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Based on the notes by Tom Leinster, Chapter 9

1 Radical Complex Numbers
1.1 Definition: Field of Radicals

A complex number is radical if it belongs to Qrad, the smallest subfield
of C such that ∀α ∈ C, if ∃n ≥ 1 : αn ∈ Qrad, then α ∈ Qrad.

In other words, Qrad is the smallest subfield of C which is closed under the
usual arithmetic operations (addition, subtraction, multiplication, division
and nth roots).
(Definition 9.1.2)

This relies on there even existing such a subfield. That is, assuming that there are subfield X1, X2, . . .
satisfying closure under arithmetic operations, does their intersection also satisfy this? Call this intersection
I =

∩
i Xi. Then, this is a subfield, since it is an intersection of subfield. If αn ∈ I, αn ∈ Xi for any i.

Hence, for any i, α ∈ Xi, so α ∈ I, as required.

1.2 Definition: Polynomial Solvable by Radicals

A non-zero f ∈ Q[t] is solvable by radicals if all of its complex roots
are radical.
(Definition 9.1.5)

1.3 Abelian Galois Groups
1.3.1 Lemma: Galois Group of tn − 1 is Abelian

∀n ≥ 1, the group GalQ(tn − 1) is abelian.
(Lemma 9.1.6)

Proof. Le tω = e2πi/n. Then, tn − 1 has complex roots

1, ω, ω2, . . . , ωn−1
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so SFQ(t
n − 1) = Q(ω).

Now, let φ, θ ∈ GalQ(t
n − 1). φ permutes roots of tn − 1, and so does θ, so:

∃i, j ∈ Z : φ(ω) = ωi θ(ω) = ωj

Hence:
(φ ◦ θ)(ω) = ωij = (θ ◦ φ)(ω)

Since SFQ(t
n − 1) = Q(ω), it must then be the case that by:

Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

φ ◦ θ = θ ◦ φ, so GalQ(t
n − 1) is abelian.

1.3.2 Lemma: Galois Group of tn − a is Abelian

Let K be a field and n ≥ 1. If tn − 1 splits in K, then ∀a ∈ K, GalK(tn −
a) is abelian.
(Lemma 9.1.8)

This seems restrictive at first, since for example, tn − 1 doesn’t split in Q or even R when n > 2. For
example, GalQ(t

3 − 2) = S3 which isn’t ableian.. However, this won’t matter for later arguments.

Proof. If a = 0K, then GalK(tn−a) is trivial. Hence, assume otherwise. Pick a root of tn−a, ξ ∈ SFK(tn−a).
If ν is any other root, then: (

ξ

ν

)n

=
a

a
= 1K

Hence, ξ/ν is a root of tn − 1. Since tn − a splits in K, then ξ/ν ∈ K. Since ξ ∈ SFK(tn − a), but ξ/ν ∈ K,
we must have that SFK(tn − a) = K(ξ). Then, if φ, θ ∈ GalK(tn − a), since φ acts by permuting roots, it
follows that φ(ξ)/ξ ∈ K, so:

(θ ◦ φ)(ξ) = θ

(
φ(ξ)

ξ
ξ

)
=

φ(ξ)

ξ
θ(ξ) =

φ(ξ)θ(ξ)

ξ
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With a similar argument, it can be shown that:

(φ ◦ θ)(ξ) = φ(ξ)θ(ξ)

ξ

Again using Lemma 4.3.6, since (θ ◦φ)(ξ) = (φ ◦ θ)(ξ) and SFK(tn−a) = K(ξ), it follows that φ ◦ θ = θ ◦φ,
so GalK(tn − a) is abelian.

1.3.3 Exercises

1. [Exercise 9.1.10 What does the proof of Lemma 9.1.8 tell you about the eigenvectors and
eigenvalues of the elements of GalK(tn − a).

Notice, we have that:
φ(ξ)/ξ ∈ K =⇒ ∃k ∈ K : φ(ξ) = kξ

In other words, the roots of tn−a are eigenvectors of the elements of the Galois Group; their eigenvalues
are elmeents in K.

