Galois Theory - Week 9 - Solvability by Radicals

Antonio León Villares

$\mathrm{May}\ 2023$

Contents

1	Rac	Radical Complex Numbers		
	1.1	Defini	ition: Field of Radicals	2
	1.2	Defini	ition: Polynomial Solvable by Radicals	2
	1.3	Abelian Galois Groups		2
		1.3.1	Lemma: Galois Group of $t^n - 1$ is Abelian	2
		1.3.2	Lemma: Galois Group of $t^n - a$ is Abelian	3
		1.3.3	Exercises	4
2	From Solvable Polynomials to Solvable Groups 4			
	2.1	Solval	ble Extensions	4
		2.1.1	Definition: Solvable Field Extension	4
		2.1.2	Example: $t^n - a$ Yields Solvable Extension	4
		2.1.3	Lemma: Solvable Extension Iff Solvable Galois Group	5
		2.1.4	Lemma: Properties of Compositum	6
		2.1.5	Lemma: Larger Subfield Containing Finite, Normal and Solvable Extensions	7
	2.2 The Field of Solvable Complex Numbers			8
		2.2.1	Definition: Field of Solvable Complex numbers	8
		2.2.2	Lemma: Solvable Field Closed Under nth Roots	8
		2.2.3	Proposition: Radicals are Subset of Solvables	9
	2.3	Theor	rem: Polynomials Solvable by Radicals Implies Galois Group Solvable	10
3	Worked Example: Polynomial not Solvable by Radicals			
	3.1	Prelin	ninary Lemmas	10
		3.1.1	v	10
		3.1.2	-	11
		3.1.3	Lemma: Galois Group of Prime Degree Polynomial	
	3 2	Theor		12

1 Radical Complex Numbers

1.1 Definition: Field of Radicals

A complex number is **radical** if it belongs to \mathbb{Q}^{rad} , the **smallest** subfield of \mathbb{C} such that $\forall \alpha \in \mathbb{C}$, if $\exists n \geq 1 : \alpha^n \in \mathbb{Q}^{rad}$, then $\alpha \in \mathbb{Q}^{rad}$.

In other words, \mathbb{Q}^{rad} is the smallest subfield of \mathbb{C} which is closed under the usual arithmetic operations (addition, subtraction, multiplication, division and nth roots). (Definition 9.1.2)

This relies on there even existing such a subfield. That is, assuming that there are subfield X_1, X_2, \ldots satisfying closure under arithmetic operations, does their intersection also satisfy this? Call this intersection $I = \bigcap_i X_i$. Then, this is a subfield, since it is an intersection of subfield. If $\alpha^n \in I$, $\alpha^n \in X_i$ for any i. Hence, for any i, $\alpha \in X_i$, so $\alpha \in I$, as required.

1.2 Definition: Polynomial Solvable by Radicals

A non-zero $f \in \mathbb{Q}[t]$ is solvable by radicals if all of its complex roots are radical. (Definition 9.1.5)

1.3 Abelian Galois Groups

1.3.1 Lemma: Galois Group of $t^n - 1$ is Abelian

 $\forall n \geq 1$, the group $Gal_{\mathbb{Q}}(t^n - 1)$ is **abelian**. (Lemma 9.1.6)

Proof. Le $t\omega = e^{2\pi i/n}$. Then, $t^n - 1$ has complex roots

$$1, \omega, \omega^2, \ldots, \omega^{n-1}$$

so
$$SF_{\mathbb{Q}}(t^n-1)=\mathbb{Q}(\omega)$$
.

Now, let $\varphi, \theta \in Gal_{\mathbb{Q}}(t^n - 1)$. φ permutes roots of $t^n - 1$, and so does θ , so:

$$\exists i, j \in \mathbb{Z} : \varphi(\omega) = \omega^i \quad \theta(\omega) = \omega^j$$

Hence:

$$(\varphi \circ \theta)(\omega) = \omega^{ij} = (\theta \circ \varphi)(\omega)$$

Since $SF_{\mathbb{Q}}(t^n-1)=\mathbb{Q}(\omega)$, it must then be the case that by:

Let M_1, M_2 be extensions of a field K, and let:

$$\varphi, \psi: M_1 \to M_2$$

be homomorphisms over K.

