
Chapter 1
Conjugacy over R,Q
•k-tuples z = (z1, . . . , xk), w = (w1, . . . , wk) ∈ Ck conjugate over K ∈ {Q, R} if
∀p ∈ K[t1, . . . , tn], p(z) = 0 ⇐⇒ p(w) = 0.
•z1, z2 ∈ C conjugate over R ⇐⇒ z1 = z2 ∨ z1 = z̄2.
( =⇒ ): Let z1 = x + iy, then root of p(z) = (z − x)2 + y2. z1, z2 conjugate so
p(z2) = 0 ⇐⇒ z2 − x = ±iy. ( ⇐= ): z1, z2 conjugate. Let z2 = z̄1. Complex
conjugation ring homomorphism ∴
p(t) =

∑
ait

i =⇒ p(t) =
∑
ait̄

i = p(t̄) =⇒ p(z1) = 0 ⇐⇒ p(z1) = 0̄ ⇐⇒ p(z̄2) = 0

The Galois Group
Definition
•f ∈ Q[t] has roots α1, . . . , αk, then
Gal(f) = {σ ∈ Sk|(α1, . . . , αk), (ασ(1), . . . , ασ(k) conjugate} ≤ Sk

•Sk acts on Q[t1, . . . , tk] via (σp)(t1, . . . , tk) = p(tσ(1), . . . , tσ(k)). σ ∈ Gal(f) iff
p(α1, . . . , αk) = 0 ⇐⇒ (σp)(α1, . . . , αk) = 0. Then ι ∈ Gal(f) 6= ∅. If
σ ∈ Gal(f) ⊆ Sk, σ−1p ∈ Q[t1, . . . , tk], so σ−1p = 0 ⇐⇒ σ(σ−1p) = 0 ⇐⇒ p = 0 so
σ−1 ∈ Gal(f). If σ, τ ∈ Gal(f), σp ∈ Q[t1, . . . , tk], so τp = 0 ⇐⇒ τ(σp) = 0 and
τp = 0 ⇐⇒ p = 0, so (τσ)p = 0 ⇐⇒ p = 0, so τσ ∈ Gal(f)

Examples for Simple Polynomials
•f ∈ Q[t] with rational roots then Gal(f) = {ι}; if f is quadratic with non-rational roots,
these are conjugate, so Gal(f) = S2

•if f = t4 + t3 + t2 + t + 1, roots are non-1 roots of unity, Gal(f) ∼= C4 = 〈(1243)〉;
transpositions not part of Galois Group (use p(t1, t2, t3, t4) = t21 − t2)

•f(t) = t5 − 6t + 3 has Gal(f) = S5, so not solvable

Chapter 2
Group Actions
Definition
G acts on set X via G ×X → X, (g, x) 7→ gx such that: 1) ∀x ∈ X, 1Gx = x, 2)
∀g, h ∈ G, ∀x ∈ X, (gh)x = g(hx)
Abstract Symmetry Group
•Sym(X) is the set of all bijections X → X. Forms a group under composition. If
X = {1, . . . , n}, Sym(X) = Sn.
•if G acts on X, g ∈ G leads to ḡ : X → X, ḡ(x) = gx. This induces homomorphism
Σ : G → Sym(X), since ḡ is a bijection with inverse g−1.
Equivalent Conditions for Faithful Actions
1.G acts faithfully on X (∀g, h ∈ G, ∀x ∈ X, gx = hx =⇒ g = h)
2.for any g ∈ G, if ∀x ∈ X, gx = x then g = 1G
3.Σ : G → Sym(X) is injective / ker(Σ) = {1G}
Examples of Group Actions
1.Sym(X) acts on X via gx = g(x). If g ∈ Sym(X), ḡ = g, so Σ = ι; this is injective, so
Sym(X) acts faithfully.
2.Aut(X) ⊆ Sym(X) contains automorphisms of X. GL(R;n) acts on X = Rn via matrix
multiplication. Σ is the inclusion Σ(g) = g, which is injective, so Aut(X) acts faithfully.
3.48 isometries of cube (rotations + reflection) act on 6 faces, 12 edges, 8 vertices & 4
long diagonals. Action on vertices induces Σ : G → S12, Σ(g) = σg where gxi = xσg(i)

.

Action on faces/edges/vertices has ker(Σ) = {e}, so faithful. Action on long diagonals not
faithful (Σ can’t be injective, as |S4| = 24 < 48 = |G|)
4.the trivial action gx = x is only faithful if G trivial
Sym(X) Contains a Copy of G if Faithful (Lemma 2.1.11)
If Σ : G → Sym(X) and G acts faithfully on X, then G ∼= im(Σ) ≤ Sym(X).
G faithful ∴ Σ injective ∴ induced isomorphism between G and im(Σ).
No cube vertex isometry swaps vertices leaving the rest fixed, so im(Σ) ≤ S8 contains no
2-cycles.
The Fixed Set
Definition
G acts on X, S ⊆ G. Define fixed set of S as Fix(S) = {x ∈ X|∀x ∈ S, sx = x}.
Conjugating the Fixed Set (Lemma 2.1.15)
∀g ∈ G,Fix(gSg−1) = g Fix(S)

x ∈ Fix(gSg−1 ⇐⇒ ∀s ∈ S, gsg−1x = x ⇐⇒ ∀s ∈ S, s(g−1x) = g−1x ⇐⇒ g−1x ∈
Fix(S) ⇐⇒ x ∈ gFix(S)

Rings
Definition
Set (R,+, ·), with (R,+) abelian group with identity 0R, (R, ·) commutative monoid
(multiplication associative & commutative, 1R is multiplicative identity) and
distributivity holds in R.
Ideals, Subrings and the Trivial Ring
•I ⊆ R where I 6= ∅, I closed under subtraction & ∀i ∈ I, ∀r ∈ R, ri, ir ∈ I.
•if Y ⊆ R, 〈Y 〉 is the ideal generated by Y (smallest ideal containing Y ; either
intersection of all ideals containing Y , or 〈Y 〉 =

{∑
airi

∣∣ri ∈ I, ai ∈ R
}

, since if Y ⊆ J,
then ri ∈ J, and any R−linear combination must be in J by ideal closure, so 〈Y 〉 ⊆ J).
•a principal ideal is an ideal generated by one element 〈r〉, r ∈ R
•S ⊆ R where 0R, 1R ∈ S and S closed under subtraction and multiplication.
•the only subring which is also an ideal is R itself (if 1R ∈ I, then I = R)
•any intersection of subrings/ideals of R is a subring/ideal of R.
•R = {0R} is the trivial ring, where 0R = 1R; the only such ring (if S has 0S = 1S ,
and s ∈ S \ {0S}, then s · 0S = s · 1S =⇒ s = 0S).
Ring Homomorphisms
•Mapping φ : R → S such that if r1, r2 ∈ R, 1) φ(r1 + r2) = φ(r1) + φ(r2), 2)
φ(r1r2) = φ(r1)φ(r2), 3) φ(1R) = 1S . From these, we get 4) φ(0R) = 0S , 5)
φ(−r) = −φ(r).
•ker(φ) is an ideal of R, and im(φ) is a subring of S.
The Characteristic Homomorphism: From Z to R
∃!χ : Z → R, where χ(n) = n · 1R =

∑
n 1R or recursively χ(0) = 0R, if

n > 0, χ(n) = χ(n − 1) + 1R, if n < 0, χ(n) = −χ(−n).
χ(0) = 0R, χ(1) = 1R immediate, χ(n +m) = χ(n) + χ(m) immdiate.
χ(nm) =

∑n
i=1 1R ·

[∑m
j=1 1R

]
= χ(n)χ(m). If ∃φ : Z → R with χ 6= φ, since both

homomorphisms, they preserve identity; inductively assume χ(n) = φ(n), then for n > 0
φ(n + 1) = 1R + φ(n) = 1R + χ(n) = χ(n + 1), and result follows for n < 0, so χ unique.

The Universal Property of Factor Rings
Let I ◁ R. A factor ring is a ring R/I, whose elements are cosets r + I = {r + i|i ∈ I}.
Canonical homomorphism πI : R → R/I by r 7→ r + I.
1.πI is surjective & ker(πI ) = I

2.if φ : R → S ring homomorphism & φ(I) = {0S} (I ⊆ ker(φ)), then ∃!φ̄ : R/I → S via
φ = φ̄ ◦ πI .
The First Isomorphism Theorem: if ker(φ) = I, then R/ ker(φ) ∼= im(φ).
Integral Domains
•ring where 0R 6= 1R & ∀r1, r2 ∈ R, if r1r2 = 0R then r1 = 0R or r2 = 0R
•the cancellation law applies: r1s = r2s =⇒ r1 = r2 ∨ s = 0R
•a principal ideal domain (PID) is an ID where every ideal is principal
•Z is PID: it is ID; if I ◁ Z, let n ∈ I be smallest non-zero integer. If b ∈ I, by division
algorithm, b = nq + r, q, r ∈ Z, r < n so r = b − nq ∈ I. But r < n and n is smallest ∴
r = 0 so b = nq =⇒ I = 〈n〉

Units in Rings
•a unit u ∈ R has a multiplicative inverse

•u ∈ R is a unit ⇐⇒ 〈u〉 = R (if unit, u(u−1r) = r ∈ 〈u〉 for any r ∈ R; else if
〈u〉 = R, then 1R ∈ 〈u〉 so ∃r ∈ R : 1R = ur and r = u−1 ∈ R)
•if r, s ∈ R, r divides s (r|s) if ∃a ∈ R : s = ar (equivalently: s ∈ 〈r〉 or 〈s〉 ⊆ 〈r〉)
•r, s ∈ R are coprime if ∀a ∈ R such that a|r, a|s, a is a unit

•set of units in R form a group R× under mutliplication

Bezout’s Identity (Proposition 2.2.16)
If R is PID and r, s ∈ R, then r, s coprime ⇐⇒ ∃a, b ∈ R : ar + bs = 1R.
( =⇒ ): R is PID ∴ ∃u ∈ R : 〈r, s〉 = 〈u〉. r ∈ 〈u〉 , s ∈ 〈u〉, so u|r, u|s. r, s coprime ∴ u
is unit ∴ R = 〈u〉 = 〈r, s〉 ∴ ∃a, b ∈ R : ar + bs = 1R. ( ⇐= ): if u|r, u|s, then u|ar + bs
u|1R ∴ ∃x ∈ R : ux = 1R ∴ u unit ∴ r, s coprime.
Mutual Divisibility in Integral Domains (Exercise 2.2.15)
If r, s ∈ R PID and u unit, then r|s|r ⇐⇒ 〈r〉 = 〈s〉 ⇐⇒ s = ur.
r|s|r ⇐⇒ 〈s〉 ⊆ 〈r〉 ∧ 〈r〉 ⊆ 〈s〉 ⇐⇒ 〈r〉 = 〈s〉 ⇐⇒ ∃u,w ∈ R : s = ur,
r = ws ⇐⇒ s = uws ⇐⇒ uw = 1R ⇐⇒ u unit.
Fields
Definition and Properties of Fields
•a field is a commutative ring R where 0R 6= 1R and ∀r ∈ R r is a unit (so if
R× = R \ {0R}, then R is a field).
•every field is an integral domain; and every finite integral domain is a field (i.e Z not a
field)
•fields only have trivial ideals: {0R}, R (ideals generated by units are the whole ring)
•subfields are subrings which are also fields
•Zm is a field ⇐⇒ m is prime

The Field of Rational Expressions
•if K is a field, K(t) (set of rational expressions f/g, f, g ∈ K[t]) is a field
•f1/g1, f2/g2 ∈ K(t) are equal if f1g2 = f2g1

Field Homomorphisms are Injective (Lemma 2.3.3)
If φ : K → L, ker(φ) ◁ K, ∴ ker(φ) = {0K} or ker(φ) = K. φ homomorphism ∴
φ(1K ) = 1L 6= 0L (L is field) ∴ ker(φ) = {0K} ∴ φ injective.
Subfields from Field Homomorphisms (Lemma 2.3.6)
Let φ : K → L. Then, if A ≤ K, φ(A) ≤ L. If B ≤ L, φ−1(B) ≤ K.
φ ring homomorphism ∴ φ(A) ≤ L. A subfield, so a, a−1 ∈ A and
φ(a−1) = φ(a)−1 ∈ φ(A), so φ(A) subfield.
Equalisers and Subfields (Lemma 2.3.8)
•X, Y sets, S ⊆ {f : X → Y }, Eq(S) = {x ∈ X|∀f, g ∈ S, f(x) = g(x)}
•if K,L fields and S subset of homomorphisms K → L, Eq(S) ≤ K

•for example, S = {idC, κ}, κ complex conjugation, then Eq(S) = R ≤ C.
0K, 1K ∈ Eq(S) & 0K 6= 1K , since φ ∈ S field homomorphism. If a, b ∈ Eq(S), let
φ, θ ∈ Eq(S). Then φ(a − b) = φ(a) − φ(b) = θ(a) − θ(b) = θ(a − b) ∴ a − b ∈ Eq(S).
Similarly, ab, a−1 ∈ Eq(S).
The Characteristic of a Ring
Definition
•the characteristic of R is smallest n ∈ N such that n · 1R = 0R (if no such n,
char(R) = 0. Alternatively, Z is PID, so ∃n ≥ 0 : ker(χ) = 〈n〉; char(R) = n.
•char(R) = char(Q) = char(C) = 0, whereas char(Zp) = p

•if K field, then char(K) = char(K(t))

Characteristic in Integral Domains (Lemma 2.3.11)
If K is ID (like fields), then char(K) = 0 or char(K) = p (p prime).
Let R ID. If char(R) = 0, done; assume char(R) = n ≥ 1. n = 1 =⇒ 1 · 1R = 0R but in
ID 1R 6= 0R, so n ≥ 2. ∃k,m > 0 : km = n ∴ χ(k)χ(m) = χ(n) = 0R. R is ID: WLOG
χ(k) = 0R. Then, k ∈ ker(χ) = 〈n〉 ∴ n|k. But km = n ∴ k|n ∴ n = k ∴ n prime.
Field Homomorphisms and Characteristic (Lemma 2.3.12)
If φ : K → L field homomorphism, char(K) = char(L).
φ(n · 1K ) = n · 1L = χL(n). φ field homomorphism ∴ injective ∴
n · 1L = 0L ⇐⇒ n · 1K = 0K ⇐⇒ char(K) = char(L).
Prime Subfields
Definition
•the smallest subfield of K (any other subfield contains it)
•either: intersection of all subfields of K, or

{
(m · 1K )/(n · 1K )|m,n ∈ Z, n · 1K 6= 0K

}
(subfields contain 1K , must contain any n · 1K and closed under products and inverses
1/(m · 1K )).

Number of Prime Subfields (Lemma 2.3.16)
Let K field. If char(K) = 0, prime subfield is ∼= Q. If char(K) = p prime, prime subfield is
∼= Fp.
If char(K) = 0, n · 1K 6= 0. Define field homomorphism φ : Q → K,
m/n 7→ (m · 1K )/(n · 1K ). φ injective induces isomorphism Q ∼= im(φ). Q has no proper
subfields ∴ im(φ) no proper subfields ∴ im(φ) ≤ K smallest subfield. If char(K) = p,
ker(χ) = 〈p〉. By FIT, im(χ) ∼= Z/ 〈p〉 ∼= Fp. Fp no proper subfields (Lagrange), so im(χ)
doesn’t have proper subfields ∴ im(χ) ≤ K smallest subfield.
Finite Fields Have Positive Characteristic (Lemma 2.3.17)
If K finite & char(K) = 0, Q prime subfield; but Q infinite, so contradiction.