2 From Solvable Polynomials to Solvable Groups
2.1 Solvable Extensions
2.1.1 Definition: Solvable Field Extension

Let M : K be a finite, normal, separable extension. Then, M.K is
solvable if there exists r ≥ 0 and intermediate fields:

K = L0 ⊆ L1 ⊆ . . . ⊆ Lr =M

such that ∀i ∈ [1, r]:

• Li : Li−1 is normal

• Gal(Li : Li−1) is abelian
(Definition 9.2.1)

2.1.2 Example: tn − a Yields Solvable Extension

Notice, if a ∈ Q, n ≥ 1, then SFQ(t
n − a).Q is finite, normal and separable, as it is a splitting field over a

field of characteristic 0. We claim that it is solvable.

If a = 0, then SFQ(t
n − a) = Q, and Q : Q is solvable.

If a ̸= 0, let ξ be a complex root, and let ω = e2πi/n. The roots of tn − a are ξ, ωξ, . . . , ωn−1ξ. This
implies that ∀i ∈ [0, n− 1], ωi ∈ SFQ(t

n − a), since (ωiξ)/ξ = ωi. In particular, tn − 1 splits in SFQ(t
n − a),

so:
Q ⊆ SFQ(t

n − 1) ⊆ SFQ(t
n − a)

Now, SFQ(t
n − 1) : Q is normal, and GalQ(t

n − 1) is abelian. Moreover, SFQ(t
n − a) : SFQ(t

n − 1) is also
normal (it is a splitting field extension of tn − a over SFQ(t

n − 1)). Moreover, GalK(tn − a) is abelian if
tn − 1 splits over K. Using K = SFQ(t

n − 1) this trivially follows. Hence, SFQ(t
n − a) : Q is a solvable

extension.
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2.1.3 Lemma: Solvable Extension Iff Solvable Galois Group

Let M : K ve a finite, normal, separable extension. Then:

M : K is solvable ⇐⇒ Gal(M : K) is solvable

(Lemma 9.2.4)

Proof. We only prove the ( =⇒ ) direction, as that is all we really need, although the ( ⇐= ) direction should
be fairly similar.

Recall, a group G is solvable if it contains a subnormal series G0 = {eG} ◁ G1 ◁ . . . ◁ Gn = G of normal
subgroups, such that Gi+1(Gi is abelian.

Now, suppose M : K is solvable. Then there are intermediate fields:

K = L0 ⊆ L1 ⊆ . . . ⊆ Lr = M

such that ∀i ∈ [1, r]:

• Li : Li−1 is normal

• Gal(Li : Li−1) is abelian

By

Let M : L : K be field extensions. If M : K is finite and normal,
then so is M : L.
(Corollary 7.1.6)

Let M : L : K be field extensions, and let M : K be algebraic. Then:

M : K is separable =⇒ M : L, L : K are separable

(Lemma 7.2.16)

each M : Lj is finite, normal and separable. Now, by the Fundamental Theorem of Galois Theory, since
Li : Li−1 is normal, Gal(M : Li) is a normal subgroup of Gal(M : Li−1), and

Gal(M : Li−1)

Gal(M : Li)
∼= Gal(Li : Li−1)

By hypothesis, Gal(Li : Li−1) is abelian. Thus, we have a sequence of subgroups:

{e} = Gal(M : M) ◁ . . . ◁ Gal(M : L1) ◁ Gal(M : L0) = Gal(M : K)

where each composition factor is abelian, so Gal(M : K) is solvable.
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2.1.4 Lemma: Properties of Compositum

Let M : K be a field extension with intermediate fields L1, L2. Then:

1. If L1 : K,L2 : K are finite and normal, then so is L1L2 : K

2. If L1 : K is finite and normal, then so is L1L2 : L2

3. L1 : K is finite and normal with abelian Galois group, then so is
L1L2 : L2

(Lemma 9.2.6)

Proof. 1. By normality, ∃f1, f2 ∈ K[t] such that:

L1 = SFK(f1) L2 = SFK(f2)

L1L2 is the subfield of M generated by L1 ∪ L2. Hence, it is the subfield of M generated by the roots
of f1 and f2, so L1L2 = SFK(f1f2) is finite and normal over K.

