgH=10
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4.3 Theorem: Cosets Have Same Order as Subgroup

Let H < G. Then:
lgH| = |H|, Vge G

Proof. Consider the map:
f+H—gH

defined by:
f(h) = gh

It is sufficient to show that f is a bijection. It is clearly surjective from definition:
gH ={gh|he H} ={f(h) | he H}
It is also injective, by the uniqueness of group products/cancellation law:
f(h1) = f(he) < ghi =ghs < h; =hy

Hence, it follows that f is a bijection, and |gH| = |H]|.

This is known as the canonical map, and we will see more next week,
when defining the Isomorphism Theorems.

4.4 Theorem: Lagrange’s Theorem

Let H C G, where G is a finite group. Then, the order of H divides the
order of G.
More precisely:

|G| = |G/H]|H]
(Theorem 1.3.8)

Proof. We showed about that the relation g1 ~ go <= ¢1 = g2 H is an equivalence relation, with equivalence
classes gH, the left cosets of H. These cosets partition the group:

i=1

where g; € G are representatives of the equivalence classes.
Then, since the equivalence classes are disjoint:

Gl=)"lgiH|=)_|H|=nH
i=1 i=1
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where we have used the theorem above, whereby |¢H| = |H|,Vg € G.
But here n is the number of distinct left cosets of H, which is |G/H| so:

G| = |G/H|[H|

as required

4.4.1 Remark: Differences Between Left and Right Cosets

When developing Lagrange’s Theorem, we have just used left cosets.
However, it is easy to verify that:

g1~g = g1 € Hg

1s an equivalence relation, with equivalence classes Hg - the right cosets.
Thus, Lagrange’s Theorem also applies to right cosets:

Gl = H\G||H]

and this also means that if H is a subgroup, it has the same number of
left and right cosets.

4.5 Corollaries of Lagrange’s Theorem
4.5.1 Theorem: Cauchy’s Theorem

Lagrange’s Theorem imposes restrictions on the possible orders of subgroups. However, it doesn’t imply the
existence of said subgroups. This changes for prime ordered subgroups.

If G is a finite group and p is prime, such that p divides |G|, then G
has a subgroup of order p.
(Theorem 1.3.9)

The proof requires the Orbit-Stabilizer Theorem, done in FPM.

4.5.2 Corollary: Order of Group Elements

Let G be a group, and g € G. Then:
1. o(g) divides |G|

Proof. (g) is a subgrop of order o(g), so by Lagrange’s Theorem:

Gl =G/ (g) |o(g)
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This places a restriction on the order of group elements!

By the above:
gl = glG/tallele) — (goloIG/a)l — (lG/iall — ¢

4.5.3 Corollary: Cyclic Group if Order is Prime

If |G| is prime, then G is cyclic.
(Corollary 1.3.11)

Proof. Let |G| be prime. By Lagrange’s Theorem:
G| = |G/HI|H]

Now, consider g € G, g # e, and in particular, the subgroup H = (g). Since o(g) must divide |G|, g # e and
|G| is prime, this is only possible if o(g) = |G|. Hence, H = (g) = G, and G is cyclic. O

4.5.4 Corollary: Groups of Order 5 or Less Are Abelian

Let G be a group. If |G| < 6, then G is abelian.

4.5.5 Theorem: Fermat’s Little Theorem

If p is prime, and a € Z, then:

a’ = a mod p

Proof. If a = 0, then the result follows, so assume this is not the case.

We can think of a as an element of the group Z; under the operation of multiplication modulo p, with
identity e = 1.

This group has p — 1 elements, so by the corollary on the order of group elements:

g%l =gt =1,  VgeLX
Moving back to a, it follows that:
a®~ =1 mod p

so multiplying through by a yields the desired result. O

4.5.6 Worked Exercises

e (Revision Exercise 13) Provide the details for the following example. Let G = Z;ro, and
H =1{0,2,4,6,8}. H < G and in fact it is a normal subgroup. Show why. Verify that the
left cosets of H are the same as the right cosets. Another coset is 1 + H (odd numbers
mod 10). Verify that this is what Lagrange predicts. Finally, consider K = {0,5}, which
is also a normal subgroup. What are the 5 cosets of K?
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5 Group Homomorphisms

5.1 Definition: Group Homomorphisms and Endomorphisms

Let G, H be groups.
A function:
o:G—H
such that
blaxeb) = p(a) ks $(b),  Va,be G

1$ a group homomorphism.