Rings of Prime Characteristic
The Frobenius Map (Proposition 2.3.20)
Let char(R) = p prime. θ : R → R, r 7→ rp is homomorphism. If R field, θ injective; if R
finite field, θ automorphism.
θ(0R) = 0R, θ(1R) = 1R, θ(rs) = θ(r)θ(s). For additivity, θ(r + s) = (r + s)p

=
∑p
i=0

(
p
i

)
risp−i. From definition:

(
p
i

)
=

p!
(p−i)!i! ∴ p! = i!(p − i)!

(
p
i

)
.Then, p|p!,

p 6 |i!, p 6 |(p− i)! ∴ p

∣∣∣∣(pi
)

. char(R) = p, so θ(r + s) = rp + sp = θ(r) + θ(s). If |R| < ∞,

injectivity induces bijectivity.
pth Roots in Fields of Characteristic p (Corollary 2.3.22)
Let char(R) = p prime. If R field, every a ∈ R has at most 1 pth root. If R finite field,
every a ∈ R has exactly 1 pth root.
Frobenius map θ injective for fields, a ∈ R maps to unique ap ∴ xp has at most 1 root. If
R finite, θ is automorphism, so for each x ∈ R, x = ap.
Examples of pth Roots
•in Zp, using FLT, θ(a) = ap = ap−1a = a

•if char(R) = 2, there is at most 1 square root
•over C, p pth roots of unity; if char(K) = p, only 1 (1K )
•t ∈ Fp(t) has no pth root

Irreducible Ring Elements
Irreducibles and Reducibles
•r ∈ R irreducible if r 6= 0R, r not unit & ∀a, b ∈ R if ab = r, then a or b is a unit
(think of irreducibles as primes in Z)
•r ∈ R reducible if r 6= 0R, r not unit and r not irreducible
•0R and units are neither reducible nor irreducible
•there are no irreducibles in fields (every r ∈ R is unit)
Fields from Irreducibles in PIDs (Proposition 2.3.26)
Let R be PID, and 0R 6= r ∈ R. r irreducible ⇐⇒ R/ 〈r〉 field.
( =⇒ ): let r irreducible, & F be the ring R/ 〈r〉. Let π : R → R/ 〈r〉 canonical map.
ker(π) = 〈r〉; r not a unit, so 1R 6∈ 〈r〉 ∴ π(1R) = 1F 6= 0F . F field if every 0F 6= s ∈ F
is unit. 〈r〉 6= R, so let s ∈ R \ 〈r〉. s 6∈ 〈r〉 ∴ r 6 |s. r only divisible by units (since
irreducible), so if a|r and a|s, a is unit r, s coprime ∴ by Bezout (2.2.16)
∃a, b ∈ R : ar + bs = 1R. Then,
π(a)π(r) + π(b)π(s) = 1F =⇒ π(b)π(s) = 1F ⇐⇒ π(s)−1 = π(b) ∴ π(s) unit ∴
non-zero elements of F are units. ( ⇐= ): let F = R/ 〈r〉 field. Then, 0F 6= 1F ∴
π(1R) 6= 0F ∴ 1R 6∈ ker(π) = 〈r〉 ∴ r 6 |1R ∴ r no inverse. Assume r = ab. Then,
π(a)π(b) = 0F . R is PID; WLOG π(a) = 0F ∴ a ∈ 〈r〉 ∴ a = rz ∴ r = ab = rzb. By
Cancellation Law, zb = 1R ∴ b unit.
Chapter 3
The Ring of Polynomials
Definition
•R ring generates ring R[t] of polynomials over R (a0, a1, . . .) where |{i|ai 6= 0}| < ∞.
•additive identity: (0R, 0R, . . .); multiplicative identity: (1R, 0R, . . .)

•the degree deg(f) = n is largest n such that an 6= 0; if f = 0R, deg(f) = −∞.
Polynomials Induce Ring Endomorphisms
•if r ∈ R ring and f ∈ R[t], f leads to endomorphism r 7→

∑
i air

i

•if R is finite, finitely many endomorphisms but infinitely many polynomials ∴
encomorphism isn’t unique (i.e in F2, f = t and g = t2 generate same endomorphism,
since 02 = 0 & 12 = 1, but f 6= g).

Homomorphisms Over Polynomial Rings
Universal Property of the Polynomial Ring (Proposition 3.1.6)
Let R,B rings, φ : R → B and b ∈ B. ∃!θ : R[t] → B such that ∀a ∈ R, θ(a) = φ(a) &
θ(t) = b.
If θ satisfies above, θ

(∑
i ait

i
)

=
∑
i φ(ai)b

i, so θ uniquely determined by φ(ai), b
i ∴ at

most 1 such θ exists. Define θ
(∑

i ait
i
)

=
∑
i φ(ai)b

i. θ satisfies conditions, and is
homomorphism ∴ at least 1 such θ exists.
The Induced Homomorphism
φ : R → S induces unique homomorphism φ∗ : R[t] → S[t] where
∀a ∈ R,φ∗(a) = φ(a), φ∗(t) = t.
The Evaluation Homomorphism
Evaluation induces a unique homomorphism evr : R[t] → R, where r ∈ R and
∀a ∈ R, evr(a) = a, evr(t) = r.
The Substitution Homomorphism
There is unique homomorphism θ : R[t] → R[u] such that ∀a ∈ R, θ(a) = a, θ(t) = u + c,
where c ∈ R. This is an isomorphism (θ−1(u) = t− c), so f(t) irreducible ⇐⇒ f(t− c)
irreducible.
Properties of Polynomials
Polynomials Over Integral Domains (Lemma 3.1.11)
If R ID, R[t] ID, & ∀f, g ∈ R[t], deg(fg) = deg(f) + deg(g).
t has no pth Root in Fp(t) (Exercise 3.1.13)
If t has pth root, ∃f, g ∈ Fp(t) : fp/gp = t ∴ fp = tgp. Fp(t) ID ∴
deg(fp) = deg(t) + deg(gp) ∴ p deg(f) = 1 + p deg(g).
Irreducible Polynomials Over Fields (Lemma 3.1.14)
If K field, units in K[t] are non-zero constants, and f ∈ K[t] irreducible ⇐⇒ f
non-constant & f isn’t product of 2 non-constant polynomials.
If f ∈ K[t] unit, deg(ff−1) = deg(1K ) ∴ deg(f) + deg(f−1) = 0 ∴ deg(f) = 0 ∴ f is
constant & f ∈ K has inverse if f 6= 0K .
Polynomial Remainders (Proposition 3.2.1)
Let K field, f, g 6= 0K ∈ K[t]. ∃!q, r ∈ K[t] : f = gq + r & deg(r) < deg(g).
Polynomials Over Fields as PIDs (Proposition 3.2.2)
If K is a field, then K[t] is a PID.
K is ID by (3.1.11). Let I ◁ K[t]. If I = {0K} then I =

〈
0K

〉
. Else, let

d = min{deg(f) | 0K 6= f ∈ I} and g ∈ I : deg(g) = d. Claim: I = 〈g〉 ⇐⇒
∀f ∈ I, g | f. By (3.2.1) ∃!q, r ∈ K[t] : f = gq + r , deg(r) < deg(g) = d. q ∈ K[t] ∴
gq ∈ I ∴ r = f − gq ∈ I g has minimal degree & deg(r) < d ∴ r = 0 ∴ f = qg ∴ g | f.
If K field, K[t] PID, but K[t1, . . . , tn] is only ID & need not be PID (for example,
〈t1, t2〉 not principal in Q[t1, t2]). If K not a field in (3.2.2), then 〈2, t〉 not principal in
Z[t] (where Z is PID but not field). Note, 〈2, t〉 = {2f + tg|f, g ∈ Z[t]}. If principal,
∃h ∈ Z[t] : 〈h〉 = 〈2, t〉 ∴ ∃a, b ∈ Z[t] : 2 = ha, t = hb ∴ deg(h) + deg(a) = 0 ∴ h 6= 0 ∈ Z.
t = hb ∴ h = ±1 ∴ h is unit ∴ 〈h〉 = Z[t]. But 1 6∈ 〈2, t〉 ∴ contradiction & not principal.



Factorising Polynomials
Non-Constant Polynomials Divisible by Irreducibles (Lemma 3.2.6)
Let K field, f ∈ K[t] non-constant. f is divisible by irreducible in K[t].
Irreducibles Divide Elements of Product (Lemma 3.2.7)
Let K field, f, g, h ∈ K[t]. If f irreducible & f|gh, then f|g or f|h.
Polynomials Over Fields Factorise Uniquely (Theorem 3.2.8)
Let K field, 0K 6= f ∈ K[t]. Then f = af1 . . . fn, where n ≥ 0, a ∈ K,
f1, . . . , fn ∈ K[t] monic irreducible. n, a uniquely determined by f; f1, . . . , fn uniquely
determined up to reordering.
Linear Factors and Roots (Lemma 3.2.9)
Let K field, f ∈ K[t], a ∈ K. Then, f(a) = 0K ⇐⇒ (t − a)|f.
Factorisation in Algebraically Closed Fields (Lemma 3.2.10)
•K algebraically closed if every non-constant polynomial has at least 1 root in K
•if K algebraically closed, 0K 6= f ∈ K[t], then f(t) = c(t − a1)m1 . . . (t − ak)mk ,
where a1, . . . , ak are distinct roots of f in K, m1, . . . ,mk ≥ 1.

Irreducibility in Polynomials
Fields from Irreducible Polynomials
Let K field, 0K 6= f ∈ K[t]. Then, f irreducible ⇐⇒ K[t]/ 〈f〉 is field.
Primitive Polynomials
p ∈ Z[t] is primitive if its coefficients have no common divisor, except ±1.
From Primitives to Rational Polynomials (Lemma 3.3.7)
If f ∈ Q[t], ∃F ∈ Z[t], α ∈ Q (with F primitive) such that f = αF .
Gauss’s Lemma (Lemma 3.3.8)
1.Product of primitive polynomials over Z[t] is primitive
2.If non-constant p ∈ Z[t] irreducible over Z, it is irreducible over Q.
Irreducibility from Degree & Roots (Lemma 3.3.1)
Let K field, f ∈ K[t]. Then:
1.If f constant, then f not irreducible.
2.If deg(f) = 1, f irreducible.
3.If deg(f) ≥ 2 & f has root, f reducible.
4.If deg(f) ∈ {2, 3} & f has no root, f irreducible.

•f =
∑p−1
i=0

ti reducible in Zp[t], as f(1) = 0.

•f = t3 − 10 ∈ Q[t] has no root in Q & deg(f) = 3 ∴ irreducible.
•over algebraically closed fields, the irreducibles are linear.
Mod-p Method (Proposition 3.3.9)
Let f =

∑n
i=1 ait

i ∈ Z[t]. Define π : Z → Zp, π∗ : Z[t] → Zp[t], p prime. If p 6 |an &
f̄ ∈ Zp[t] irreducible, then f irreducible over Q.

•f = 9 + 14t − 8t3 ∈ Z[t] reduces to f̄ = 2 − t3 in Z7. No roots & cubic ∴ irreducible in
Z7 ∴ irreducible in Q.
•in Z3, f̄ = t(t2 − 1) is reducible, but this doesn’t imply reducibility in Q.
•condition p 6 |an necessary: f = 6t2 + t reducible, but in Z3, f̄ = t irreducible.
Eisenstein’s Criterion (Proposition 3.3.12)
Let f =

∑n
i=1 ait

i ∈ Z[t], n ≥ 1. f irreducible over Q if ∃p prime, such that:
1.p 6 |an 2.∀i ∈ [0, n − 1], p|ai 3.p2 6 |a0
•g = 2

9
t5 − 5

3
t4 + t3 + 1

3
; by Gauss (3.3.8), g irreducible over Q ⇐⇒ 9g irreducible over

Q; 9g irreducible by Eisenstein with p = 3.

•pth cyclotomic polynomial is Φp(t) = 1 + t + . . . + tp−1 = tp−1
t−1

. Can’t apply

Eisenstein on Φp(t) immediately; but Φp(t + 1) = 1
t

∑p
i=1

(
p
i

)
ti, which is irreducible by

Eisenstein with p.

Chapter 4
Field Extensions
Definition
•a field extension (FE) of field K is field M alongside homomorphism ι : K → M.
Written M : K.
•K(t) extends K with trivial homomorphism ι(a) = a/1; Q trivially extends itself; R
extends Q, again through the inclusion homomorphism.
Generating Subfields
•let K field, X ⊆ K. The subfield of K generated by X is intersection of all K subfields
containing X (smallest subfield containing X)
•if M : K FE & Y ⊆ M, K(Y ) = subfield of M generated by K ∪ Y (subfield generated
by Y over K, K with Y adjoined).
•K(Y ) is the smallest subfield containing K & Y
•subfield of K generated by ∅ is prime subfield; subfield of C generated by {i} is Q(i),
since Q is prime subfield.

Algebraic and Transcendental Elements
Definition
•let M : K FE & α ∈ M. α algebraic over K if ∃0K 6= f ∈ K[t] : f(α) = 0K . If no
such f exists, α transcendental
•π, e transcendental/algebraic over Q/R; e2πi/n algebraic over Q (root of f = tn − 1);
t ∈ K(t) transcendental over K, as f(t) = 0K ⇐⇒ f = 0K .

The Minimal Polynomial
Definition (Lemma 4.2.6)
•if M : K FE, annihilating polynomial (AP) of α ∈ M is f ∈ K[t] : f(α) = 0.
•if M : K FE & α ∈ M, ∃m ∈ K[t] : 〈m〉 = {APs of α over K}. m is minimal
polynomial (MP) of α over K.
•if α transcendental over K, m = 0K ; if algebraic, m is unique & monic.
By Universal Property of Polynomial Rings (3.1.6), unique evaluation homomorphism
θ : K[t] → M evaluates at α, so ker(θ) = {APs of α over K}. By (3.2.2), K[t] PID ∴
∃m ∈ K[t] : 〈m〉 = ker(θ). If α transcendental, ker(θ) = {0K}, so m = 0K . Else,
multiply m by 0k 6= k ∈ K & 〈m〉 doesn’t change ∴ assume monic. If 〈m̃〉 = ker(θ),
m̃ = cm, but m̃,m monic ∴ c = 1.
Equivalent Conditions for Minimal Polynomial (Lemma 4.2.10)
Let M : K FE, α ∈ M algebraic over K, m ∈ K[t] monic. Equivalent:
1.m is MP of α over K
2.(α) = 0K & m|f, ∀ APs f ∈ K[t] of α.
3.m(α) = 0 & deg(m) ≤ deg(f), ∀ APs 0k 6= f ∈ K[t] of α
4.m(α) = 0 & m irreducible over K.

