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Based on the notes by Tom Leinster, Chapter 9

1 Radical Complex Numbers
1.1 Definition: Field of Radicals

A complex number is radical if it belongs to Q*?, the smallest subfield
of C such thatVo € C, if In > 1: a" € Q", then o € Q.

In other words, Q%% is the smallest subfield of C which is closed under the
usual arithmetic operations (addition, subtraction, multiplication, division

and nth roots).
(Definition 9.1.2)

This relies on there even existing such a subfield. That is, assuming that there are subfield X1, Xo, ...
satisfying closure under arithmetic operations, does their intersection also satisfy this? Call this intersection
I =, X;. Then, this is a subfield, since it is an intersection of subfield. If o™ € I, o™ € X; for any i.
Hence, for any i, a € X;, so a € I, as required.

1.2 Definition: Polynomial Solvable by Radicals

A non-zero f € Qlt] is solvable by radicals if all of its complez roots

are radical.
(Definition 9.1.5)

1.3 Abelian Galois Groups
1.3.1 Lemma: Galois Group of t" — 1 is Abelian

Vn > 1, the group Galg(t" — 1) is abelian.
(Lemma 9.1.6)

Proof. Le tw = e2™/™, Then, t" — 1 has complex roots


https://www.maths.ed.ac.uk/~tl/gt/gt.pdf

so SFp(t" — 1) = Q(w).
Now, let ¢, 8 € Galg(t™ — 1). ¢ permutes roots of t" — 1, and so does 6, so:
J,jEL s plw)=w' Hw)=u’

Hence: N
(pob)(w) =w" = (00p)(w)
Since SFyp(t™ — 1) = Q(w), it must then be the case that by:

Let My, My be extensions of a field K, and let:
Sovw : Ml — M2

be homomorphisms over K.
LetY be a subset of My, such that My = K(Y'). Then:

Va €Y, pla) = (a) = o=1

In other words, knowing the behaviour of ¢, on'Y is sufficient to under-

stand p, 1 on all of M.
(Lemma 4.3.6)

pol =00, so Galg(t" — 1) is abelian. O

1.3.2 Lemma: Galois Group of t" — a is Abelian

Let K be a field andn > 1. Ift" — 1 splits in K, thenVa € K, Galg (t" —

a) is abelian.
(Lemma 9.1.8)

This seems restrictive at first, since for example, t" — 1 doesn’t split in Q or even R when n > 2. For
example, GalQ(t3 —2) = S5 which isn’t ableian.. However, this won’t matter for later arguments.

Proof. If a = 0K, then Galk (t"—a) is trivial. Hence, assume otherwise. Pick a root of t"—a, £ € SFk (t"—a).
If v is any other root, then:
(-2
v a

Hence, &/v is a root of t" — 1. Since t™ — a splits in K, then {/v € K. Since £ € SFg(t" —a), but {/v € K,
we must have that SFk (t" — a) = K(§). Then, if ¢,0 € Galk (t" — a), since ¢ acts by permuting roots, it

follows that ¢(§)/¢ € K, so:
. _ o2&\ _ ) _ 2()0(E)
016 =0 ( £e) = 20 = 2
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With a similar argument, it can be shown that:

e €0

(o)) ¢
Again using Lemma 4.3.6, since (fo)(§) = (po00)(§) and SFk(t" —a) = K (&), it follows that wof = o,
so Galk (t" — a) is abelian. O

1.3.3 Exercises
1. [Exercise 9.1.10 What does the proof of Lemma 9.1.8 tell you about the eigenvectors and

eigenvalues of the elements of Galg (t" — a).

Notice, we have that:
p)/feK = JkeK : (&) =k§

In other words, the roots of ¢ —a are eigenvectors of the elements of the Galois Group; their eigenvalues
are elmeents in K.

2 From Solvable Polynomials to Solvable Groups

2.1 Solvable Extensions

2.1.1 Definition: Solvable Field Extension

Let M : K be a finite, normal, separable extension. Then, M.K is
solvable if there exists r > 0 and intermediate fields:

K=L,CL,C...CL. =M
such that Vi € [1,7]:
e L;:L;_11is normal
o Gal(L; : L;_1) is abelian
(Definition 9.2.1)

2.1.2 Example: t" —a Yields Solvable Extension

Notice, if a € Q,n > 1, then SFp(t" — a).Q is finite, normal and separable, as it is a splitting field over a
field of characteristic 0. We claim that it is solvable.

If a =0, then SFg(t" —a) = Q, and Q : Q is solvable.