2. Let L1 = SFK(f) for some f ∈ K[t]. Then, using
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(a) Let:

• M : S : K be a field extension
•

0K ̸= f ∈ K[t]

• Y ⊆M

Let S be the splitting field of f over K. Then, S(Y ) is the
splitting field of f over K(Y ):

S = SFK(f) =⇒ S(Y ) = SFK(Y )(f)

(b) Let:

•
0K ̸= f ∈ K[t]

• L be a subfield of SFK(f) containing K, such that:

SFK(f) : L : K

Then, SFK(f) is the splitting field of f over L:

SFK(f) = SFL(f)

(Lemma 6.2.14)

with S = L1, Y = L2 it follows that:

L1 = SFK(f) =⇒ L1(L2) = SFK(L2)(f) ∴ L1L2 = SFL2
(f)

so L1L2 is finite and normal over L2.

3. Gal(L1L2 : L2) = GalL2
(f) is isomorphic to a subgroup of GalK(f) = Gal(L : K). Hence, if

Gal(L : K) is abelian, so is Gal(L1L2 : L2).

2.1.5 Lemma: Larger Subfield Containing Finite, Normal and Solvable Extensions

Let L,M be subfields of C, such that L : Q,M : Q are finite, normal
and solvable. Then, there exists a subfield N of C, such that:

• N : Q is finite, normal and solvable.

• L,M ⊆ N

(Lemma 9.2.7)
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Proof. The proof of this is similar to Lemma 5.3.8 on ruler and compass constructions, and employs Lemma
9.2.6 above.

By solvability of L : Q,M : Q we have:

Q = L0 ⊆ . . . ⊆ Lr = L Q = M0 ⊆ . . . ⊆ Ms = M

where Li : Li−1,Mj : Mj−1 are normal and have abelian Galois Groups. We claim that the chain of subfields:

Q = L0 ⊆ . . . ⊆ Lr = L = LM0 ⊆ . . . ⊆ LMs = LM

is finite, normal and solvable (L,M ⊆ LM automatically).

By Lemma 9.2.6, 2) above, it is definitely finite and normal.

For solvability, we only need to worry about the extensions of the form LMj : LMj−1 (since solvability
is immediate for any Lj : Lj−1). But since Mj : Mj−1 are finite and normal with abelian Galois Group, by
Lemma 9.2.6, 3), it follows that so are LMj : LMj−1, as required.

2.2 The Field of Solvable Complex Numbers
2.2.1 Definition: Field of Solvable Complex numbers

The field:

Qsol = {α ∈ C | α ∈ L,where L is some L ≤ C
which is finite, normal and solvable over Q}

It is in fact a subfield of C.
(Lemma 9.2.8)

Proof. This follows immediately from the fact that if α, β ∈ Qsol, then there exist finite, normal and solvable
fields L,M such that α ∈ L, β ∈ M , so by 9.2.7 above, LM is also finite, normal and solvable, and contains
α, β, from which it follows that α− β ∈ LM,αβ, α−1, 0, 1 ∈ LM so these are all in Qsol.

2.2.2 Lemma: Solvable Field Closed Under nth Roots

Let α ∈ C and n ≥ 1. If αn ∈ Qsol, then α ∈ Qsol.
(Lemma 9.2.9)
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Proof. Let a = αn ∈ Qsol. Choose a subfield K of C, such that a ∈ K with K : Q finite, normal and solvable.
We prove this in 2 steps. Firstly, we enlarge K to be a field where tn − 1 splits. Then, we adjoin conjugates
of a.