Field Extensions from Polynomials (Lemma 4.3.1)
Let K field.
1.Let m ∈ K[t] monic, irreducible, π : K[t] → K[t]/ 〈m〉 canonical homomorphism. Write
π(t) = α ∈ K[t]/ 〈m〉. Then, m is MP of α over K, and K[t]/ 〈m〉 ∼= K(α).
2.t ∈ K(t) is transcendental over K, and K(t) generated by t over K.
1. Let M = K[t]/ 〈m〉. π

(∑
i ait

i
)

=
∑
aiα

i ∴ ker(π) = 〈m〉 contains APs of α over K
∴ m MP of α over K. If L ≤ M & L contains K,α, then contains every polynomial in α
over K ∴ M ≤ L ∴ L = M ∴ M = K(α).
2. t transcendental in K(t). Let L ≤ K(t) contain K, t. If f, g ∈ K[t] are in L, then
f/g ∈ L ∴ L = M ∴ M = K(t).
Homomorphisms Over Fields
Definition
•let K field with extensions ι1 : K → M1, ι2 : K → M2. Homomorphism φ : M1 → M2
is homomorphism over K if ∀a ∈ K,φ(ι1(a)) = ι2(a)

•if ι1, ι2 inclusions, ∀a ∈ K,φ(a) = a

Homomorphisms Over Fields Defined by Subsets (Lemma 4.3.6)
Let M1 : K,M2 : K FE, φ, ψ : M1 → M2 homomorphisms over K. Let Y ⊆ M1 :
M1 = K(Y ). If ∀a ∈ Y φ(a) = ψ(a), then φ = ψ.
φ = ψ on K ∪ Y ∴ K ∪ Y ⊆ {φ, ψ}. By (2.3.8), {φ, ψ} ≤ M containing K ∪ Y ; K(Y )
smallest such subfield ∴ {φ, ψ} = K(Y ) = M.
Universal Properties of K[t]/ ⟨m⟩ , K(t) (Proposition 4.3.7)
Let K field.
1.Let m ∈ K[t] monic, irreducible, L : K FE, β ∈ L with MP m ∈ K[t], α = π(t). ∃!
homomorphism φ : K[t]/ 〈m〉 → L over K, such that φ(α) = β.
2.L : K FE, β ∈ L transcendental. ∃! homomorphism φ : K(t) → L over K such that
φ(t) = β.
1.There is at least 1 homomorphism φ : K[t]/ 〈m〉 → L over K with φ(α) = β. By (3.1.6),
∃! homomorphism θ : K[t] → L with ∀a ∈ K, θ(a) = a & θ(t) = β). Then,
θ(m(t)) = θ(m(β)) = 0 ∴ 〈m〉 ⊆ ker(θ) ∴ by Universal Property of Quotient Rings, ∃!
homomorphism φ : K[t]/ 〈m〉 → L with θ = φ ◦ π. φ is homomorphism over K, since
∀a ∈ K,φ(a) = φ(π(a)) = θ(a) = a. Moreover, φ(a) = φ(π(t)) = θ(t) = β. There is at
most 1 homomorphism as the one described. Assume there are 2 such homomorphisms
φφ′. Then, φα) = φ′(α). By (4.3.1, i), K(α) = K[t]/ 〈m〉, so φ = φ′ by (4.3.6).
2.There is at least one homomorphism φ : K(t) → L over K with φ(t) = β. Elements in
K(t) are of form f/g where f, g ∈ K[t], g 6= 0K . β transcendental over K ∴ g(β) 6= 0K ∴
f(β)/g(β) ∈ L well defined. This defines homomorphism φ : K(t) → L, f/g 7→ f(β)/g(β).
φ homomorphism over K & φ(t) = β as required. At most one such φ similar to 1) above.

Isomorphisms Over Fields
Definition
M1 : K,M2 : K FE. φ : M1 → M2 is isomorphism over K if its homomorphism over K
& isomorphism. M1,M2 can be isomorphic, but not isomorphic over K.
Corollary to Universal Property (Corollary 4.3.11)
Let K field.
1.Let m ∈ K[t] monic, irreducible, L : K FE, β ∈ L with MP m ∈ K[t], L = K(β),
α = π(t). ∃! isomorphism φ : K[t]/ 〈m〉 → L over K, st φ(α) = β.
2.L : K FE, β ∈ L transcendental, L = K(β). ∃! isomorphism φ : K(t) → L over K st
φ(t) = β.
1.(4.3.7,i) implies ∃! homomorphism φ : K[t]/ 〈m〉 → L over K with φ(α) = β. φ
isomorphism if surjective (since φ homomorphism of fields ∴ injective). By (2.3.6, i)
im(φ) ≤ L & φ homomorphism over K ∴ K ⊆ im(φ) & β ∈ im(φ) (since φ(α) = β) ∴
im(φ) = K(β) = L

2.Similar to above.

Simple Field Extensions
Definition
•M : K simple if ∃α ∈ M st M = K(α)

•Q(
√

2,
√

3) simple: computing (
√

2 +
√

3)3 = 11
√

2 + 9
√

3 shows that
Q(

√
2,

√
3) = Q(

√
2 +

√
3).

Classification of Simple Extensions (Theorem 4.3.16)
Let K field.
1.Let m ∈ K[t] monic, irreducible. ∃M : K, ∃α ∈ M : M = K(α) where α algebraic with
MP m. If (M1, α1), (M2, α2) are 2 such pairs, ∃! isomorphism φ : M1 → M2 over K st
φ(α1) = α2.
2.There exists FE M : K, α ∈ M transcendental st M = K(α) If (M1, α1), (M2, α2) are 2
such pairs, ∃! isomorphism φ : M1 → M2 over K st φ(α1) = α2.
Take M = K[t]/ 〈m〉 , α = π(t). By (4.3.1, i), α has MP m ∈ K[t] & M = K(α) Lastly,
use (4.3.11, i). For 2) use (4.3.1, ii), (4.3.11, ii).
Chapter 5
The Degree of an Extension
Definition
•Degree of M : K is [M : K]: dimension of M as vector space over K.
•M : K is finite if [M : K] < ∞. C : R finite ({1, i} basis); K(t) : K infinite
({1, t, t2, . . .} infinite basis).
Extensions of Degree 1 (Example 5.1.3, i)
[M : K] = 1 ⇐⇒ M = K
If M = K, {1K} basis. If [M : K] = 1, {1K} basis ∴ m = 1K · k.
Basis for Simple Extensions (Theorem 5.1.5)
Let K(α) : K simple FE.
1.Let α ∈ M algebraic with MP m ∈ K[t], n = deg(m). {1, α, . . . , αn−1} basis for
K(α) : K ∴ [K(α) : K] = deg(m).
2.Let α ∈ M transcendental over K. {1, α, . . .} LiD & [K(α) : K] = ∞.

1.α algebraic ∴ 1, α, . . . , αn−1 LiD (else deg(m) < n). By (4,3,1,i) & (4.3.16, i),
K(α) = K[t]/ 〈m〉 , α = π(t). π surjective ∴ ∀x ∈ K(α), ∃f ∈ K[t] : π(f) = x. By
(3.2.1), ∃!q, r ∈ K[t] : f = qm + r, deg(r) < n ∴ r unique polynomial st f − r ∈ 〈m〉 ∴
π(f) = π(r). Then, unique ai st π(f) = π

(∑n−1
i=0

ait
i
)

=
∑n−1
i=0

aiα
i ∴ 1, . . . , αn−1 is

spanning set.
2.(4.3.16, ii) implies K(α) ∼= K(t) over K & K(t) : K infinite.
Field Extension with Cube Root of 2
3√2 has MP t3 − 2 ∴ [Q( 3√2) : Q] = 3 ∴ {1, 21/3, 22/3} is a basis. This shows that 22/3

can’t be written as Q-linear combination of 1, 21/3.

Degree of Field Elements
Definition
Let M : K FE, α ∈ M with MP m ∈ K[t]. degK (α) = [K(α) : K] = deg(m)
Degree of Algebraic Field Elements (Corollary 5.1.10)
Let M : K FE, α ∈ M. degK (α) < ∞ ⇐⇒ α algebraic over K.
Adjoining Elements to Chained Extensions (Corollary 5.1.12)
Let M : L : K FE, β ∈ M. Then, [L(β) : L] ≤ [K(β) : K].
If β transcendental, [K(β) : K] = ∞ & follows. If β algebraic over K, let m ∈ K[t] be MP.
L : K ∴ m AP of β over L ∴ degree of MP p of β over L is at most deg(m) ∴
[L(β) : L] = deg(p) ≤ deg(m) = [K(β) : K]

Generating Field Elements from Algebraics (Corollary 5.1.14)
Let M : K FE, α1, . . . , αn ∈ M algebraic over K with degK (αi) = di. Then:
∀α ∈ K(α1, . . . , αn), ∃cr1,...,rn ∈ K : α =

∑
r1,...,rn

cr1,...,rn
∏n
i=1 α

ri
i

where:
ri ∈ [0, di − 1].
Apply induction. Base Case: K(α) : K. For inductive step, α ∈ K(α1, . . . , αn) ∴
α ∈ (K(α1, . . . , αn−1))(αn) ∴ α algebraic in simple extension and can use inductive
hypothesis.
The Tower Law
Tower Law (Theorem 5.1.17)
Let M : L : K FE.
1.If (αi)i∈I basis L over K, (βj)j∈J basis M over L, then (αiβj)(i,j)∈I×J basis of M
over K.
2.M : K finite ⇐⇒ M : L,L : K finite
3.[M : K] = [M : L][L : K]
Prove 1, then 2,3 follow. Let (cij)(i,j)∈I×J ⊆ K st

∑
i,j cijαiβj = 0 where ∀j ∈ J,∑

i cijαi ∈ L (αi basis of L over K). (βj)j∈J is LiD over L ∴ ∑
i,j cijαiβj = 0 ⇐⇒∑

i cijαi = 0. But (αi)i∈I LiD over K ∴ ∀i ∈ I, ∀j ∈ J, cij = 0 ∴∑
i,j cijαiβj = 0 ⇐⇒ cij = 0 ∴ (αiβj)(i,j)∈I×J LiD over K. Let e ∈ M. (βj)j∈J

spans M over L ∴ e =
∑
j djβj , (dj)j∈J ⊆ L. But (αi)i∈I spans L over K, so ∀j ∈ J,

dj =
∑
i cijαi, (cij)i∈I ⊆ K. Hence, e =

∑
j
∑
i cijαiβj

Corollary I (Corollary 5.1.19)
Let M : L1 : L2 : K FE. [M : K] < ∞, then [L1 : L2]|[M : K].
Corollary II (Corollary 5.1.21)
Let M : K FE, α1, . . . , αn ∈ M. Then,
K(α1, . . . , αn) : K] ≤ [K(α1) : K] . . . [K(αn) : K].
Tower Law & (5.1.12) ∴ [K(α1, . . . , αk) : K(α1, . . . , αk−1)] ≤ [K(αk) : K].
Finiteness Conditions in Extensions
Finitely Generated Field Extensions
M : K finitely generated if ∃Y ⊆ M : |Y | < ∞ ∧M = K(Y ).
Algebraic Field Extensions
M : K algebraic if ∀α ∈ M, α algebraic over K.
Finite FE are Finitely Generated & Algebraic (Proposition 5.2.4)
Let M : K FE. Then, the following are equivalent:
1.M : K finite 2.M : K finitely generated and algebraic
3.∃{α1, . . . , αn} of algebraic elements of M over K with M = K(α1, . . . , αn)
(1 ⇒ 2): M : K finite, so has basis α1, . . . , αn. If L ≤ M,K ⊆ L, L K−linear subspace
∴ α1, . . . , αn ∈ L ⇒L = M∴ M only subfield with K ∪ {α1, . . . , αn} ∴
M = K(α1, . . . , αn). Let α ∈ M. M : K finite & by Tower Law,
[M : K] = [M : K(α)][K(α) : K] ∴ [K(α) : K] finite ∴ by (5.1.10) α algebraic. (2 ⇒ 3):
immediate. (3 ⇒ 1): let αi algebraic over K with M = K(α1, . . . , αn). By (5.1.21),
[M : K] ≤ [K(α1) : K] . . . [K(αn) : K]. αi algebraic ∴ [K(αi) : K] < ∞ ∴ [M : K] < ∞.
Finite, Simple Extensions are Algebraic (Corollary 5.2.6)
Let K(α) : K be a simple extension. The following are equivalent:
1.[K(α) : K] < ∞ 2.K(α) : K algebraic 3.α algebraic over K
Set of Algebraics is Subfield (Proposition 5.2.7)
The set Q of algebraic numbers over Q is a subfield of C.
By (5.2.6), if Q(α) : Q finite, then algebraic ∴ Q = {α ∈ C|[Q(α) : Q < ∞}. Let α, β ∈ Q:
by (5.1.21), [Q(α, β) : Q] ≤ [Q(α) : Q][Q(β) : Q] < ∞ ∴ Q(α, β) finite. α − β ∈ Q(α, β) ∴
[Q(α− β) : Q] ≤ [Q(α, β) : Q] < ∞ ∴ Q(α− β) : Q finite, simple field extension ∴ by (5.2.6),
α − β algebraic. By same argument, 0, 1, αβ ∈ Q ∴ Q subring of C. Q(α) is a field ∴
[Q(1/α) : Q] = [Q(α) : Q] < ∞ ∴ 1/α algebraic. Hence, Q subring & each α unit ∴ subfield.
Ruler and Compass Constructions
Constructible Points
•let Σ subset of plane. A point is immediately constructible from Σ if its point of
intersection between 2 lines/2 circles/line & circle
•C ∈ Σ is constructible if ∃C1, . . . , Cn = C, st Ci immediately constructible from
Σ ∪ {C1, . . . , Ci−1}

Iterated Quadratics and Compositums
Iterated Quadratic Extensions
•let K ≤ R subfield. K : Q iterated quadratic if ∃ finite subfield sequence
Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn = k st ∀i ∈ [|, n], [Ki : Ki−1] = 2.

•for example, Q
(√√

2 +
√

3

)
: Q is iterated quadratic:

Q ⊆ Q(
√

2) ⊆ Q(
√

2,
√

3) = Q(
√

2 +
√

3) ⊆ Q
(√√

2 +
√

3

)
Compositum of Fields
Let L1, L2 subfields of M. The compositum L1L2 = L1(L2) = L2(L1) is subfield of
M, generated by L1 ∪ L2.
Degree of Compositum (Lemma 5.3.6)
Let M : K FE, L1, L2 subfields of M containing K. Then, if [L1 : K] = 2, then
[L1L2 : L2] ∈ {1, 2}. Generally, [L1L2 : L2] ≤ [L1 : K].
Prove general case. If [L1 : K] infinite, inequality trivial. Else, [L1 : K] finite ∴ by
(5.2.4), ∃β1, . . . , βn ∈ L1 spanning L1 over K & algebraic, so that L1 = K(β1, . . . , βn).
Firstly, assume ∃β ∈ L1 \K : L1 = K(β). L1L2 smallest subfield of M containing
L1, L2 & L1 smallest subfield of M containing K, β ∴ L1L2 smallest subfield of M
containing L2, K, β. K ⊆ L2 ∴ L1L2 smallest subfield containing L2, β ∴
L1L2 = L2(β). By (5.1.12), [L2(β) : L2] ≤ [K(β) : K] ∴ [L1L2 : L2] ≤ [L1 : K]. Now,
assume that L1 = K(β1, . . . , βn), βi algebraic. Similar argument to above shows
L1L2 = L1(β1, . . . , βn). By Tower Law,
[L1L2 : L2] =

∏n
j=1[L2(β1, . . . , βj) : L2(β1, . . . , βj−1)]. By (5.1.12),

[L1L2 : L2] ≤
∏n
j=1[K(β1, . . . , βj) : K(β1, . . . , βj−1)]]. By Tower Law,

[L1L2 : L2] ≤ [L1 : K].