Let Y be a subset of M_1 , such that $M_1 = K(Y)$. Then:

$$\forall a \in Y, \ \varphi(a) = \psi(a) \implies \varphi = \psi$$

In other words, knowing the behaviour of φ , ψ on Y is sufficient to understand φ , ψ on all of M_1 . (Lemma 4.3.6)

 $\varphi \circ \theta = \theta \circ \varphi$, so $Gal_{\mathbb{Q}}(t^n - 1)$ is abelian.

1.3.2 Lemma: Galois Group of $t^n - a$ is Abelian

Let K be a **field** and $n \ge 1$. If $t^n - 1$ splits in K, then $\forall a \in K$, $Gal_K(t^n - a)$ is **abelian**. (Lemma 9.1.8)

This seems restrictive at first, since for example, $t^n - 1$ doesn't split in \mathbb{Q} or even \mathbb{R} when n > 2. For example, $Gal_{\mathbb{Q}}(t^3 - 2) = S_3$ which isn't ableian. However, this won't matter for later arguments.

Proof. If a = 0K, then $Gal_K(t^n - a)$ is trivial. Hence, assume otherwise. Pick a root of $t^n - a$, $\xi \in SF_K(t^n - a)$. If ν is any other root, then:

$$\left(\frac{\xi}{\nu}\right)^n = \frac{a}{a} = 1_K$$

Hence, ξ/ν is a root of t^n-1 . Since t^n-a splits in K, then $\xi/\nu \in K$. Since $\xi \in SF_K(t^n-a)$, but $\xi/\nu \in K$, we must have that $SF_K(t^n-a) = K(\xi)$. Then, if $\varphi, \theta \in Gal_K(t^n-a)$, since φ acts by permuting roots, it follows that $\varphi(\xi)/\xi \in K$, so:

$$(\theta \circ \varphi)(\xi) = \theta\left(\frac{\varphi(\xi)}{\xi}\xi\right) = \frac{\varphi(\xi)}{\xi}\theta(\xi) = \frac{\varphi(\xi)\theta(\xi)}{\xi}$$

With a similar argument, it can be shown that:

$$(\varphi \circ \theta)(\xi) = \frac{\varphi(\xi)\theta(\xi)}{\xi}$$

Again using Lemma 4.3.6, since $(\theta \circ \varphi)(\xi) = (\varphi \circ \theta)(\xi)$ and $SF_K(t^n - a) = K(\xi)$, it follows that $\varphi \circ \theta = \theta \circ \varphi$, so $Gal_K(t^n - a)$ is abelian.

1.3.3 Exercises

1. [Exercise 9.1.10 What does the proof of Lemma 9.1.8 tell you about the eigenvectors and eigenvalues of the elements of $Gal_K(t^n - a)$.

Notice, we have that:

$$\varphi(\xi)/\xi \in K \implies \exists k \in K : \varphi(\xi) = k\xi$$

In other words, the roots of t^n-a are **eigenvectors** of the elements of the Galois Group; their eigenvalues are elements in K.

2 From Solvable Polynomials to Solvable Groups

2.1 Solvable Extensions

2.1.1 Definition: Solvable Field Extension

Let M: K be a **finite**, **normal**, **separable** extension. Then, M.K is **solvable** if there exists $r \ge 0$ and intermediate fields:

$$K = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_r = M$$

such that $\forall i \in [1, r]$:

- $L_i: L_{i-1}$ is **normal**
- $Gal(L_i:L_{i-1})$ is **abelian**

(Definition 9.2.1)

2.1.2 Example: $t^n - a$ Yields Solvable Extension

Notice, if $a \in \mathbb{Q}$, $n \ge 1$, then $SF_{\mathbb{Q}}(t^n - a).\mathbb{Q}$ is finite, normal and separable, as it is a splitting field over a field of characteristic 0. We claim that it is solvable.