1 Enlarge K

Let L = SFK(tn − 1). Since K : Q is finite and normal, ∃f ∈ K[t] such that K = SFQ(f). Hence, we
must have that L = SFQ(f(t)(t

n − 1)), so L : Q is finite and normal. We must have that GalK(tn − 1)
is isomorphic to a subgroup of GalQ(t

n − 1), which is abelian. Thus, L : K is a normal extension with an
abelian Galois Group. Since K : Q is solvable by hypothesis, we have a series Q ⊆ K ⊆ L with normal
composition factors and abelian Galois Groups, so L : Q is solvable. Thus, L : Q is a subfield of C containing
a, which is finite, normal, solvable and tn − 1 splits in it.

2 Adjoin Conjugates

Let m ∈ Q[t] be the minimal polynomial of a over Q and put M = SFL(m(tn)) ⊆ C. Then, α ∈ m,
since m(αn) = m(a) = 0. We show that M : Q is finite, normal and solvable. M : Q is finite and normal,
as M = SFQ(gm(tn)), where g is such that L = SFQ(g), since L is finite and normal. Moreover, M : L is a
splitting field extension, so it is also finite and normal. To show that M : Q is solvable, it is enough to show
that M : L is solvable (since L : Q is solvable, we can just “join” their respective field extensions). Since
L : Q is normal, and a ∈ L, its minimal polynomial m splits in L, say:

m(t) =

r∏
i=1

(t− ai), ai ∈ L

Define subfiels L0 ⊆ . . . ⊆ Lr of C by:

L0 = L

L1 = SFL0(t
n − a1)

...
LR = SFLr−1(t

n − ar)

Hence:
Li = L (β ∈ M | βn ∈ {a1, . . . , ai})

so in particular Lr = M . Now, Li : Li−1 is a splitting field extension, so it is finite and normal. Gal(Li : Li−1)
is abelian, since tn − 1 splits in L ⊆ Li−1 (and applying Lemma 9.1.8). Hence, M : L will be solvable. Since
α ∈ M and M is finite, normal and solvable, α ∈ Qsol.

2.2.3 Proposition: Radicals are Subset of Solvables

Every radical number is contained in some subfield of C that is afinite,
normal and solvable extension of Q. That is:

Qrad ⊆ Qsol

(Proposition 9.2.12)
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In fact, the above is actually an equality, but the inclusion is all we really need.

By Lemma 9.2.8 and 9.2.9, Qsol is a subfield of C such that if αn ∈ Qsol then α ∈ Qsol. ALl elements of
Qrad satisfy this, by definition.

2.3 Theorem: Polynomials Solvable by Radicals Implies Galois Group Solvable

Let f ∈ Q[t] be non-zero. If f is solvable by radicals, then GalQ(f) is
solvable.
(Theorem 9.2.13)

Proof. Assume f is solvable by radicals. Then, its roots α!, . . . , αn ∈ C are radical, so αi ∈ Qrad ⊆ Qsol.
Hence, each root is contained in some subfield of C that is finite, normal and solvable over Q. By Lemma
9.27, there is a subfield M of C which if finite, normal an doslvable over Q which contains α1, . . . , αn. Then,
it follows that:

Q(α1, . . . , αn) = SFQ(f) ⊆ M

Now, since M : Q is solvable, by Lemma 9.2.4, Gal(M : Q) is solvable. Moreover, SFQ(f) : Q is a normal
extension of Q, so it’s Galois Group is a normal subgroup of Gal(M : Q). Since Gal(M : Q) is solvable,
Gal(SFQ(f) : Q) = GalQ(f) is solvable.