Generating iterated Quadratic Subfields (Lemma 5.3.8)
Let K,L subfields of R, such that K : Q, L : Q iterated quadratic. Exists subfield M of R
st M : Q iterated quadratic & K,L ⊆ M.
∃Ki, Li st Q = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn = K ⊆ R,
Q = L0 ⊆ L1 ⊆ L2 ⊆ . . . ⊆ Lm = K ⊆ R where ∀i, j, [Ki : Ki−1] = 2 = [Lj : Lj−1]

Consider chain of subfields of R:
Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K = KL0 ⊆ KL1 ⊆ . . . ⊆ KLm = KL Claim: M = KL is
iterated quadratic extension of K (K,L ⊆ KL clearly). Lj,KLj−1 subfields of R
containing Lj−1. By (5.3.6), [Lj : Lj−1] = 2 ∴
[KLj : KLj−1] = [Lj(KLj−1) : KLj−1] ∈ {1, 2} Successive degrees in subfield chain
are 1 or 2. If degree 1, equality ∴ ignore. Thus, KL : Q iterated quadratic extension
containing K,L.
Iterated Quadratic Extensions Contain Constructible Points (Proposition 5.3.9)
Let (x, y) ∈ R2. If (x, y) constructible from Σ = {(0, 0), (1, 0)} then ∃ iterated quadratic
extension of Q containing both x, y.
Induction on steps n to construct (x, y). If n = 0, (x, y) ∈ Σ ∴ x, y ∈ Q (iterated
quadratic over itself). Suppose (x, y) constructible in ≤ k steps lie in iterated quadratic
extension of Q. Let (x, y) constructible in k + 1 steps from Σ. (x, y) intersection of
lines/circles through points constructible in ≤ k steps ∴ by inductive hypothesis,
intermediate points lie in iterated quadratic extension ∴ by (5.3.8) there is iterated
quadratic extension L of Q containing all intermediate points. If x, y satisfy line equation:
ax + by + c = 0; if satisfy circle equation: x2 + y2 + dx + ey + f = 0. If x, y intersection
of 2 lines, x satisfies linear equation ∴ x ∈ L ∴ degL(x) = 1. If x, y intersection of line &
circle, x satisfies linear or quadratic over L, so degL(x) ∈ {1, 2}. If x, y intersection of 2
circles, reduces to case of line, circle intersection, so degL(x) ∈ {1, 2}. Hence,
[L(x) : L] ∈ {1, 2} ∴ either L or L(x) iterated quadratic extension of Q containing x.
Same applies to y. Combining these with (5.3.8) yields iterated quadratic extension
containing x, y.
Constructible, Algebraic Points Have Power of 2 Degree (Theorem 5.3.10)
Let (x, y) ∈ R2. If (x, y) constructible from Σ = {(0, 0), (1, 0)} then:
1.x, y algebraic over Q 2.their degrees over Q are powers of 2
By (5.3.9), ∃ iterated quadratic extension M of Q with x ∈ M. By Tower Law:
∃n ≥ 0 : [M : Q] = 2n. Again by Tower Law: [M : Q] = [M : Q(x)][Q(x) : Q] ∴
[Q(x) : Q] | 2n ∴ degQ(x) < ∞ (so x algebraic), and power of 2.
The Problems Which Stumped the Greeks
Can’t Trisect Angles by Ruler & Compass (Proposition 5.3.11)
If possible, construct triangle with vertices at (0, 0) & (1, 0). Trisect angle at (0, 0). Let
(x, y) be intersection of trisector & circle (centre (0, 0), radius 1). Then, x = cos(π/9).
But MP x is t3 − 3

4
t − 1

6
(use DeMoivre for identity of cos(3x) & Mod-p method with

p = 5), so degQ(cos(π/9)) = 3, but if x constructible, degree power of 2 by (5.3.10).
Can’t Duplicate Cube by Ruler and Compass (Proposition 5.3.12)
If possible, if A,B distance 1 apart, can construct A′, B′ distance 3√2 apart ∴ ( 3√2, 0)

constructible. MP of 3√2 is t3 − 2 ∴ not power of 2, so can’t be constructible by (5.3.10).
Can’t Square Circle by Ruler and Compass (Proposition 5.3.13)
If true, given circle of radius 1 with centre (0, 0) (with area π), construct square with side
length

√
π ∴ (

√
π, 0) constructible. By (5.3.10),

√
π algebraic over Q ∴ π algebraic over Q

(Q subfield), but it’s transcendental.
Fermat Primes
A regular n-polygon is constructible ⇐⇒ n = 2rp1 . . . pk where r, k ≥ 0 & pi is a
Fermat Prime (pi = 2u + 1; 3,5,17,257,65537, . . . ).
Chapter 6
Homomorphism Extensions
Definition
•let ι1 : K1 → M1, ι : K2 → M2 FE, ψ : K2 → K2 field homomomorphism.
φ : M1 → M2 extends ψ if φ ◦ ι1 = ι2 ◦ ψ. If ι1, ι2 inclusions, φ extends ψ if ∀a ∈ K1,
φ(a) = ψ(a).
•if M1 : K,M2 : K & φ : M1 → M2 extends idK , φ is homomorphism over K
Homomorphism Extensions Preserve Roots (Lemma 6.1.3)
Let M1 : K1,M2 : K2 FE, ψ : K1 → K2 homomorphism, φ : M1 → M2 homomorphism
extending ψ, ψ∗ : K1[t] → K2[t] induced homomorphism. Let α ∈ M1, f ∈ K1[t]. Then,
f(α) = 0K1

⇐⇒ (ψ∗f)(φ(α)) = 0K2
f =

∑
i ait

i ∴ ψ∗f =
∑
i ψ(ai)t

i ∴ (ψ∗f)(φ(α)) =
∑
i ψ(ai)φ(α)i =

∑
i φ(ai)φ(α)i

= φ(f(α)), using that φ equal to ψ on K1. φ field homomorphism ∴ injective by (2.3.3),
so f(α) = 0 ⇐⇒ φ(f(α)) = 0.
Homomorphisms Over Fields Preserve APs (Example 6.1.4)
Let M1 : K,M2 : K FE, φ : M1 → M2 homomorphism over K. AP of α ∈ M1 same as
φ(α) ∈ M2.
Apply (6.1.3) with ψ = idK , then f(α) = 0K ⇐⇒ f(φ(α)) = 0K .
Isomorphism Extensions Over Simple Fields (Proposition 6.1.6)
Let ψ : K1 → K2 field isomorphism, K1(α1) : K1 simple extension (α1 with MP
m ∈ K1[t]), K2(α2) : K2 simple extension (α2 with MP ψ∗m ∈ K2[t]). Then, ∃!
isomorphism φ : K1(α1) → K2(α2) extending ψ & φ(α1) = α2.
View K2(α2) as FE of K1: K1 7→ K2 7→ K2(α2) ∴ MP of α2 over K1 is m. By (4.3.16),
∃! isomorphism φ : K1(α1) → K2(α2) over K1 with φ(α1) = α2.
Splitting Fields of Polynomials
Definition
•f ∈ M[t] splits in M if irreducible factors linear: f = β(t − α1) . . . (t − αn) with
n ≥ 0, β, αi ∈ M.
•splitting field of 0K 6= f ∈ K[t] is extension M : K st:

1.f splits in M 2.M = K(α1, . . . αn), αi roots of f in M
Bounding Degree of Splitting Field (Theorem 6.2.10)
Let 0K 6= f ∈ K[t]. ∃ splitting field M of f over K st [M : K] ≤ deg(f)!.
Induction on deg(f) = n. If deg(f) = 0, f ∈ K so M = K is SF (irreducible factors
linear), so [M : K] = 1 ≤ 0!. Assume deg(f) ≤ k!, then [M : K] ≤ k!. Let f ∈ K[t] with
deg(f) = k + 1. Let m ∈ K[t] irreducible factor of f. By (4.3.16), ∃K(α) : K where
m(α) = 0. In K(α)[t], t − α|f ∴ let g = f/(t − α) ∈ K(α)[t]. deg(g) = k < k + 1 ∴ by
inductive hypothesis, M : K(α) is SF of g & [M : K(α)] ≤ k!. Since α ∈ M & g splits in
M, f = (t − α)g splits over M. By Tower Law,
[M : K] = [M : K(α)][K(α) : K] ≤ k! deg(m) ≤ (k + 1)!.
Isomorphisms Between Splitting Fields (Proposition 6.2.11)
Let ψ : K1 → K2 field isomorphism, 0K1

6= f ∈ K1[t], M1 a SF of f over K1, M2 a SF of
ψ∗f over K2. Then, there are at most [M : K] isomorphisms φ : M1 → M2 extending ψ.

Uniqueness of Splitting Fields (Theorem 6.2.13)
Let 0K 6= f ∈ K[t], K field. Then:
1.there exists a SF of f over K 2.any 2 SFs of f are isomorphic over K 3.if M SF of
f over K, # automorphisms of M over K ≤ [M : K] ≤ deg(f)!
1. (6.2.10) 2. (6.2.11) with K1 = K2, ψ = idK 3. (6.2.11) & (6.2.10)
We denote the splitting field of f over K with SFK (f).
Splitting Fields from Subsets (Lemma 6.2.14)
1.Let M : S : K FE, 0K 6= f ∈ K[t], Y ⊆ M. If S = SFK (f), then S(Y ) = SFK(Y )(f).
2.Let 0K 6= f ∈ K[t], L subfield SFK (f) with K ⊆ K (so SFK (f) : L : K). Then,
SFK (f) = SFL(f).
1.f splits in S ∴ splits in S(Y ). If X roots of f, S = K(X) ∴
S(Y ) = K(X)(Y ) = K(X ∪ Y ) = K(Y )(X) = SFK(Y )(f).
2.By 1., S(L) = S is SF of f over K(L) = L, so SFK (f) = SFL(f).

The Galois Group
Galois Group of Field Extension
•let M : K FE. The Galois Group of M : K, Gal(M : K), is the group of
automorphisms of M over K (composition as group operation).
•if θ ∈ Gal(M : K), then θ : M → M automorphism & ∀a ∈ K, θ(a) = a.
Galois Group of Polynomial
•let 0K 6= f ∈ K[t]. The Galois Group of f over K is GalK (f) = Gal(SFK (f) : K).
•by (6.2.13), |GalK (f)| ≤ [SFK (f) : K] ≤ deg(f)! so GalK (f) always finite.

Action of the Galois Group
Galois Group Restricts to Action on Roots (Lemma 6.3.7)
Let 0K 6= f ∈ K[t], K field. The action of GalK (f) on SFK (f) restricts to action on the
set of roots of f in SFK (f) (if X ⊆ SFK (f) set of roots,
∀g ∈ GalK (f), ∀x ∈ X, gx = g(x) ∈ X).
Let θ ∈ GalK (f). By (6.1.4), if α ∈ SFK (f) root, θ(α) ∈ SFK (f) also root.
Galois Group Acts Faithfully (Lemma 6.3.8)
Let 0K 6= f ∈ K[t], K field. Action of GalKf) on roots of f is faithful.
Let X ⊆ SFK (f) be roots of f, θ ∈ GalK (f). Then, SFK (f) = K(X). If
∀x ∈ X, θ(x) = x, by (4.3.6), θ = idK , so θ faithful.
In other words, elements in GalK (f) completely determined by how they permute roots of
f. If roots α1, . . . , αk, for each θ ∈ GalK (f), there is σθ ∈ Sk defined by
θ(αi) = ασθ(i)

. θ 7→ σθ is isomorphism & GalK (f) ∼= {σθ|θ ∈ GalK (f)} ≤ Sk.

Galois Group Isomorphic to Subgroup of Sk
Conjugacy Over Field Extensions
Let M : K FE. Consider k-tuples of elements of M: k ≥ 0, (α1, . . . , αk), (α′

1, . . . , α
′
k)

These tuples are conjugate over K if ∀p ∈ K[t1, . . . , tk] p(α1, . . . , αk) = 0 ⇐⇒
p(α′

1, . . . , α
′
k).

Equivalence of Galois Group Definitions (Proposition 6.3.10)
Let 0K 6= f ∈ K[t], K field., with k distinct roots α1, . . . , αk ∈ SFK (f) Then:
{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K} ≤ Sk is
isomorphic to GalK (f).
Galois Subgroups from Extensions (Corollary 6.3.12)
Let L : K FE and 0 6= f ∈ K[t]. GalL(f) isomorphic to subgroup of GalK (f).
K ⊆ L ∴ if tuples conjugate over L, conjugate over K ∴ GalL(f) ⊆ GalK (f). Gal
isomorphic to subgroup of Sk ∴ GalL(f) ≤ GalK (f).
Order of Galois Group Divides k! (Corollary 6.3.14)
Let 0K 6= f ∈ K[t] have k distinct roots in SFK (f). GalK (f) isomorphic to subgroup of
Sk, so by Lagrange’s Theorem, |GalK (f)||k!.
Chapter 7
Normal Field Extension
Definition
•algebraic FE M : K is normal if ∀α ∈ M, MP of α splits in M.
•all SFs are normal; Q( 3√2) : Q prototypical example of non-normality: t3 − 2 doesn’t
split, since i 6∈ Q( 3√2).
Normality from Irreducible Polynomials (Lemma 7.1.2)
Let M : K algebraic FE. M : K normal ⇐⇒ every irreducible f ∈ K[t] either has no
roots in M or splits in M.
( =⇒ ): let f ∈ K[t] irreducible with root α ∈ M. f is irreducible ∴ MP of α is f/c
(c ∈ K lead coefficient of f). M : K normal ∴ f/c splits in M ∴ f splits too. ( ⇐= ): let
α ∈ M. M : K is algebraic ∴ α has MP f ∈ K[t]. f irreducible & has at least one root in
M (α) ∴ f splits in M ∴ M : K normal.
Extensions of Degree 2 (Workshop 4, Q4)
Every extension of degree 2 is normal.
If [M : K] = 2, M : K finite ∴ algebraic. Let α ∈ M. By Tower Law, either M = K(α) or
K(α) = K. If K(α) = K, α ∈ K ∴ t − α is MP, which splits in M. If K(α) = M, α has
quadratic MP m ∈ K[t]. Since m(α) = 0, m = (t − α)g, with g ∈ M[t] & deg(g) = 1 ∴ m
splits in M.
Normality and Splitting Fields (Theorem 7.1.5)
Let M : K FE. Then, if 0K 6= f ∈ K[t], M = SFK (f) ⇐⇒ M : K finite & normal.
( ⇐= ): M : K finite ∴ by (5.2.4) ∃ basis of algebraics α1, . . . , αn of M over K with
M = K(α1, . . . , αn). Let mi ∈ K[t] MP of αi. M : K normal ∴ mi splits over M ∴
f = m1m2 . . .mn ∈ K[t] also splits in M. Then, set of roots of f in M contains
{α1, . . . , αn}; since M = K(α1, . . . , αn), M generated by roots of f over K ∴
M = SFK (f). ( =⇒ ): let f ∈ K[t] : M = SFK (f). Firstly, M is finite. f splits over
M = SFK (f); let α1, . . . , αn be roots of f in M. Then, M = K(α1, . . . , αn) & αi
algebraic ∴ by 5.2.4, M : K is finite. Let δ ∈ M have MP m ∈ K[t]. m splits in SFM (m).
Claim: if ε ∈ SFM (m) root of m, then ε ∈ M (which implies that any f ∈ K[t] splits in
M). m is MP of δ over K ∴ monic, irreducible over K. It annihilates ε ∴ MP of ε. By
(4.3.16), ∃! isomorphism over K θ : K(δ) → K(ε) with θ(δ) = ε. By (6.2.14, ii),
M = SFK (f) : K(δ) : K ∴ M = SFK (f) = SFK(δ)(f). Moreover,
SFK (f) = K(α1, . . . , αn) ∴ by (6.2.14, ii) with Y = {ε} ⊆ M,
K(α1, . . . , αn, ε) = SFK(ε)(f). Lastly, θ homomorphism over K, and f ∈ K[t] ∴
θ∗f = f. Since θ isomorphism from K(δ) to K(ε), 0K 6= f ∈ K[t] ∴ 0K 6= f ∈ K(δ)[t],
M1 = M = SFK(δ)(f), M2 = K(α1, . . . , αn, ε) = SFK(ε)(f) ∴ by (6.2.11), ∃
isomorphism φ : M → K(α1, . . . , αn, ε) extending θ. Since θ isomorphism over K & φ
extends θ, φ also isomorphism over K. Then, δ ∈ M = K(α1, . . . , αn). Since φ
isomorphism over K, φ(δ) ∈ K(φ(α1), . . . , φ(αn)) . φ extends θ ∴
φ(δ) = θ(δ) = ε ⇒ ε ∈ K(φ(α1), . . . , φ(αn)). By (6.1.4), αi has AP f ∴ φ(αi) also has
AP f ∴ f(φ(αi)) = 0 ⇒ φ(αi) ∈ {α1, . . . , αn} ∴ ε ∈ K(α1, . . . , αn) = M ∴ any root ε
of f is also in M, so M : K normal.