If a = 0, then $SF_{\mathbb{Q}}(t^n - a) = \mathbb{Q}$, and $\mathbb{Q} : \mathbb{Q}$ is solvable.

If $a \neq 0$, let ξ be a complex root, and let $\omega = e^{2\pi i/n}$. The roots of $t^n - a$ are $\xi, \omega \xi, \ldots, \omega^{n-1} \xi$. This implies that $\forall i \in [0, n-1], \omega^i \in SF_{\mathbb{Q}}(t^n - a)$, since $(\omega^i \xi)/\xi = \omega^i$. In particular, $t^n - 1$ splits in $SF_{\mathbb{Q}}(t^n - a)$, so:

$$\mathbb{Q} \subseteq SF_{\mathbb{O}}(t^n - 1) \subseteq SF_{\mathbb{O}}(t^n - a)$$

Now, $SF_{\mathbb{Q}}(t^n-1):\mathbb{Q}$ is normal, and $Gal_{\mathbb{Q}}(t^n-1)$ is abelian. Moreover, $SF_{\mathbb{Q}}(t^n-a):SF_{\mathbb{Q}}(t^n-1)$ is also normal (it is a splitting field extension of t^n-a over $SF_{\mathbb{Q}}(t^n-1)$). Moreover, $Gal_K(t^n-a)$ is abelian if t^n-1 splits over K. Using $K=SF_{\mathbb{Q}}(t^n-1)$ this trivially follows. Hence, $SF_{\mathbb{Q}}(t^n-a):\mathbb{Q}$ is a solvable extension.

2.1.3 Lemma: Solvable Extension Iff Solvable Galois Group

Let M: K ve a **finite**, **normal**, **separable** extension. Then: $M: K \text{ is } \textbf{solvable} \iff Gal(M:K) \text{ is } \textbf{solvable}$ (Lemma 9.2.4)

Proof. We only prove the (\Longrightarrow) direction, as that is all we really need, although the (\Longleftarrow) direction should be fairly similar.

Recall, a group G is solvable if it contains a subnormal series $G_0 = \{e_G\} \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$ of normal subgroups, such that $G_{i+1}(G_i)$ is abelian.

Now, suppose M:K is solvable. Then there are intermediate fields:

$$K = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_r = M$$

such that $\forall i \in [1, r]$:

- $L_i:L_{i-1}$ is **normal**
- $Gal(L_i:L_{i-1})$ is abelian

By

Let M:L:K be **field extensions**. If M:K is **finite** and **normal**, then so is M:L. (Corollary 7.1.6)

Let M:L:K be **field extensions**, and let M:K be **algebraic**. Then: M:K is **separable** $\implies M:L, L:K$ are **separable** (Lemma 7.2.16)

each $M: L_j$ is finite, normal and separable. Now, by the Fundamental Theorem of Galois Theory, since $L_i: L_{i-1}$ is normal, $Gal(M: L_i)$ is a normal subgroup of $Gal(M: L_{i-1})$, and

$$\frac{Gal(M:L_{i-1})}{Gal(M:L_i)} \cong Gal(L_i:L_{i-1})$$

By hypothesis, $Gal(L_i:L_{i-1})$ is abelian. Thus, we have a sequence of subgroups:

$$\{e\} = Gal(M:M) \triangleleft \ldots \triangleleft Gal(M:L_1) \triangleleft Gal(M:L_0) = Gal(M:K)$$

where each composition factor is abelian, so Gal(M:K) is solvable.