If ¢ : G — G, then ¢ is a group endomorphism.
(Definition 1.4.1)

5.2 Definition: Group Isomorphisms and Automorphisms

Let G, H be groups.

If  : G — H is a bijective group homomorphism, then ¢ is a group
isomorphism.

IfG = H, sothat ¢ : G — G, then ¢ is a group automorphism.

e What are isomorphic groups?

— groups whereby there is an isomorphism between them

— if G, H are isomorphic, then:
G~ H

5.2.1 Theorem: Cylic Groups are Isomorphic

Letn € N. Any 2 cyclic groups of order n are isomorphic.

Proof. Let G = (g), H = (h). Consider the mapping:
¢:G > H

$g") =1’
We first verify that this is a homomorphism. Without loss of generality, let s,¢ € N (group composition

can involve powers of inverses, but these can be expressed with positive powers, since the group is cyclic).
Then:
¢(9'9°) = ¢(¢'"") = h'** = h'h* = é(g")8(9°)
So ¢ is a group homomorphism.
Moreover, it is surjective, since Vh! € H, ¢(g") = h'. Since |G| = |H| and ¢ is surjective, it follows that ¢ is
also injective, and so, it’s a bijection, so ¢ is an isomorphism.
Thus, any 2 cyclic groups of the same order are isomorphic.
O
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5.2.2 Examples of Group Isomorphisms

e (RT, x) has an isomorphism:
exp: R - R

exp(r +y) = exp(x)exp(y)

e the map ¢ : D3 — S3, mapping the symmetries of a triangle to the permutation of the vertices under
the symmetry is an isomorphism

e if we think of Z, as a field, consider the group of units, Z; (that is, the group of all elements in Z,
with an inverse). Then, Z = C),_1: that is, the group of units is a cyclic group of order p — 1

5.3 Theorem: Properties of Group Homomorphisms

Let ¢ : G — H be a group homomorphism. Then:
1. ¢lec) = en
2. ¢(g7") = o(g)™

3. If ¢ is a group isomorphism, then so is ¢~ *.

Proof. 1.
p(ec) = dlec *c ec)
= ¢(eq) = ¢(ec) *u dlec)
= (d(eq)) " xu dlea) = ((eq)) " (d(eq) *u dlea))
= en = ¢(eq)
2.

o(9)*u olg™") =dlgra g™ ")
= ¢(eq)

Since inverses are unique, and ¢(g~!) is an inverse to ¢(g), it follows that:
(9N~ =olg™)
3. Since ¢ is an isomorphism, ¢~ : H — G is a well-defined, bijective function. Now, consider:

h=¢(g) HW=0¢(), 9.9 €GhhNecH
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Then:

¢~ (hxg h') = ¢ (6(g) *xu ¢(g'))
= ¢ " (dlg*rc d))
=g*c g

=67 (h) xc 67 ()

S0 ¢ is a group homormorphism; since its bijective, its an isomorphism.

5.3.1 Theorem: Isomorphic Prime Groups

All groups of prime order are tsomorphic.