Normality of Intermediate Fields (Corollary 7.1.6)
Let M : L : K FE. If M : K finite & normal, M : L finite & normal.
M : K finite & normal ∴ by (7.1.5), M = SFK (f). By (6.2.14, ii), SFK (f) : L : K ∴
SFK (f) = SFL(f) ∴ M : L finite & normal.
L : K needn’t be normal: if ω = e2πi/3, consider Q( 3√2, ω) : Q( 3√2) : Q:
Q( 3√2, ω) : Q = SFQ(t3 − 2) ∴ normal, but Q( 3√2) : Q not normal.
Galois Action on Normal Extensions
Galois Maps Between Conjugates (Proposition 7.1.9)
Let M : K finite, normal FE & α1, α2 ∈ M. Then α1, α2 conjugate over K ⇐⇒
∃φ ∈ Gal(M : K) : α2 = φ(α1).
( ⇐= ): assume∃φ ∈ Gal(M : K) : α2 = φ(α1). φ automorphism over K ∴ by Example
6.1.4 α1 and φ(α1) = α2 have same AP ∴ α1, α2 conjugate over K. ( =⇒ ): assume
α1, α2 conjugate over K. M : K finite & normal ∴ algebraic ∴ α1, α2 algebraic over K ∴
have same MP m ∈ K[t] ∴ by (4.3.16) ∃! isomorphism θ : K(α1) → K(α2) over K with
θ(α1) = α2. M : K finite & normal ∴ by (7.1.5), it is SF of some 0K 6= f ∈ K[t]. By
(6.2.14, ii), M = SFK (f) also SF of K(α1), K(α2). Moreover, θ homomorphism over K ∴
θ∗f = f ∴ by (6.2.11, i) ∃ automorphim φ of M extending θ & θ isomorphism over K ∴
so is φ. ∴ φ automorphism of M over K ∴ φ ∈ Gal(M : K) with φ(α1) = θ(α1) = α2.
Galois Acts Transitively on Roots (Corollary 7.1.11)
Let f ∈ K[t] irreducible. Action of GalK (f) on roots of f is transitive (i.e generates a
single orbit ∴ ∀x1, x2 ∈ X, ∃θ ∈ GalK (f) : θ(x1) = x2).
f irreducible ∴ roots of f in SFK (f) have same MP ∴ all conjugate over K. By (7.1.5),
SFK (f) finite & normal ∴ by (7.1.9) GalK (f) maps between conjugates.
Using Transitivity of Galois Group
•if f pth cyclotomic polynomial, its roots are non-trivial roots of unity ω, ω2, . . . , ωp−1.
By (7.1.11), ∃φ ∈ GalQ(f) : φ(ω) = ωi. In fact, this element is unique φ = φi, and
GalQ(f) = {φ1, . . . , φp−1} ∼= Cp−1.

•let G = GalQ(t3 − 2). G acts transitively on the 3 roots ∴ |G| ≥ 3. G isomorphic to
subgroup of S3 ∴ G ∼= C3 = A3 or G ∼= S3. Since 2 roots are complex conjugates, G
contains element of order 2 ∴ G ∼= S3.

•doesn’t work if f not irreducible: for example, in f = (t2 − 2)(t2 − 3), by conjugacy,
√

2
never gets mapped to

√
3, so GalQ(f) isn’t transitive.

Normal Extensions & Normal Subgroups (Theorem 7.1.15)
Let M : L : K FE with M : K finite & normal. Then:
1.Let φL = {φ(α) | α ∈ L}. Then, L : K is normal extension ⇐⇒
∀φ ∈ Gal(M : K), φL = L

2.If L : K normal, Gal(M : L) ◁ Gal(M : K) & Gal(M:K)
Gal(M:L)

∼= Gal(L : K)

1.( =⇒ ): Let φ ∈ Gal(M : K) & L : K normal. M : K finite ∴ L : K finite & normal.
∀α ∈ L, α, φ(α) conjugate over K by (7.1.9) ∴ same MP. By normality, MP splits in L ∴
φ(α) ∈ L ∴ φL ⊆ L. Same argument with φ−1 show φ−1L ⊆ L ∴ L ⊆ ∴ = L. ( ⇐= ): if
= L, let α ∈ L have MP m ∈ K[t]. M : K normal ∴ m splits in M. α conjugate to every
other root α′ of m over K. By (7.1.9), ∃φ ∈ Gal(M : K) : φ(α) = α′ ∴ α′ ∈ φL = L ∴
m splits in L ∴ L : K must be normal
2.Let φ ∈ Gal(M : K), θ ∈ Gal(M : L). If Gal(M : L) ◁ Gal(M : K) then
φ−1θφ ∈ Gal(M : L). θ automorphism over L ∴ equivalent to
∀α ∈ L, φ−1θφ(α) = α =⇒ θφ(α) = φ(α). By 1), L : K normal ∴ φL = L ∴
φ(α) ∈ L. Since θ ∈ Gal(M : L), θφ(α) = φ(α). For second part, we find
ν : Gal(M : K) → Gal(L : K) with ker(ν) = Gal(M : L). L : K normal ∴ any
φ ∈ Gal(M : K) satisfies φL = L ∴ φ permutes L ∴ restricts to automorphism φ̂ of L. φ
automorphism of M over K ∴ φ̂ is automorphism of L over K ∴ φ̂ ∈ Gal(L : K). Thus,
define ν(φ) = φ̂. ν group homomorphism (preserves function composition). ker(ν) =
{automorphisms fixing L} = Gal(M : L). Let ψ automorphism of L over K. ν surjective
if ∃φ automorphism of M over K st ν(φ) = ψ. Equivalently, show that we can always
extend ψ to φ. Since M : K normal, it is SF of some f ∈ K[t]. By (6.2.14), M also SF of
f over L. Also, ψ∗f = f, (ψ homomorphism over K, & f ∈ K[t]). By (6.2.11), ∃
automorphism φ of M which extends ψ ∴ ν surjective ∴ by First Isomorphism Theorem
Gal(M:K)
Gal(M:L)

∼= Gal(L : K).

Separable Polynomials
Definition
Let f ∈ K[t] irreducible, K field. f separable if it has no repeated roots in SF.
Equivalently: splits into distinct linear factors, or has deg(f) distinct roots.
Simplest Example of Non-Separable Polynomials (Example 7.2.4)
•let K = Fp(u). Then, f(t) = tp − u ∈ K[t] is inseparable.
•char(K) = p so by (2.3.22, i) u has at most 1 pth root. f has at least one root α in SF ∴
α is unique root, but deg(f) = p > 1. Alternatively, by Frobenius Map on SFK (f)
(2.3.20, i), f = tp − u = tp − αp = (t − α)p.
•to see f irreducible, assume f has non-trivial factorisation f = (t − α)/t − α)p−i.
Coefficient of ti−1 in (t − α)i is −iα ∴ −iα ∈ K ∴ α ∈ K. But by (3.1.13), u can’t have
pth root in K = Fp(u).

The Formal Derivative
Definition
•let K field and f(t) =

∑n
i=0 ait

i ∈ K[t]. The formal derivative of f is

(Df)(t) =
∑n
i=1 iait

i−1 ∈ K[t].
•satisfies expected rules: if f, g ∈ K[t], a ∈ K, then D(f + g) = Df +Dg,
D(fg) = f ·Dg +Df · g, Da = 0K .
Repeated Roots from Formal Derivative (Lemma 7.2.9)
Let 0K 6= f ∈ K[t], K field. The following are equivalent:
1.f has repeated root in SFK (f). 2.f,DF have common root in SFK (f).
3.f,Df have non-constant common factor in K[t].

(1 ⇒ 2): α ∈ SFK (f) repeated root ∴ ∃g(t) ∈ SFK (f)[t], : f(t) = (t − α)2g(t) ∴
Df = (t−α)(2g+ (t−α) ·Dg) ∴ α ∈ SFK (f) common root between f and Df. (2 ⇒ 3):
α ∈ SFK (f) common root of f,Df. α algebraic over K (f 6= 0K ) ∴ let g ∈ K[t] MP. g
non-constant common factor between f,Df. (3 ⇒ 2): let g ∈ K[t] non-constant common
factor of f,Df. g splits in SFK (f), ∴ root of g in SFK (f) common root of f,Df. (2 ⇒
1): let α ∈ SFK (f) common root f,Df. ∃g ∈ SFK (f)[t], with f(t) = (t − α)g(t) ∴
Df = g + (t − α) ·Dg. α common root ∴ (Df)(α) = 0 ⇒ g(α) = 0 ∴ ∃h ∈ SFK (f)[t] :
g(t) = (t − α)h(t) ∴ f(t) = (t − α)2h(t) ∴ f has a repeated root in SFK (f).



Separability from Formal Derivative (Proposition 7.2.10)
Let f ∈ K[t] irreducible, K field. f inseparable ⇐⇒ Df = 0K .
By (7.2.9), f inseparable ⇐⇒ f has repeated root ⇐⇒ f,Df have non-constant
common factor. f irreducible ∴ f|Df. Since deg(Df) < deg(f), f|Df ⇐⇒ Df = 0.
Separability from Field Characteristic (Corollary 7.2.11)
Let K field. Then:
1.If char(K) = 0, every irreducible f ∈ K[t] is separable..
2.If char(K) = p > 0, any irreducible f ∈ K[t] is inseparable ⇐⇒ f(t) =

∑r
i=0 bit

ip,
where b0, . . . , br ∈ K.
Let f =

∑
ait

i ∈ K[t] irreducible. f inseparable ⇐⇒ Df = 0 (by 7.2.10) ⇐⇒
∀i ≥ 1, iai = 0. When char(K) = 0, only follows if ∀i ≥ 1, ai = 0 ∴ f constant ∴ f not
irreducible. ∴ if char(K) & f irreducible, f can’t be inseparable. If char(K) = p, iai = 0
whenever i divides p & for remaining cases, ai = 0 ∴ polynomials in tp. are inseparable
when char(K) = p.
In fact, irreducible polynomials over finite fields are separable; inseparability can only
arise in infinite fields of prime characteristic.
Separable Extensions
Definition
•let M : K algebraic. α ∈ M separable over K if its MP over K is separable.
•let M : K algebraic. M : K separable if every α ∈ M separable over K.
•any M : K with char(K) = 0 is separable (7.2.11); any algebraic extension of finite fields
is separable (by remark at end of (7.2.11).
•the SF of tp − u over Fp(u) inseparable, as the MP of α (root of u) is inseparable (since
tp − u isn’t separable).
Algebraicity of Intermediate Field (Exercise 7.2.15)
Let M : L : K FE. If M : K algebraic, M : L, L : K algebraic.
If M : K algebraic, α ∈ M has MP f ∈ K[t]. L ⊆ M ∴ L : K algebraic. K ⊆ L ∴ if α has
AP f ∈ K[t], then f ∈ L[t] also annihilating, ∴ M : L algebraic.
Separability of Intermediate Field (Lemma 7.2.16)
Let M : L : K FE, M : K algebraic. If M : K separable, M : L, L : K separable.
By (7.2.15), M : L, L : K algebraic. Every α ∈ M separable over K & L ⊂ M ∴ L : K
separable. Let α ∈ M have MP mL,mK for L,K. mK annihilates α over L ∴ mL|mK
in L[t]. M : K separableV ∴ mK splits into distinct linear factors in SFK (mK ) ∴ so
does mL ∴ mL separable in L[t] ∴ α separable over L ∴ L : K separable.
Isomorphisms Over Separable Extensions
Isomorphisms Between Separable Splitting Fields (Proposition 7.2.17)
Let ψ : K1 → K2 field isomorphism, 0K1

6= f ∈ K1[t], M1 = SFK1
(f),

M2 = SFK2
(ψ∗f). If M2 : K2 separable, there are exactly [M : K] isomorphisms

φ : M1 → M2 extending ψ.
Follows from (6.2.11), but in the proof separability means that there are precisely
deg(ψ∗m) roots.
Order of Galois Group in Finite, Normal, Separable Extensions (Theorem 7.2.18)
For every finite, normal, separable FE M : K, |Gal(M : K)| = [M : K].
M : K finite & normal ∴ by (7.1.5), M = SFK (f). Use (7.2.17) with M2 = M1 = M,
K2 = K1 = K, ψ = idK1

.

•if char(K) = 0, then |GalK (f)| = [SFK (f) : K]

•separability is required: if K = Fp(u) & M = SFK (tp − u), M = K(α) ∴ [M : K] = p;
but |Gal(M : K)| = 1, since i Gal(M : K) isomorphic to subgroup of S1.