2.1.4 Lemma: Properties of Compositum

Let M: K be a **field extension** with intermediate fields L_1, L_2 . Then:

- 1. If $L_1: K, L_2: K$ are **finite** and **normal**, then so is $L_1L_2: K$
- 2. If $L_1 : K$ is **finite** and **normal**, then so is $L_1L_2 : L_2$
- 3. $L_1: K$ is **finite** and **normal** with **abelian** Galois group, then so is $L_1L_2: L_2$

(Lemma 9.2.6)

Proof. 1. By normality, $\exists f_1, f_2 \in K[t]$ such that:

$$L_1 = SF_K(f_1) \qquad L_2 = SF_K(f_2)$$

 L_1L_2 is the subfield of M generated by $L_1 \cup L_2$. Hence, it is the subfield of M generated by the roots of f_1 and f_2 , so $L_1L_2 = SF_K(f_1f_2)$ is finite and normal over K.

2. Let $L_1 = SF_K(f)$ for some $f \in K[t]$. Then, using

(a) Let:

• M:S:K be a **field extension**

•

$$0_K \neq f \in K[t]$$

• $Y \subseteq M$

Let S be the **splitting field** of f over K. Then, S(Y) is the **splitting field** of f over K(Y):

$$S = SF_K(f) \implies S(Y) = SF_{K(Y)}(f)$$

(b) Let:

•

$$0_K \neq f \in K[t]$$

• L be a subfield of $SF_K(f)$ containing K, such that:

$$SF_K(f):L:K$$

Then, $SF_K(f)$ is the **splitting field** of f over L:

$$SF_K(f) = SF_L(f)$$

 $(Lemma\ 6.2.14)$

with $S = L_1, Y = L_2$ it follows that:

$$L_1 = SF_K(f) \implies L_1(L_2) = SF_{K(L_2)}(f) : L_1L_2 = SF_{L_2}(f)$$

so L_1L_2 is finite and normal over L_2 .

3. $Gal(L_1L_2:L_2)=Gal_{L_2}(f)$ is isomorphic to a subgroup of $Gal_K(f)=Gal(L:K)$. Hence, if Gal(L:K) is abelian, so is $Gal(L_1L_2:L_2)$.

2.1.5 Lemma: Larger Subfield Containing Finite, Normal and Solvable Extensions

Let L, M be **subfields** of \mathbb{C} , such that $L : \mathbb{Q}, M : \mathbb{Q}$ are **finite**, **normal** and **solvable**. Then, there exists a **subfield** N of \mathbb{C} , such that:

- $N : \mathbb{Q}$ is finite, normal and solvable.
- $L, M \subseteq N$

(Lemma 9.2.7)

Proof. The proof of this is similar to Lemma 5.3.8 on ruler and compass constructions, and employs Lemma 9.2.6 above.

By solvability of $L: \mathbb{Q}, M: \mathbb{Q}$ we have:

$$\mathbb{Q} = L_0 \subset \ldots \subset L_r = L \quad \mathbb{Q} = M_0 \subset \ldots \subset M_s = M$$

where $L_i:L_{i-1},M_j:M_{j-1}$ are normal and have abelian Galois Groups. We claim that the chain of subfields:

$$\mathbb{Q} = L_0 \subseteq \ldots \subseteq L_r = L = LM_0 \subseteq \ldots \subseteq LM_s = LM$$

is finite, normal and solvable $(L, M \subseteq LM \text{ automatically})$.

By Lemma 9.2.6, 2) above, it is definitely finite and normal.

For solvability, we only need to worry about the extensions of the form $LM_j: LM_{j-1}$ (since solvability is immediate for any $L_j: L_{j-1}$). But since $M_j: M_{j-1}$ are finite and normal with abelian Galois Group, by Lemma 9.2.6, 3), it follows that so are $LM_j: LM_{j-1}$, as required.