Proof. We showed that by Lagrange’s Theorem, if G is of prime order, it is cyclic. We further showed above
that all cyclic groups are isomorphic, so it follows that all groups of prime order are isomorphic.
O

5.4 The Kernel of a Homomorphism

5.4.1 Definition: The Kernel

Let ¢ : G — H be a group homormorphism.
The kernel of ¢ is a subgroup of G, defined by:

ker(¢) ={g| ¢(9) = 0,9 € G}

5.4.2 Theorem: Properties of the Kernel

Let ¢ : G — H be a group homomorphism.
1. ker(¢) < G (in fact, ker(¢) < G)
2. ¢ is ingective if and only if:

ker(¢) = {e}

Proof. 1. We first show ker(¢) is a subgroup. We need to verify closure under product and inverse.
Let g1, g2 € ker(¢). Then:
P(g1) = #(92) = en
Thus:
en = ey xg eg = ¢(g1) *u ¢(g2) = d(g1 *¢ g2)

Hence, if g1, g2 € ker(¢), then g1g2 € ker(¢).
Moreover, for g € ker(¢):

o(g)=en = o(g) = dlg) *u (¢(9) " = d(g) *m ¢(g™")
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Hence, by the cancellation law:
o(g™) =en

so if g € ker(¢), g~ € ker(¢).
Thus, it follows that ker(¢) < G.
Lastly, recall, a subgroup K C G is a normal subgroup if and only if:

gKg ' CK
Let K = ker(¢). For any g € G,k € K:

d(grckxag™") = ¢(g) *xu o(k)*m ¢(g") = ¢(9) *m err xu d(g™") = en
so it follows that gkg~! € K so gKg~! C K, and so, ker(¢)<G.

2. (=) Assume that ker(¢) = {e}. Then, for g, g2 € G:

?(g1) = #(g2)
O(gr ") *m d(g1) = dlg1 ") *u B(g2)
o9 " *c 91) = d(g7 " *a 92)
dlec) = ¢(91 ! %G 92)

eH = Cb(gl *G 92)

1
1

MHHl

Thus, it must be the case that g; 'go € ker(¢). But by assumption, ker(¢) = {eg}, so:
gl =ec = g1=g

so it follows that ¢ is injective.
( <) Assume that ¢ is injective. Since we know that ¢(eq) = eq, it can’t be the case that any other
g € G maps to ey by injectivity, so:

ker(¢) = {ec}

as required.

5.5 The Image of a Homomorphism

5.5.1 Definition: The Image

Let ¢ : G — H be a group homomorphism.
The tmage of ¢ is a subgroup of H, defined by:

m(¢) ={h|h=¢(g),9 € G}

5.5.2 Lemma: The Image is a Subgroup

If ¢ : G — H is a group homomorphism, then im(¢) < H.
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Proof. Firstly, im(¢) is non-empty, since:
oleg) =ey € H
We now verify closure. If hy, ho € im(¢) then:

91,92 € G : (1) =M #(g2) = ha

So:
hiha = ¢(g1)9(92) = ¢(g192)

s0 hihe € im(¢), so im(¢) is closed.
We now verify the existence of inverse. Let h € im(¢), so that 3g € G : ¢(g) = h. But the homomorphism

maps inverses to inverses, so:
olg)=h"" = h7l €im(¢)

5.6 Definition: The Automorphism Group

Let G be a group.

The set of all automorphisms, ¢ : G — G forms the automorphism
group of G, written Aut(G). This is a group under function composi-
tion.

5.6.1 Worked Example: Automorphism Group of Cyclic Group of Prime Order

Consider a cyclic group G = Cp,, where p is prime. It can be shown that:
Aut(G) 22y = Cp

We can check this when p = 5. We can think of G as:
G ={e,9.9%9°,9"}

If ¢ € Aut(G), and since G only has 5 elements, we must have one of the following cases:
o(9) =e.9.9%.9°,¢°

If ¢(g) = e, then ¢ won’t be an automorphism, since it won’t be bijective (as ¢(e) = e already). Hence, we
have 4 remaining possibilities:
¢(9) = 9,9°,9°, ¢°

#(g) = g is the identity automorphism, which works. What about ¢(g) = ¢g2. Then:
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Hence, this defines a bijection. Similarly, we can check that ¢;(g) = g* defines automorphisms.
We have then found 4 automorphisms for G, which are the only possibilities, so |Aut(G)| = 4.
We can now look at the structure of Aut(G). For instance, how it behaves under the group action:

0i(5(9)) = ¢i(g’) = (6:(9)) = (¢") = g" = ¢45(9)

Here, ij needs to be interpreted modulo 5, so we see that Aut(G) has structure similar to multiplication in
the field Zs, so indeed Aut(G) = ZZ (we can’t have isomorphisms from fields to groups, since fields have
more structure; however, the units do form a group, with the same elements as the field).