The Fixed Field (Lemma 7.3.1)
Let Aut(M) group of automorphisms of field M. If S ⊆ Aut(M), Fix(S) is subfield of M
(known as the fixed field of S).
Fix(S) is (S ∪ {idM}) & by (2.3.8), equaliser is subfield.
Bounding Extensions Over Fixed Fields (Theorem 7.3.3)
Let M field, H ≤ Aut(M), |H| < ∞. Then, [M : Fix(H)] ≤ |H|.
Let |H| = n. If any n + 1 elements of M are LD over Fix(H), a LiD set has at most n
elements ∴ [M : Fix(H)] ≤ |H|. Define
W =

{
(x0, . . . , xn) ∈ Mn+1

∣∣∣ ∀θ ∈ H,
∑n
i=0 xiθ(αi) = 0M

}
where α0, . . . , αn are

n + 1 arbitrary elements of M. W contains n + 1-tuples in Mn+1. |H| = n ∴ W is
solutions to system of n homogeneous equations in n + 1 variables ∴ non-trivial M-linear
subspace of Mn+1. Claim: if (x0, . . . , xn) ∈ W and φ ∈ H, then
(φ(x0), . . . , φ(xn)) ∈ W . Since (x0, . . . , xn) ∈ W & φ−1 ◦ θ ∈ H, by definition of W ,∑n
i=0 xi(φ

−1 ◦ θ)(αi) = 0 Applying φ to both sides, for all θ ∈ H
∑n
i=0 φ(xi)θ(αi) = 0

∴ (φ(x0), . . . , φ(xn)) ∈ W .

Now, let x = (x0, . . . , xn) be non-zero vector. Define its length as the unique ℓ ∈ [0, n]
such that xℓ 6= 0& ∀j ∈ (ℓ, n], xj = 0. W non-trivial subspace ∴ there always exists an
element of minimum length ℓ. W closed under scalar multiplication by elements of M ∴
WLOG assume xℓ = 1. Element of minimum length is of form
x = (x0, . . . , xℓ−1, 1, 0, . . . , 0). x has minimal length ∴ only element of W of the form
(y0, . . . , yℓ−1, 0, 0, . . . , 0) is 0. Claim: ∀i ∈ [0, n], xi ∈ Fix(H). Let φ ∈ H ∴
(x0, . . . , xn) ∈ W ⇒ (φ(x0), . . . , φ(xn)) ∈ W . Define
y = (φ(x0) − x0, . . . , φ(xn) − xn). By closure of subspaces y ∈ W . φ field
homomorphism ∴ ∀i ∈ (ℓ, n], xi = 0 =⇒ φ(xi) = 0 & φ preserves the multiplicative
identity ∴ φ(xℓ) = 1 =⇒ φ(xℓ) − xℓ = 0. Hence,
y = (φ(x0) − x0, . . . , φ(xℓ−1) − xℓ−1, 0, . . . , 0) ∴ y = 0 ∴
∀i ∈ [0, n], φ(xi) = xi =⇒ xi ∈ Fix(H). Overall, ∃ non-zero x ∈ Fix(H)n+1. Taking
θ = id in definition of W , and using x, we have found coefficients in Fix(H), not all of
which are 0, such that

∑n
i=0 xiθ(αi) =

∑n
i=0 xiαi = 0. Hence, set of n + 1 elements in M

{α0, . . . , αn} is LD over Fix(H) ∴ [M : Fix(H)] ≤ n = |H|.
Fixed Fields as Normal Extensions (Proposition 7.3.7)
Let M : K finite, normal FE & H ◁ Gal(M : K). Then, Fix(H) normal extension of K.
Every θ ∈ H automorphism over K ∴ subfield Fix(H) ≤ M contains K. For any
φ ∈ Gal(M : K), by (2.1.15) φFix(H) = Fix(φHφ−1). Since H ◁ Gal(M : K),
Fix(φHφ−1) = Fix(H) ∴ φFix(H) = Fix(H) ∴ by (7.1.15, i), Fix(H) : K normal.
Chapter 8
The Galois Correspondence
Intermediate Fields and Galois Subgroups
•let M : K be FE (view K as subfield). An intermediate field of M : K is a subfield of
M containing K. We write F = {intermediate fields of M : K}.
•let M : K be FE (view K as subfield). We writeG = {subgroups of Gal(M : K)}

•we can move from subgroups to fixed fields with Fix : G → F where H 7→ Fix(H)
(H ⊆ Gal(M : K) ∴ every element of H fixes K ∴ K ⊆ Fix(H) ∴ Fix(H) intermediate
field).
•we can move from fixed fields to subgroups with Gal(M : −) : F → G where
L 7→ Gal(M : L) (K ⊆ L ∴ if φ ∈ Gal(M : L), φ fixes K ∴ Gal(M : L) ≤ Gal(M : K)).
The Galois Correspondence
•the functions Fix,Gal are called the Galois Correspondence for M : K if they are
mutually inverse, so that L = Fix(Gal(M : L)) & H = Gal(M : Fix(H))

•correspondence sometimes fails: let M : K be Q( 3√2) : Q. [M : K] = 3 ∴by Tower Law,
no non-trivial intermediate fields, so F = {M,K}. G = Gal(M : K) trivial, so G = {G}
∴ no 1-1 correspondence can exist. Indeed, Fix(Gal(Q( 3√2) : Q)) =

Fix({id
Q( 3√2)

}) = Q( 3√2) 6= Q.

Properties of Fix and Gal (Lemma 8.1.2)
Let M : K FE. Then:
1.For L1, L2 ∈ F, L1 ⊆ L2 ⇒ Gal(M : L2) ⊆ Gal(M : L1). Similarly, for H1, H2 ∈ G ,
H1 ⊆ H2 ⇒ Fix(H2) ⊆ Fix(H1)

2.For L ∈ F, H ∈ G , L ⊆ Fix(H) ⇐⇒ H ⊆ Gal(M : L)

3.∀L ∈ F, L ⊆ Fix(Gal(M : L)). Similarly, ∀H ∈ G , H ⊆ Gal(M : Fix(H)).
1.Let L1, L2 ∈ F, L1 ⊆ L2. If φ ∈ Gal(M : L2), φ fixes L2 ∴ φ fixes L1 ∴
Gal(M : L2) ⊆ Gal(M : L1). Similarly, let H1, H2 ∈ G , H1 ⊆ H2. If α ∈ Fix(H2), for
any θ ∈ H2, θ(α) =. H1 ⊆ H2 ∴ if θ ∈ H2, θ(α) = α ∴ α ∈ Fix(H1) ∴
Fix(H2) ⊆ Fix(H1).
2.Both equivalent to ∀θ ∈ H, ∀α ∈ L, θ(α) = α).
3.Follows from 2) with H = Gal(M : L).

The Fundamental Theorem of Galois Theory (Theorem 8.2.1)
Let M : K be a finite, normal, separable extension. Write
F = {intermediate fields of M : K}, G = {subgroups of Gal(M : K)}
1.The functions:Gal(M : −) : F → G , Fix : G → F are mutually inverse.
2.∀L ∈ F, |Gal(M : L)| = [M : L] & ∀H ∈ G , [M : Fix(H)] = |H|
3.Let L ∈ F. Then, L : K normal ⇐⇒ Gal(M : L) ◁ Gal(M : K). Moreover, in that case
Gal(M:K)
Gal(M:L)

∼= Gal(L : K).
Firstly, for L ∈ F, M : L is finite and normal (by (7.1.6)) and separable (by (7.2.16)).
Gal(M : K) finite group (by (7.2.18)), so any H ∈ G also finite. Prove 1 & 2 together. If
H ∈ G , then |H| ≤ |Gal(M : Fix(H))| = [M : Fix(H)] ≤ |H|. Where
|H| ≤ |Gal(M : Fix(H))| (since H ⊆ Gal(M : Fix(H)) by (8.1.2, iii)),
|Gal(M : Fix(H))| = [M : Fix(H)] (by using (7.2.18), as M : Fix(H) if finite, normal &
separable) & [M : Fix(H)] ≤ |H| (by (7.3.3, since H finite). Thus, H = Gal(M : Fix(H))
& [M : Fix(H)] = |H|. Now, let L ∈ F. Taking H = Gal(M : L), the equality
|H| = [M : Fix(H)] above becomes [M : Fix(Gal(M : L))] = |Gal(M : L)|. By (7.2.18),
|Gal(M : L)| = [M : L]. Overall, [M : Fix(Gal(M : L))] = |Gal(M : L)| = [M : L]. By
(8.1.2, iii), L ⊆ Fix(Gal(M : L)) & by the Tower Law,
[M : Fix(Gal(M : L))] = [M : L] = [M : Fix(Gal(M : L))][Fix(Gal(M : L)) : L] ⇐⇒
[Fix(Gal(M : L)) : L] = 1 ⇐⇒ L = Fix(Gal(M : L)). We have proved most of 3) in
(7.1.5, ii): remains to show that if L intermediate field with Gal(M : L) ◁ Gal(M : K),
then L : K normal. Assume that H = Gal(M : L) ◁ Gal(M : K). By (7.3.7),
Fix(Gal(M : L)) : K is a normal extension. But by 1), Fix(Gal(M : L)) = L ∴ L : K
normal.
Using the Fundamental Theorem
Useful Remarks
1.The Galois Group permutes roots of polynomials: its action is completely determined by its effect on
the roots, and it is faithful (by (6.3.7) & (6.3.8)).
2.The Galois Group is isomorphic to a subgroup of Sk , so its order divides k! (by (6.3.10) &
(6.3.14)).
3.The Galois Group maps conjugates to conjugates (by (7.1.9)). Recall, 2 elements are conjugate
if they have the same MP (by (6.1.4)).
4.If f irreducible, the action of the Galois Group on the roots of f is transitive (by (7.1.11)).
Finding Fixed Fields for Subgroups
Let H be a subgroup of Gal(M : K). Then:
1.Find elements α1, . . . , αr fixed by H. Then K(α1, . . . , αr) ⊆ Fix(H).
2.Ensure that [M : K(α1, . . . , αr)] = |H|.
3.Then, using the Fundamental Theorem [M : Fix(H)] = |H| so by the Tower Law,
[M : Fix(H)] = [M : K(α1, . . . , αr)] = [M : Fix(H)][Fix(H) : K(α1, . . . , αr)] ⇐⇒
K(α1, . . . , αr) = Fix(H).
Corollary to the Fundamental Theorem (Corollary 8.2.7)
Let M : K be a finite, normal, separable FE. Then: ∀α ∈ M \K, ∃φ : φ(α) 6= α where
φ is automorphism of M over K.
By (8.2.1, i), Fix(Gal(M : K)) = K. If α ∈ M \K, α 6∈ K ∴ α 6∈ Fix(Gal(M : K)) ∴ no
elements of Galois Group fix α.
Worked Examples of the Fundamental Theorem
Galois Group for Extensions of Prime Degree
If [M : K] = p, then Gal(M : K) = p ∴ only trivial intermediate fields/subgroups.
Galois Group for Reducible Polynomial
Let f = (t2 + 1)(t2 − 2) ∈ Q[t], M = SFQ(f) = Q(

√
2, i) & G = Gal(M : K) = GalQ(f).

M is SF ∴ finite and normal. Over Q ∴ separable. By FTGT,
|G| = [M : K] = [Q(

√
2, i) : Q(

√
2)][Q(

√
2) : Q]. MP of

√
2 over Q is t2 − 2 ∴

[Q(
√

2) : Q] = 2. Similarly, Q(
√

2) ⊆ R ∴ i has MP t2 + 1 over Q(
√

2) ∴
[Q(

√
2, i) : Q(

√
2)] = 2. Hence, |G| = 4. Roots of f are ±

√
2,±i, so the action of G on

SFQ(f) restricts to an action on these roots. Moreover, ±
√

2 are conjugate, whereas ±i
are conjugate. Thus, for any φ ∈ G, we must have that: φ(i) = ±i & φ(

√
2) = ±

√
2. The

choice of sign for where i,
√

2 get sent to determine φ entirely, and since |G| = 4, ∴ all 4
possibilities occur. Let G = {ι, φ+−, φ−+, φ−−}. Each element of G has order 2 ∴
G ∼= C2 × C2. By construction, φ+−(

√
2) =

√
2 ∴ Q(

√
2) ⊆ Fix(

〈
φ+−

〉
). Moreover,

[Q(
√

2, i) : Q(
√

2)] = 2. By the FTGT, [Q(
√

2, i) : Fix(
〈
φ+−

〉
] = |

〈
φ+−

〉
| = 2. By Tower

Law, Q(
√

2) = Fix(
〈
φ+−

〉
). Similarly, φ−+(i) = i =⇒ Fix(

〈
φ−+

〉
) = Q(i) &

φ−−(
√

2i) =
√

2i =⇒ Fix(
〈
φ−−

〉
) = Q(

√
2i). The Galois Correspondence then tells

us that, for example, Gal(Q(
√

2, i) : Q(i)) =
〈
φ−+

〉
. Every subgroup of an abelian group

is normal, so in particular all the intermediate fields lead to normal extensions.

Galois Group for t3 − 2

Let f = t3 − 2 ∈ Q[t]. Let α be real root of f & let ω = e2πi/2 be non-real root of
t3 − 1 ∈ Q[t]. Roots of f are {α, αω, αω = αω2}. Let M = SFQ(f) = Q(α, ω). Since f
irreducible & annihilating, it is MP of roots ∴ they are conjugate & G acts transitively on
them ∴ |G| ≥ 3. Since G ≤ S3, either G ∼= A3 or G ∼= S3. Conjugation (restricted to M)
must be element of G, which has order 2 ∴ by Lagrange’s Theorem, G ∼= S3. The elements
of G are ι, ρ, ρ−1 = ρ2 (3-cycles, ρ : α 7→ αω 7→ αω2 7→ α) & 3 transpositions σi (σi
fixes αωi). Non-trivial proper subgroups are 〈ρ〉 ∼=A 3 (only non-trivial normal
subgroupo) &

〈
σi

〉 ∼= C2. σi fixes αωi ∴ Q(αωi) ⊆ Fix
〈
σi

〉
. [Q(αωi) : Q] = 3 (MP is

t3 − 2), so 6 = [M : Q] = [M : Fix
〈
σi

〉
][Fix

〈
σi

〉
: Q] & |

〈
σi

〉
| = 2 ∴ by FTGT,

[M : Fix
〈
σi

〉
] = 2 ∴ [Fix

〈
σi

〉
: Q] = 3 ∴ Fix(αωi) = Q(αωi). ρ is homomorphism ∴

αω2 = ρ(αω) = ρ(α)ρ(ω) = αωρ(ω) ∴ ρ(ω) = ω. Thus, Q(ω) ⊆ Fix 〈ρ〉. By FTGT,
[M : Fix 〈ρ〉] = | 〈ρ〉 | = 3 ∴ [Fix 〈ρ〉 : Q] = 2 ∴ Fix 〈ρ〉 = Q(ω).
Galois Group for t4 − 2

Let f = t4 − 2 ∈ Q. Let α be unique real positive root. Roots are ±α,±αi. Let
M = SFQ(f) = Q(α, i), G = Gal(M : Q). By Tower Law,
|G| = [M : Q] = [M : Q(α)][Q(α) : Q] = 2 · 4 = 8. Claim: G ∼= D4. κ (complex conjugation
restricted to M) in G. Using transitivity (f irreducible), ∃ρ ∈ G : ρ(α) = & ρ(i) (argue
by transitivity of elements in G, alongside the fact that i conjugate to −i). To show that
G =< ρ, κ, construct table & apply (4.3.6), which shows that since elements are distinct
on α, i, they are distinct on all of M. To confirm G ∼= D4, prove that κρ(i) = ρ−1κ(i) &
κρ(α) = ρ−1κ(α). The subgroups of order 2 are

〈
ρ2

〉
, 〈κ〉 , 〈κρ〉 ,

〈
κρ2

〉
,
〈
κρ3

〉
.