2.2 The Field of Solvable Complex Numbers

2.2.1 Definition: Field of Solvable Complex numbers

 $\mathbb{Q}^{sol} = \{ \alpha \in \mathbb{C} \mid \alpha \in L, where \ L \ is \ some \ L \leq \mathbb{C}$ $which \ is \ \textbf{finite}, \ \textbf{normal} \ and \ \textbf{solvable} \ over \ \mathbb{Q} \}$

It is in fact a **subfield** of \mathbb{C} . (Lemma 9.2.8)

The field:

Proof. This follows immediately from the fact that if $\alpha, \beta \in \mathbb{Q}^{sol}$, then there exist finite, normal and solvable fields L, M such that $\alpha \in L, \beta \in M$, so by 9.2.7 above, LM is also finite, normal and solvable, and contains α, β , from which it follows that $\alpha - \beta \in LM, \alpha\beta, \alpha^{-1}, 0, 1 \in LM$ so these are all in \mathbb{Q}^{sol} .

2.2.2 Lemma: Solvable Field Closed Under nth Roots

Let $\alpha \in \mathbb{C}$ and $n \geq 1$. If $\alpha^n \in \mathbb{Q}^{sol}$, then $\alpha \in \mathbb{Q}^{sol}$. (Lemma 9.2.9)

Proof. Let $a = \alpha^n \in \mathbb{Q}^{sol}$. Choose a subfield K of \mathbb{C} , such that $a \in K$ with $K : \mathbb{Q}$ finite, normal and solvable. We prove this in 2 steps. Firstly, we enlarge K to be a field where $t^n - 1$ splits. Then, we adjoin conjugates of a.

(1) Enlarge K

Let $L = SF_K(t^n - 1)$. Since $K : \mathbb{Q}$ is finite and normal, $\exists f \in K[t]$ such that $K = SF_{\mathbb{Q}}(f)$. Hence, we must have that $L = SF_{\mathbb{Q}}(f(t)(t^n - 1))$, so $L : \mathbb{Q}$ is finite and normal. We must have that $Gal_K(t^n - 1)$ is isomorphic to a subgroup of $Gal_{\mathbb{Q}}(t^n - 1)$, which is abelian. Thus, L : K is a normal extension with an abelian Galois Group. Since $K : \mathbb{Q}$ is solvable by hypothesis, we have a series $\mathbb{Q} \subseteq K \subseteq L$ with normal composition factors and abelian Galois Groups, so $L : \mathbb{Q}$ is solvable. Thus, $L : \mathbb{Q}$ is a subfield of \mathbb{C} containing a, which is finite, normal, solvable and $t^n - 1$ splits in it.

(2) Adjoin Conjugates

Let $m \in \mathbb{Q}[t]$ be the minimal polynomial of a over \mathbb{Q} and put $M = SF_L(m(t^n)) \subseteq \mathbb{C}$. Then, $\alpha \in m$, since $m(\alpha^n) = m(a) = 0$. We show that $M : \mathbb{Q}$ is finite, normal and solvable. $M : \mathbb{Q}$ is finite and normal, as $M = SF_{\mathbb{Q}}(gm(t^n))$, where g is such that $L = SF_{\mathbb{Q}}(g)$, since L is finite and normal. Moreover, M : L is a splitting field extension, so it is also finite and normal. To show that $M : \mathbb{Q}$ is solvable, it is enough to show that M : L is solvable (since $L : \mathbb{Q}$ is solvable, we can just "join" their respective field extensions). Since $L : \mathbb{Q}$ is normal, and $a \in L$, its minimal polynomial m splits in L, say:

$$m(t) = \prod_{i=1}^{r} (t - a_i), \quad a_i \in L$$

Define subfiels $L_0 \subseteq \ldots \subseteq L_r$ of \mathbb{C} by:

$$L_0 = L$$

$$L_1 = SF_{L_0}(t^n - a_1)$$

$$\vdots$$

$$L_R = SF_{L_{r-1}}(t^n - a_r)$$

Hence:

$$L_i = L (\beta \in M \mid \beta^n \in \{a_1, \dots, a_i\})$$

so in particular $L_r = M$. Now, $L_i : L_{i-1}$ is a splitting field extension, so it is finite and normal. $Gal(L_i : L_{i-1})$ is abelian, since $t^n - 1$ splits in $L \subseteq L_{i-1}$ (and applying Lemma 9.1.8). Hence, M : L will be solvable. Since $\alpha \in M$ and M is finite, normal and solvable, $\alpha \in \mathbb{Q}^{sol}$.