6

1.

Exercises for Chapter 1

True or False

1. Lagrange’s Theorem shows that every group of order 60 has a subgroup of order 15.
2. Every group of order 60 has a subgroup of order 1.
3. Every group of order 60 has a normal subgroup of order 60.

4. Lagrange’s Theorem shows that no group of order 60 has a subgroup of order 24.

. Let H, K be subgroups of G. Show that HNK is a subgroup of G. When is HUK a subgroup

of G?
Let H, K be normal subgroups of G. Show that H N K is a normal subgroup of G?

Suppose that H < G and |G/H| = [G : H] = 2. Show that H <G. You may want to use
properties of cosets to show that the right coset of H is H, and the left coset of H is G\ H.

Let G be a group, and H < G. Show that N = .. xHz~! is the largest normal subgroup
of G contained in H. That is, show that:

1. NG

2. if N'4G, and N' C H, then N’ C N.

Let G be a finite group, and let H, K be subgorups of G. Suppose that |H|,|K| are coprime.
Show that H N K = {e}.

Let G be a group, and recall tha tthe centre Z(G) of G is the set:
Z(G)=A{z|z€ G, zg=gzVg € G}

If N < Z(G), show that N <G. If in addition G/N is cyclic, show that G is abelian. You may
want to show that any element of G can be written as g*n for some a € Z, n € N.

Let us be the set of eighth roots of unity in C*. What is |ug|? Write down the elemnts
of ug as complex numbers. Show that ug is a cyclic group under multiplication. Find the
elemlents ¢ in ug, such that (g) = ug; that is, which elements of ug can be used as cyclic
generators of ug?

2mi

Let w=¢73

,so w? =1, and w # 1. Since:

a = b=
0 w 1 0

are invertible, they are in GL(2,C). Find the orders of ¢ and b. Calculate the conjugate
bab~!, and find k so that bab~' = a*.
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10.

11.

12.

13.
14.
15.

16.

17.

7

Let G < GL(2,C), where G is generated by a,b. Show that G is a finite group, and find its
order. You might want to use the fact that ba = a*b, alongside Lagrange’s Theorem.

Show that G from the previou problem is not isomorphic to D. You may want to consider
the order of elements in the different groups.

Let F be a finite field with ¢ elements. Show that |GL(2, F)| = (¢* — 1)(¢®> — q), and that:

ISL(2, F)| = q(g +1)(¢ — 1)

Show that Aut(G) is a group under the composition of functions.
Find Aut(us).

Let L be a ring. Let Aut(L) denote the set of ring isomorphisms of L to itself. Show that
Aut(L) forms a group.

Let K be a subfield of a field L. The set of elements of Aut(L) that are equal to the identity
when restricted to K is denoted by Autx(L). Show that Autk (L) is a subgroup of Aut(L).

Interpret the preceding 2 problems for R C C. What is Autg(C)

Useful Exercises & Proofs from FPM

7.1 Theorem: Cyclic Groups are Abelian

If G is cyclic, then G is abelian.
(Exercise 2.4, FPM)

7.2 Theorem: Abelian if Square is Identity

Let G be a group. If:
¢* =e, Vg e G

then G is abelian.
(Ezxercise 1.12, FPM)

7.3 Theorem: Product of Cyclic Groups with Coprime Order

Let G = C,,, H = C,, be cyclic groups of order m,n respectively.
Then, G x H is cyclic if and only if m and n are coprime.

Moreover, C,, x C,, =2 Cy,, ¢f and only if m,n are coprime.
(Theorem 2.3.16, FPM)
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7.4 Theorem: Subgroup of Cyclic Group

If G is cyclic, then any subgroup H < G is cyclic.
(Theorem 2.3.15)
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