〈
ρ2

〉
commutes with all elements of G ∴ normal. The others aren’t normal, since
ρ(κρr)ρ−1 6∈

〈
κρr

〉
. 〈ρ〉 subgroup of order 4. 2 other groups of order 4, which are

isomorphic to C2 × C2 and must contain ρ2, which are
〈
κ, ρ2

〉
&

〈
κρ, ρ2

〉
. All subgroups

of order 4 are normal, since they have index 2. For intermediate fields, ρ2 fixes i (but not
enough); it also fixes α2, and Fix

〈
ρ2

〉
= Q(α2, i). κ fixes any real, and Fixκ = Q(α). κρ

is diagonal reflection, which fixes α(1 − i). Since α(1 − i))2 6∈ Q & the order of its MP
divides 8 (Tower Law), [Q(α(1 − i)) : Q] ≥ 4 ⇐⇒ [M : Q(α(1 − i))] ≤ 8/4 = 2. But
[M : Q(α(1 − i))] > 1 since α 6∈ Q(α(1 − i)) ∴ [M : Q(α(1 − i))] = 2 ∴
Fix 〈κρ〉 = Q(α(1 − i)). Similarly, Fix(κρ2) = Q(αi) & Fix(κρ3) = Q(α(1 + i)). Lastly, ρ
fixes i ∴ Fix 〈ρ〉 = Q(i); α2 is fixed by κ & ρ2, so Fix

〈
κ, ρ2

〉
= Q(α2); α2i is fixed by κρ

& ρ2, so Fix
〈
κρ, ρ2

〉
= Q(α2i). If L = Q(α2, i), the corresponding subgroup is

〈
ρ2

〉
, and

by FTGT, G/ 〈ρ〉2 ∼= Gal(Q(α2, i) : Q). By Lagrange’s Theorem, this group has order 4,
but only contains elements of order at most 2, so Gal(Q(α2, i) : Q) ∼= C2 × C2. If L is a
subfield of degree 4, then |G/Gal(M : L)| = 2 so the corresponding Galois Groups are
isomorphic to C2.



Useful Theorems
DeMoivre’s Theorem
Given eiθ = cos(θ) + i sin(θ), then
(eiθ)n = (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ) = einθ . Can be used to derive trig
identities, like cos(3θ) = Re(cos(3θ) + i sin(3θ)) = Re

(
(cos(θ) + i sin(θ))3

)
= Re

(
cos3(θ) + 3 cos2(θ)(i sin(θ)) + 3 cos(θ)(i sin(θ))2 + (i sin(θ))3

)
= cos3(θ) − 3 cos(θ) sin2(θ) = cos3(θ) − 3 cos(θ)(1 − cos2(θ)) = 4 cos3(θ) − 3 cos(θ). This
shows that cos(π/9) has annihilating polynomial 4t3 − 3t − 1

2
.

Roots of Unity
From DeMoivre’s Theorem, we can solve equations of the form zn = k, by assuming
x = eiθ . In particular, the nth roots of unity are the complex solutions to zn − 1 = 0.
The roots are ωi, where i ∈ [1, n], ω = e2πi/n. Recall, e2πi = 1, eiπ = −1, eiπ/2 = i.
Then, to solve zn − k = 0, the roots are αωi, where α = k1/n.
Trigonometric Identities
•sin(π/6) = cos(π/3) = 1

2
•sin(π/3) = cos(π/6) =

√
3

2

•sin(π/4) = cos(π/4) = 1√
2

•sin(π/2) = cos(0) = 1

•sin(nπ) = 0 for n ∈ Z •cos(nπ) = (−1)n for n ∈ Z

•cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 = 1 − 2 sin2(x)

•sin(2x) = 2 sin(x) cos(x) •sin2(x) + cos2(x) = 1

Vieta’s Theorem
Let p(t) =

∑n
i=0 ait

i. Then if p has roots r1, . . . , rn:

•
∑n
i=1 ri = −

an−1
an

•
∑n
i=1

∑
j>i rirj =

an−2
an

•. . . •
∏n
i=1 ri = (−1)n

a0
an

For example, if p = at2 + bt + c, then:
•r1 + r2 = − b

a
•r1r2 = c

a
If p = at3 + bt2 + ct + d, then:
•r1 + r2 + r3 = − b

a
•r1r2 + r1r3 + r2r3 = c

a
•r1r2r3 = − d

a
Past Papers
Sample Paper
1.Let a, b ∈ Q. Prove that Q(

√
a,

√
b). Hence or otherwise, prove that degQ(

√
a+

√
b)

is 1,2, or 4.

Q(
√
a +

√
b) ⊆ Q(

√
a,

√
b) is immediate. Sufficient to show that

√
a,

√
b ∈ Q(

√
a +

√
b). 2

methods:
√
a +

√
b ∈ Q(

√
a +

√
b) ∴ 1√

a+
√
b

=

√
a−

√
b

a−b ∈ Q(
√
a +

√
b) ∴

√
a −

√
b ∈ Q(

√
a +

√
b) ∴ √

a ∈ Q(
√
a +

√
b) since

√
a +

√
b + (

√
a −

√
b) = 2

√
a.

Alternatively, (
√
a +

√
b)3 = (a + 3b)

√
a + (b + 3a)

√
b. Since

(a + 3b)(
√
a +

√
b) ∈ Q(

√
a +

√
b) ∴ subtracting yields

√
b ∈ Q(

√
a +

√
b). Thus,

Q(
√
a +

√
b) : Q] = [Q(

√
a,

√
b) : Q]. Then, can use Tower Law arguments to show that for

different choices of
√
a,

√
b, the intermediate degrees are 1 or 2, which yields result.

2.Call a FE special if it is finite, normal and Galois Group has order less than or
equal to 10. Let K,M ≤ C with K ⊆ M. Let 0K 6= f ∈ K[t]. Show that if
SFK (f) : K special, then SFM (f) : M special. By 6.3.12, GalM (f) isomorphic to
subgroup of GalK (f) ∴ [SFM (f) : M] ≤ [SFK (f) : K]. Splitting fields are finite and
normal by 7.1.5. Hence, SFM (f) special.

3.Prove that GalQ(t7 − 12) is nor abelian. Use irreducibility of t7 − 12, then G acts
transitively, which yields κ (complex conjugation) and φ as an element of order 7 mapping
φ(α) = αω, where α real root ot t7 − 12 and ω = e2πi/7. But φ ◦ κ 6= κ ◦ φ (for example,
evaluate on αω) ∴ G not abelian. Alternatively, Since t7 − 12 irreducible of degree 7, |G|
divisible by 7 ∴ by Cauchy’s Theorem, contains element of order 7. Moreover, contains
complex conjugation (order 2). If G abelian, then if orders of elements are coprime m,n,
their product yields element of order mn. Hence, if G abelian, it contains element of order
14. But G subgroup of S7, and no element in S7 has order 14 (look at cycle
decompositions).
4.Let M : K FE of degree n. Let θ ∈ Gal(M : K). Prove that at most n elements of
X = {θ(α)/α|0K 6= α ∈ M} belong to K. Let a ∈ K ∩X. Then, ∃α ∈ M such that
a = θ(α)/α ∴ θ(α) = aα. Hence, a ∈ K is an eigenvalue, and there are at most n
eigenvalues for a K-linear map like θ.

May 2020/2021
1.Justify whether the following are irreducible or not.

•t5 − 2t4 + 3t3 − t − 1 is reducible, t = −1 is a root
•t6 − t5 + t4 − t3 + t2 − t + 1 is irreducible. The mapping t 7→ −t is a bijection
∴preserves irreducibility. The result under the map is the 7th cyclotomic polynomial,
which is irreducible.
•t3 − 2t2 − t − 1 is irreducible: reduce modulo 2, results in t3 + t + 1 which has no roots
in Z2.
•t4 − 14t2 + 49 is reducible. Let y = t2, then this becomes y2 − 14y + 49 = (y − 7)2 ∴
polynomial factorises into (t2 − 7)2

2.Let K(α) be a simple extension of a field K by element α with MP m ∈ K[t]. Let
L be an extension of K. Show by example that there need not exist a
homomorphism K(α) → L over K.

•no homomorphism over Q can exist between Q(α) : Q, since there is no element of Q to
which

√
2 can be sent to if the mapping fixes Q

•no homomorphism over Q can exist Q(
√

2) → Q(i), as we’d require that
√

2 7→ a + ib.
Expanding (a + ib)2 shows that this can never be mapped to from 2 ∴ no homomorphism
can exist
3.Let a, b ∈ Q with

√
a,

√
b 6∈ Q. Prove that if

√
ab ∈ Q, then [Q(

√
a,

√
b) : Q] = 2. If√

ab 6∈ Q, then [Q(
√
a,

√
b) : Q] = 4.

Workshops
Workshop 1
1.Let f be quadratic over Q with roots α1, α2 ∈ C. Show that it is impossible that
α1 ∈ Q but α2 ∈ Q. Let f = at2 + bt + c. By quadratic formula, the rationality of the

roots is dependnent on whether
√
b2 − 4ac is rational or not. If rational, both roots

rational. Otherwise, neither root can be rational.
2.Let f ∈ Q[t] quadratic. Prove Gal(f) is S2 if f has 2 distinct irrational roots, and
trivial otherwise (using original definition of Gal). By 1), either both roots are
rational or irrational. If both rational, trivial galois group. Other wise, let ∆ = b2 − 4ac.
Define Q(

√
∆). Adapting conjugation, p(α, β) = p(α, β). By quadratic formula,

α1, α − 2 ∈ Q(∆), and by above, α1 = α2, α2 = α2, so
p(α1, α2) = 0 ⇐⇒ p(α2, α2) = 0 so conjugate.
3.(a)Let f =

∑n
i=0 ait

i ∈ Z. Let c/d be a rational root of f, with c, d coprime.

Prove that c|a0 and d|an.
∑
i aic

i/di = 0 ∴ dn
∑
i aic

i/di = 0 ∴ ∑
i aic

i/dn−i = 0
where we have a sum of integers. Notice, c|0, so c divides the LHS. In particular, it must
thus divide a0d

n. Since c, d coprime, c|a0. Similarly, d|0 so d divides the LHS ∴ d|ancn.
c, d coprime ∴ d|an.
(b)Deduce that every rational root of a monic polynomial over Z is an integer. If
c/d is a rational root, we must have d|1, so d = ±1 and c/d ∈ Z.
(c)Show that 2t5 + 4t + 3 has no rational roots. By rational roots theorem above, the
roots are c/d such that c ∈ {±1,±3} and d ∈ {±1,±2}. The polynomial has no positive
roots, and we can check that none of the negative combinations work.
(d)Let K be a field such that for α, β ∈ K, α square root of β ⇐⇒ β square root
of α. If α square root of β, then α2 = β. Similarly, β = α2. Equivalently, ∀α ∈ K,α4 =.
Every element of K is root of t4 − t, which has at most 4 roots in K, so |K| ≤ 4. A field
has at most 2 elements (0K 6= 1K ). Suppose |K| = 3. Then, ∃α ∈ K, α 6= 0K, 1K such
that α2 = 1. Then, α4 = 1K 6= α. Hence, |K| ∈ {2, 4}. Now, if |K| = 2, this forces
K = {0K, 1K}, so certainly 04K = 0K, 1

4
K = 1K . If |K| = 4, K× forms a group of order

3, so if 0K 6= α ∈ K×, α3 = 1K so α4 = α. Hence, the condition is satisfied ⇐⇒
|K| = 2 or |K| = 4.

Workshop 2
1.(a)Can C6 act faithfully on a 4-element set? No. Assume C6 acts faithfully. Then,
by (2.1.11), C6 is isomorphic to a subgroup of S4. C6 contains element of order 6, but S4
doesn’t (consider cycle decompositions).
(b)Let G be a finite group acting transitively on non-empty set X. Prove that |X|
divides |G|. G acts transitively, so it has a single orbit. Then, by Orbit-Stabilizer
Theorem, |G| = |X||StabG(x)| for some x ∈ X.
2.(a)Let F ring and I0 ⊆ I1 ⊆ . . . ideals of R. Prove that

⋃∞
n=0 In is an ideal of R.

Let I =
⋃
n In. Then, 0R ∈ I0 ⊆ I, so 0R ∈ I. Let r, s ∈ I. Then ∃n,m ≥ 0 such that

r ∈ In, s ∈ Im. Let p = max{m,n}. Then r, s ∈ Ip ∴ r − s ∈ Ip ⊆ I ∴ r − s ∈ I.
Lastly, let r ∈ I, a ∈ R. Then r ∈ In for some n ∴ ar ∈ In ⊆ I ∴ ar ∈ I.
(b)Let R be a PID, and let I0 ⊆ I1 ⊆ . . . be ideals of R. Prove that ∃n ≥ 0 :
In = In‘1 = In+2 = . . .. By part above, I =

⋃
n In is ideal. R is PID, so ∃r ∈ R :

I = 〈r〉. Since r ∈ I, choose n ≥ 0 : r ∈ In. ∀m ≥ n, r ∈ Im ∴ 〈r〉 ⊆ Im ∴ IIm. By
definition, Im ⊆ I ∴ I = Im.
(c)Let R ID. Let r, s ∈ R, r 6= 0 s not unit. Prove that 〈rs〉 is a proper subset of
〈r〉. Certainly, 〈rs〉 ⊆ 〈r〉, since rs ∈ 〈r〉 and 〈rs〉 is smallest ideal containing rs. Assume
〈rs〉 = 〈r〉. Then, r ∈ 〈rs〉 ∴ ∃a ∈ R : r = rsa. r 6= 0 & R is ID, so by cancellation,
1R = sa ∴ s is unit, a contradiction.
(d)Let R be PID. Let r ∈ R be neither 0R nor unit. Prove that some irreducible
divides r. Suppose by contradiction that no irreducible divides r. Let r0 = r. Then, r0
not irreducible, 0R or a unit, so r0 is reducible & r0 = r1s1, where neither r1 nor s1 are
units. r1 is non-zero (r is not), can’t be irreducible (it divides r) and isn’t a unit by
assumption, so r1 reducible. Continuing logic, we obtain an infinite sequence (rn)n≥0
and (sn)n≥1 where non of the elements are 0r or units, and rn = rn+1sn+1 for each
n ≥ 0. By work above , 〈rn〉 is proper subset of rn+1, so 〈r0〉 ⊂ 〈r1〉 ⊂ . . .. But R is

PID, so we should have that 〈rn〉 =
〈
rn+1

〉
= . . ., but since we have proper subsets, this

can never be the case.
3.Let K field.