2.2.3 Proposition: Radicals are Subset of Solvables

Every radical number is contained in some subfield of \mathbb{C} that is a finite, normal and solvable extension of \mathbb{Q} . That is:

$$\mathbb{Q}^{rad}\subseteq\mathbb{Q}^{sol}$$

(Proposition 9.2.12)

In fact, the above is actually an equality, but the inclusion is all we really need.

By Lemma 9.2.8 and 9.2.9, \mathbb{Q}^{sol} is a subfield of \mathbb{C} such that if $\alpha^n \in \mathbb{Q}^{sol}$ then $\alpha \in \mathbb{Q}^{sol}$. All elements of \mathbb{Q}^{rad} satisfy this, by definition.

2.3 Theorem: Polynomials Solvable by Radicals Implies Galois Group Solvable

Let $f \in \mathbb{Q}[t]$ be non-zero. If f is **solvable by radicals**, then $Gal_{\mathbb{Q}}(f)$ is **solvable**. (Theorem 9.2.13)

Proof. Assume f is solvable by radicals. Then, its roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are radical, so $\alpha_i \in \mathbb{Q}^{rad} \subseteq \mathbb{Q}^{sol}$. Hence, each root is contained in some subfield of \mathbb{C} that is finite, normal and solvable over \mathbb{Q} . By Lemma 9.27, there is a subfield M of \mathbb{C} which if finite, normal and doslvable over \mathbb{Q} which contains $\alpha_1, \ldots, \alpha_n$. Then, it follows that:

$$\mathbb{Q}(\alpha_1,\ldots,\alpha_n) = SF_{\mathbb{Q}}(f) \subseteq M$$

Now, since $M:\mathbb{Q}$ is solvable, by Lemma 9.2.4, $Gal(M:\mathbb{Q})$ is solvable. Moreover, $SF_{\mathbb{Q}}(f):\mathbb{Q}$ is a normal extension of \mathbb{Q} , so it's Galois Group is a normal subgroup of $Gal(M:\mathbb{Q})$. Since $Gal(M:\mathbb{Q})$ is solvable, $Gal(SF_{\mathbb{Q}}(f):\mathbb{Q})=Gal_{\mathbb{Q}}(f)$ is solvable.

3 Worked Example: Polynomial not Solvable by Radicals

3.1 Preliminary Lemmas

3.1.1 Lemma: Degree of Irreducible Divides Order of Galois Group

Let $f \in K[t]$ be irreducible, with K a field. If $SF_K(f) : K$ is **separable**, then $\deg(f)$ divides $|Gal_K(f)|$. (Lemma 9.3.1)

Proof. Let $\alpha \in SF_K(f)$ be a root of f. By irreducibility, the Tower Law and separability:

$$|Gal_K(f)| = [SF_K(f) : K] = [SF_K(f) : K(\alpha)][K(\alpha) : K] = [SF_K(f) : K(\alpha)] \deg(f)$$

as required.

3.1.2 Lemma: Generating the Symmetric Group

For $n \geq 2$, S_n is generated by (12) and (12...n). (Lemma 9.3.2)

Proof. It is a fact that S_n is generated by adjacent transpositions $(12), (23), \ldots, (n-1 n)$. It is thus sufficient to show that $(12), (12 \ldots n)$ generate these transpositions. But using conjugation over S_n , it follows that if $\sigma = (12), \tau = (12 \ldots n)$:

$$\tau^{j} \sigma \tau^{-j} = (\tau^{j}(1) \ \tau^{j}(2)) = (j \ j+1)$$

as required.