3 Worked Example: Polynomial not Solvable by Radicals
3.1 Preliminary Lemmas
3.1.1 Lemma: Degree of Irreducible Divides Order of Galois Group

Let f ∈ K[t] be irreducible, with K a field. If SFK(f) : K is separable,
then deg(f) divides |GalK(f)|.
(Lemma 9.3.1)

Proof. Let α ∈ SFK(f) be a root of f . By irreducibility, the Tower Law and separability:

|GalK(f)| = [SFK(f) : K] = [SFK(f) : K(α)][K(α) : K] = [SFK(f) : K(α)] deg(f)

as required.
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3.1.2 Lemma: Generating the Symmetric Group

For n ≥ 2, Sn is generated by (12) and (12 . . . n).
(Lemma 9.3.2)

Proof. It is a fact that Sn is generated by adjacent transpositions (12), (23), . . . , (n−1 n). It is thus sufficient
to show that (12), (12 . . . n) generate these transpositions. But using conjugation over Sn, it follows that if
σ = (12), τ = (12 . . . n):

τ jστ−j = (τ j(1) τ j(2)) = (j j + 1)

as required.

3.1.3 Lemma: Galois Group of Prime Degree Polynomial

Let p be prime, and f ∈ Q[t] be such that:

• deg(f) = p

• f has exactly p− 2 real roots

Then:
GalQ(f) ∼= Sp

(Lemma 9.3.3)

Proof. char(Q = 0 and f irreducible, so it is separable and has p distinct roots in C. By

Let f be a non-zero polynomial over a field K, with k distinct
roots:

α1, . . . , αk ∈ SFK(f)

Then:

{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K}

is a subgroup of Sk, isomorphic to GalK(f).
(Proposition 6.3.10)

the action of GalQ(f) on the roots defines an isomorphism between GalQ(f) and a subgroup H of Sp. By
Lemma 9.3.1 above, by irreducibility and separability, it follows that deg(f) = p divides |GalQ(f)| = |H|.
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By Cauchy’s Theorem, H has an elment σ of order p. The order of elements in Sn is given by the lowerst
common multiple of the cycle orders of elements, so it follows that σ must be a p-cycle. Now, complex
conjugation is an automorphism of SFQ(f) over Q. Since exactly 2 of the roots of f are non-real, complex
conjugation transposes them, fixing the rest. Thus, H contains both a p-cycle σ and a transposition τ .

Without loss of generality, let τ = (12). As a p-cycle, ∃r ∈ [1, p−1] such that σr(1) = 2. Since p is prime,
σr must also have order p (again, using lowest common multiple), and so, is a p-cycle. Hence, without loss
of generality, σr = (12 . . . p). Since (12), (12 . . . p) ∈ H, we must have that H = Sp, so GalQ(f) ∼= Sp.

3.2 Theorem: Solvability by Radicals of Degree 5 Polynomials

Not every polynomial over Q of degree 5 is solvable by radicals.
(Theorem 9.3.5)

Proof. We claim that f(t) = t5 − 6t + 3 has Galois Group S5 (by using Lemma 9.3.3 above), which isn’t
solvable. Then, by Theorem 9.2.13, f won’t be solvable by radicals.

By Eisenstein with p = 3, f is irreducible. Moreover, deg(f) = 5, which is prime. We need to show that
f has exactly 3 real roots. Thinking of f as a function R → R, then:

• limx→−∞ f(x) = −∞

• f(0) > 0

• f(1) < 0

• limx→∞ f(x) = ∞

By continuity of f over R, it follows by the Intermediate Value Theorem that f has at least 3 real roots (one
on (−∞, 0), one on (0, 1) and one on (1,∞)). Computing the derivative, f ′(x) = 5x4 − 6, f ′ has only 2 real
roots (± 4

√
6/5). Now, recall Rolle’s Theorem:

Let f : [a, b] → R be continuous on [a, b], differentiable on (a, b) and with
f(a) = f(b). Then, ∃c ∈ (a, b) such that f ′(c) = 0.

Since f ′ only has 2 real roots, there can be at most 3 roots a1 < a2 < a3, whereby we must have that
− 4
√

6/5 ∈ [a1, a2] and 4
√
6/5 ∈ [a2, a3]. Hence, f has exactly 3 roots, so f satisfies the conditions of Lemma

9.3.3, so f isn’t solvable by radicals.

Non-solvability by radicals can also apply to polynomials of degree 5 with Galois Group A5, which isn’t
solvable. For example, f = t5 + 20t+ 16.
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