(a)For f ∈ K[t], (3.1.6) guarantees that there is a unique homomorphism
θf : K[†] → K[t] such that θf (t) = f, θf (a) = a for K. Let f, g ∈ K[t]. What is θf (g)

in explicit terms? What is its degree? Let g =
∑
i bit

i. Then, θf (g) =
∑
i biθ(f (t)i

=
∑
i bif(t)

i = g(f(t)) = (g ◦ f)(t). Then, deg(θf (g)) = deg(g) · deg(f).
(b)For f1, f2 ∈ K[t], what can you say about the composite homomorphism
θf2

◦ θf1 ? By previous part, (θf2
◦ θf1 )(t) = (f1 ◦ f2)(t) and (θf2

◦ θf1 )(a) = a. By
Universal Property, there is only one homomorphism mapping t 7→ f◦f2 and a 7→ a,
namely θf1◦f2 , so θf2 ◦ θf1 = θf1◦f2 .
(c)Find all isomorphisms K[t] → K[t] over K. Let θ : K[t] → K[t] be isomorphism over
K. Let f = θ(t). By uniqueness, θ = θf . Similarly, θ−1(t) = f̃ implies θ−1 = θ

f̃
. Hence,

θf ◦ θ
f̃

= id. But then, f̃ ◦ f = t and taking degrees of both sides implies that

deg(f) = deg(f̃) = 1. Write f = at + b. By direct calculation, f̃ = (t − b)/a, such that
f̃ ◦ f = id = f ◦ f̃. Thus, θf is isomorphism with inverse θ

f̃
with θf (g) = g(at + b).

4.Let f = t4 + t3 + t2 + t + 1 have roots ω, ω2, omega3, ω4, where ω = e2πi/5. One
of the elements of Gal(f) is σ = (1243). Prove that Gal(f) is generated by σ and
deduce that Gal(f) ∼= C4. Let τ ∈ Gal(f). Every non-zero integer mod 5 is a power of
2: 20 ∼= 1, 21 ∼= 2, 22 ∼= 4, 23 ∼= 3. Then, ∃r ≥ 0 : τ(1) = 2r (mod 5). Claim: τ = σr . Let
i ∈ [1, 4] and define p(t1, t2, t3, t4) = ti − ti1. Then, p(ω, ω2, ω3, ω4) = ωi − ωi = 0, so

by definition of Galois Group, p(ωτ(1), ωτ(2), ωτ(3), ωτ(4)) = 0 ∴ ωτ(i) = ωτ(1)i ∴
τ(i) ∼= τ(1)i (mod 5) ∴ τ(i) ∼= 2ri (mod 5). Now, σ(i) ∼= 2i (mod 5) ∴
σr(i) ∼= 2ri (mod 5) ∴ τ = σr ∴ Gal(f) 〈σ〉. Since o(σ) = 4 (as σ2 6= ι), 〈σ〉 ∼= C4.

Workshop 3
1.Which of the following are irreducible over Q?

(a)1 + 2t − 5t3 + 2t6 is reducible, as t = 1 is a root.
(b)4 − 3t − 2t2 is irreducible, as it is quadratic without rational (discriminant is 41)
(c)4 − 13t− 2t3 is irreducible: reduce mod 3, becomes 1 − t+ t3 which has no roots in Z3.
(d)1 + t+ t2 + t3 + t4 + t5 is reducible, as −1 is a root (it factorises as (1 + t+ t2)(1 + t3)

(e)2.2 + 3.3t − 1.1t3 + t7 is irreducible, by multiplying by 10 and using Eisenstein with
p = 11.
(f)1 + t4 is irreducible. Either substitute t = u + 1 & use Eisenstein with p = 2.
alternatively, assume reducible, so by Gauss, can be factorised as
(t2 + a1 + a0)(t2 + b1t + b0) with a0, a1, b0, b1 integers, which leads to contradiction.
2.Find irreducible f ∈ R[t] such that R[t]/ 〈f〉 ∼= C. Let f = t2 + 1. Since C = R(i) and i
has MP f over R, so (4.3.11, i) implies R[t]/ 〈f〉 ∼= C.
3.Let M : K finite, α ∈ M with MP m ∈ K[t]. Show that deg(m) divides [M : K].
[K(α) : K] = deg(m) by (5.1.5) & by Tower Law, [M : K] = [M : K(α)][K(α) : K].
4.Let M : K be FE with α, β ∈ M.

(a)Prove that α, β conjugate over K ⇐⇒ either both are transcendental or both
are algebraic and have the same MP. By (4.2.6), APs of α over K are 〈mα〉. Similarly,
APs of β over K are

〈
mβ

〉
. Then, α, β conjugate over K ⇐⇒ 〈mα〉 =

〈
mβ

〉
. Since

mα,mβ are either zero or monic, this is true if and only if mα = mβ . mα = mβ ⇐⇒
either mα = 0 = mβ (so α, β transcendental) or 0 6= mα = mβ 6= 0 (α, β algebraic with
same MP).
(b)Show that if there exists irreducible p ∈ K[t] with p(α) = 0 = p(β), then α, β
conjugate over K. Can assume p monic (divide by constant). By 4.2.10, p is MP of α, β,
so by result above, α, β conjugate
5.Let M : L : K be FE, which you may not assume to be finite. Let α ∈ M. Prove
that if α algebraic over L, and L algebraic over K, then α algebraic over K. Thus,
deduce that if M : L, L : K are algebraic, then so is M : K. α algebraic over L, so
∃bi ∈ L such that

∑n
i=0 biα

i, not all of which are 0. By the Tower Law,
[K(b0, . . . , bn, α) : K] = [K(b0, . . . , bn, α) : K(b0, . . . , bn)][K(b0, . . . , bn) : K]. Since α
algebraic over K(b0, . . . , bn) (since not all bi are 0), then
[K(b0, . . . , bn, α) : K(b0, . . . , bn)] < ∞. Since the bi are algebraic over K, by (5.2.4)
then [K(b0, . . . , bn) : K] < ∞. Thus, K(b0, . . . , bn, α) : K is an algebraic extension, so
α algebraic over K. For any α ∈ M, since M : L algebraic, α algebraic over L, so by the
previous part, and since L : K algebraic, it follows that α algebraic over K, so M : K
algebraic.
6.Prove that Q is algebraically closed. Let f ∈ Q[t] be non-constant. C is algebraically
closed, so ∃α ∈ C with f(α) = 0. Then, α algebraic over Q. But also, Q : Q is algebraic, so
by the question above, α algebraic over Q, so α ∈ Q & f has root in Q.
7.Show that ∀X ⊆ K and filed homomorphism φ : K → L, φ 〈X〉 = 〈〉. Thus, if
M : K and M′ : K are FE, and φ : M → M′ is homomorphism over K, show that
φ(K(/)) = K(φ(Y ) for all subsets Y ⊆ M. The first part follows by using the fact that
〈X〉 is the smallest subfield containing X, and employing (2.3.6, ii) (to show that
φ 〈X〉 ⊆ 〈φX〉) and (2.3.6, ii) (to show that 〈φX〉 ⊆ φ 〈X〉). Then, taking X = K ∪ Y , it
follows that φ(K(Y )) = 〈φ(K ∪ Y )〉. Using φ(K ∪ Y ) = φ(K) ∪ φ(Y ), the result follows.
8.Let f be a non-constant polynomial over Z. Prove that f is primitive and
irreducible over Q ⇐⇒ f is irreducible over Z. ( =⇒ ): let f primitive, irreducible
over Q. Then, deg(f) ≥ 1, so f not unit or 0. Suppose f = gh g, h ∈ Z[t]. f irreducible
over Q ∴ WLOG, let g unit in Q[t], so that g = a ∈ Z. Then, a divides every coefficient of
f, which is primitive, so a = 1 ∴ g is unit in Z[t] ∴ g irreducible. ( ⇐= ): by Gauss’s
Lemma, f irreducible ove rQ. Let a ∈ Z divide every coefficient of f, such that f/a ∈ Z[t].
Then, f = a · f/a. But f irreducible over Z, so a is unit in Z[t] ∴ a = ±1 ∴ f primitive.
9.This question is about extensions of degree 2.

(a)Let K field, a ∈ K. Show that [K(
√
a) : K] = 1 if a has square root in K, and 2

otherwise. If
√
a ∈ K, then [K(

√
a) : K] = 1. Else, t2 − a irreducible and MP of

√
a, so

[K(
√
a) : K] = 2.

(b)Let L field, char(L) 6= 2, a, b, c, α ∈ L, a 6= 0. Suppose that aα2 + bα + c = 0.
Prove that b2 − 4ac has a square root σ ∈ L, and that α ∈ {(−b ± σ)/(2a)}.
Complete square of quadratic, and since char(L) 6= 2, we can divide by 2 to get that
b2 − 4ac = (2aα + b)2. Rearranging gives result.
(c)Let L : K be FE of degree 2 and char(K) 6= 2. Prove that L ∼= K(

√
d) for some

d ∈ K. Pick α ∈ L \K with MP m ∈ K[t]. Then, deg(m) = 2, so write m = t2 + bt + c

and d = b2 − 4c ∈ K. By part above,
√
d = σ inL and α ∈ K(σ), so L = K(α) ⊆ K(σ) ∴

L = K(σ) = K(
√
d).

10.Prove that Q : Q is not finite. tn − 2 is an irreducible polynomial over Q, call it mn,
and let it have root αn. Then, since αn ∈ Q, by Tower law, [Q : Q] ≥ n. Since not finite,
it cna’t be finitely generated, by (5.2.4).
11.M : K simple algebraic if ∃α ∈ M such that m = K(α) and α algebraic over K.
Prove that M : K simple algebraic ⇐⇒ it is simple and algebraic. If M.K simple,
∃α ∈ M with M = K(α). If M : K algebraic, every element of M algebraic over K ∴ α
algebraic. Conversely, if M : K simple algebraic, M : K certainly simple; algebraicity
follows from (5.2.4), using iii ⇒ ii.
12.Prove that Q(t1, t2, . . .) and Q(t2, t3, . . .) are isomorphic, but not isomorphic
over Q(t2, t3, . . .). Let fileds be K1, K2 respecitvely. Define isomorphism ti 7→ ti+1.

However, this can’t be isomorphism over K2, as t1 is not in the image of φ−1.
13.Let M.K FE. Prove that every homomorphism M → M over K is automorphism
of M over K. From linear algebra, if V is isfinite dimensional vector space, ay injective
linear map φ : V → V is surjective. Then φ injective ⇐⇒ nullity(φ) = 0 ⇐⇒
dim(V ) − rank(φ) = 0 ⇐⇒ φ surjective. Every φ : M → M over K is injective K-linear
map, and [M : K] < ∞, so φ sujrective & automorphism of M over K.

Workshop 5
1.Let M : K FE. Let 0K 6= f ∈ K[t], α ∈ M be root of f. Then, f = (t − α)g,
g ∈ K(α)[t]. Prove that M = SFK(α)(g) ⇐⇒ M = SFK (f). Let α1 = α, . . . , αn

roots of f in M. If M = SFK (g), g splits in M ∴ f splits in M. Moreover,
M = K(α)(α2, . . . , αn) = K(α1, . . . , αn) ∴ roots of f in M generate M over K ∴
M = SFK (f). Conversely, let M = SFK (f). f, g split in M, and
M = K(α1, . . . , αn) = K(α)(α2, . . . , αn) ∴ M generated by roots of g in M over K(α).
2.Let K field and f ∈ K[t] irreducible. Prove that |GalK (f)| divisible by number
of distinct roots of f in SF, and thus deduce that if (K) = 0, deg(f) divides
|GalK (f)|. Let K be number of distinct roots. Galois acts transitively ∴ generates single
orbit over set of roots ∴ by OST, number of roots divides |GalK (f)|. If char(K), K
separable, so has deg(f) distinct roots.
3.Show that any automorphism of a field M is an automorphism over th eprime
subfield of M. Let M field with prime subfield K. Let φ automorphism of M. Then,
Fix({φ}) is subfield of M by (7.3.1). But K smallest subfield, so K ⊆ Fix({φ}) ∴ φ
automorphism over K.
4.Show by example that if M : L, L : K normal, then M : K needn’t be normal. Let
M = Q(21/4, L = Q(21/2 and K = Q.



5.Let K field, f, g ∈ K[t] non-zero. Let L = SFK (g). Show that SFL(f) ∼= SFK (fg)
over K. Sufficient to show that SFL(f) is SF of fg over K. Both f, g split in SFL(f).
Let α1, . . . , αn be roots of f in SFL(f) and β1, . . . , βm roots of g in L. Then,
SFL(f) = L(α1, . . . , αn) = K(α1, . . . , αn, β1, . . . , βm) ∴ SFL(f) generated over K by
roots of fg. For second part, SFQ(f) = Q(α1, . . . , αn) SFQ(g) = Q(β1, . . . , βm) so
compositum contains generated by all roots of fg.

6.Let 0 6= f ∈ Q[t] with distinc complex roots α1, . . . , αk. Prove that
∑n
i=1 α

10
i is

rational. Let α =
∑n
i=1 α

10
i . Each element of Galois group permutes distinct roots of f

so it fixes α (since α is symmetric function of these roots). By (8.2.7) applied on
SFQ(f) : Q, α ∈ Q.
7.State whether True or False

(a)Let f ∈ K[t] irreducible of degree n. Then [SFK (f) : K] ≤ n. False, let
f = t3 − 2, then SF has degree 6
(b)Let M : K FE and α, β ∈ M. Then [K(αβ) : K] ≤ [K(α, β) : K]. True, use Tower
Law and the fact that K(αβ) subfield of K(α, β).
(c)Let (x, y) ∈ R2. Suppose that x, y have AP of degree 4 over Q. Then, (x, y) are
construcible by ruler and compass from (0, 0), (1, 0). False, (21/3, 0) not
constructible, but have AP x4 − 2x = 0, y4 = 0.
(d)For all non-trivial finite FE, Galois group is non trivial. False, if α = 21/3,
Galois Group of Q(α) : Q is trivial (Example 6.3.3, ii) of the notes).
(e)For all finite FE M : K, M′ : K′, every isomorphism ψ : K → K′ can be
extended to a homomorphism φ : M → M′. False, let M = Q(

√
2) and

K = M′ = K′ = Q, with ψ as the identity. Then, φ(
√

2) would be a square root of 2 in Q.

(f)The Galois Group of (t4 − 2t3 + t2 − 4t + 1)3 over Q is solvable. True, it hass at
most 4 distinct roots, so Galois Group embeds in S4, which is solvable, and all subgroups
of solvable groups are solvable.

8.Let L : K algebraic. Prove that L : K normal ⇐⇒ for every extension M : L the
field L is a union of conjugacy classes in M voer K. Suppose L.K is normal &
consider M : L. Let α, β ∈ M conjugate over K, and suppose α ∈ L. Claim: β ∈ L. Since
α ∈ L and L : K normal, MP m of α splits in L. Hence, the roots of m in M are all in L.
α conjugate to β over K, and m(α) = 0 so m(β)00 so β ∈ L. Conversely, let L be uion of
conjugacy classes in M over K for every extension M of L. Let α ∈ L have MP m ∈ K[t].
Take M as SF of m over L. Then, m splits in M, and all its roots in M are conjugate over
K. But α ∈ L, so by assumption all roots of M in M are in L, so m splits in L, Hence,
L : K is normal.
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