3.1.3 Lemma: Galois Group of Prime Degree Polynomial

Let p be **prime**, and $f \in \mathbb{Q}[t]$ be such that:

- $\deg(f) = p$
- f has exactly p-2 real roots

Then:

$$Gal_{\mathbb{Q}}(f) \cong S_p$$

(Lemma 9.3.3)

Proof. $char(\mathbb{Q} = 0 \text{ and } f \text{ irreducible, so it is separable and has p distinct roots in <math>\mathbb{C}$. By

Let f be a non-zero polynomial over a field K, with k distinct roots:

$$\alpha_1, \ldots, \alpha_k \in SF_K(f)$$

Then:

 $\{\sigma \mid \sigma \in S_k, \ (\alpha_1, \dots, \alpha_k) \ and \ (\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(k)}) \ are \ conjugate \ over \ K\}$

is a **subgroup** of S_k , **isomorphic** to $Gal_K(f)$. (Proposition 6.3.10)

the action of $Gal_{\mathbb{Q}}(f)$ on the roots defines an isomorphism between $Gal_{\mathbb{Q}}(f)$ and a subgroup H of S_p . By Lemma 9.3.1 above, by irreducibility and separability, it follows that $\deg(f) = p$ divides $|Gal_{\mathbb{Q}}(f)| = |H|$.

By Cauchy's Theorem, H has an elment σ of order p. The order of elements in S_n is given by the lowerst common multiple of the cycle orders of elements, so it follows that σ must be a p-cycle. Now, complex conjugation is an automorphism of $SF_{\mathbb{Q}}(f)$ over \mathbb{Q} . Since exactly 2 of the roots of f are non-real, complex conjugation transposes them, fixing the rest. Thus, H contains both a p-cycle σ and a transposition τ .

Without loss of generality, let $\tau = (12)$. As a p-cycle, $\exists r \in [1, p-1]$ such that $\sigma^r(1) = 2$. Since p is prime, σ^r must also have order p (again, using lowest common multiple), and so, is a p-cycle. Hence, without loss of generality, $\sigma^r = (12 \dots p)$. Since $(12), (12 \dots p) \in H$, we must have that $H = S_p$, so $Gal_{\mathbb{Q}}(f) \cong S_p$.

3.2 Theorem: Solvability by Radicals of Degree 5 Polynomials

Not every polynomial over \mathbb{Q} of degree 5 is solvable by radicals. (Theorem 9.3.5)

Proof. We claim that $f(t) = t^5 - 6t + 3$ has Galois Group S_5 (by using Lemma 9.3.3 above), which isn't solvable. Then, by Theorem 9.2.13, f won't be solvable by radicals.

By Eisenstein with p = 3, f is irreducible. Moreover, $\deg(f) = 5$, which is prime. We need to show that f has exactly 3 real roots. Thinking of f as a function $\mathbb{R} \to \mathbb{R}$, then:

- $\lim_{x\to-\infty} f(x) = -\infty$
- f(0) > 0
- f(1) < 0
- $\lim_{x\to\infty} f(x) = \infty$

By continuity of f over \mathbb{R} , it follows by the Intermediate Value Theorem that f has at least 3 real roots (one on $(-\infty,0)$, one on (0,1) and one on $(1,\infty)$). Computing the derivative, $f'(x) = 5x^4 - 6$, f' has only 2 real roots $(\pm \sqrt[4]{6/5})$. Now, recall **Rolle's Theorem**:

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b], differentiable on (a,b) and with f(a)=f(b). Then, $\exists c \in (a,b)$ such that f'(c)=0.

Since f' only has 2 real roots, there can be at most 3 roots $a_1 < a_2 < a_3$, whereby we must have that $-\sqrt[4]{6/5} \in [a_1, a_2]$ and $\sqrt[4]{6/5} \in [a_2, a_3]$. Hence, f has exactly 3 roots, so f satisfies the conditions of Lemma 9.3.3, so f isn't solvable by radicals.

Non-solvability by radicals can also apply to polynomials of degree 5 with Galois Group A_5 , which isn't solvable. For example, $f = t^5 + 20t + 16$.