If a # 0, let € be a complex root, and let w = €*™/™. The roots of t" — a are &,w¢,...,w" &, This
implies that Vi € [0,n — 1],w’ € SFy(t" — a), since (w'¢)/é = w'. In particular, t® — 1 splits in SFu(t" — a),
so:

QcC SFQ(L‘” - 1) - SFQ(t" - a)
Now, SFp(t™ — 1) : Q is normal, and Galg(t™ — 1) is abelian. Moreover, SFp(t™ — a) : SFp(t" — 1) is also
normal (it is a splitting field extension of t" — a over SFy(t"™ — 1)). Moreover, Galg (t" — a) is abelian if
t" — 1 splits over K. Using K = SFp(t" — 1) this trivially follows. Hence, SFgp(t" — a) : Q is a solvable
extension.
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2.1.3 Lemma: Solvable Extension Iff Solvable Galois Group

Let M : K ve a finite, normal, separable extension. Then:
M : K is solvable <— Gal(M : K) is solvable
(Lemma 9.2.4)

Proof. We only prove the ( =) direction, as that is all we really need, although the ( <= ) direction should
be fairly similar.

Recall, a group G is solvable if it contains a subnormal series Gy = {eg} <G1 <...<4 G, = G of normal
subgroups, such that G;41(G; is abelian.

Now, suppose M : K is solvable. Then there are intermediate fields:
K=LyCLy4C...CL., =M
such that Vi € [1,7]:
e L;:L; 1 is normal
e Gal(L;: L;—) is abelian
By

Let M : L : K be field extensions. If M : K is finite and normal,

then sois M : L.
(Corollary 7.1.6)

Let M : L : K be field extensions, and let M : K be algebraic. Then:

M : K is separable —> M : L, L: K are separable
(Lemma 7.2.16)

each M : L; is finite, normal and separable. Now, by the Fundamental Theorem of Galois Theory, since
L;: L;—; is normal, Gal(M : L;) is a normal subgroup of Gal(M : L;_1), and

Gal(M : Li_1)

Gal(r Ly - Collbi Lic)

By hypothesis, Gal(L; : L;_1) is abelian. Thus, we have a sequence of subgroups:
{e} =Gal(M : M)<...<4Gal(M : L) <Gal(M : Ly) = Gal(M : K)

where each composition factor is abelian, so Gal(M : K) is solvable. O
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2.1.4 Lemma: Properties of Compositum

Let M : K be a field extension with intermediate fields Ly, Ly. Then:
1. If Ly : K, Ly : K are finite and normal, then so is L1Ls : K
2. If Ly : K is finite and normal, then so is L1Ls : Lo

3. Ly : K is finite and normal with abelian Galois group, then so is
L1L2 5 Lg

(Lemma 9.2.6)

Proof. 1. By normality, 3f1, fo € K[t] such that:
Ly =SFg(f1)  L2=SFk(f2)

Ly Ly is the subfield of M generated by L; U Lo. Hence, it is the subfield of M generated by the roots
of f1 and fs, so L1 Ly = SFk(f1f2) is finite and normal over K.

2. Let Ly = SFk(f) for some f € K[t]. Then, using
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(a) Let:
e M :S: K bea field extension

Ox # f € K[t]
e YCM

Let S be the splitting field of f over K. Then, S(Y') is the
splitting field of f over K(Y):

S=8Fk(f) = S(Y)=5SFkx(f)

(b) Let:

Ox # f € K[t]
o L be a subfield of SFk(f) containing K, such that:

SF(f):L: K
Then, SFx(f) is the splitting field of f over L
SFx(f) = SFi(f)
(Lemma 6.2.14)

with S = L1,Y = Lo it follows that:
L, = SFK(f) - Ll(LQ) = SFK(Lg)(f) s LiLy = SFL2 (f)
so L1Ls is finite and normal over L.

3. Gal(L1Ls : Ls) = Galp,(f) is isomorphic to a subgroup of Galg(f) = Gal(L : K). Hence, if
Gal(L : K) is abelian, so is Gal(L1Ls : Lo).
O

2.1.5 Lemma: Larger Subfield Containing Finite, Normal and Solvable Extensions

Let L, M be subfields of C, such that L : Q, M : Q are finite, normal
and solvable. Then, there exists a subfield N of C, such that:

e N :Q is finite, normal and solvable.
e LMCN
(Lemma 9.2.7)
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Proof. The proof of this is similar to Lemma 5.3.8 on ruler and compass constructions, and employs Lemma
9.2.6 above.

By solvability of L : Q, M : Q we have:
Q=LyC...CL. =L Q=MyC...CM,=M
where L; : Lj_1, Mj; : M;_; are normal and have abelian Galois Groups. We claim that the chain of subfields:
Q=LyC...CL.=L=LMyC...CLM;=LM
is finite, normal and solvable (L, M C LM automatically).
By Lemma 9.2.6, 2) above, it is definitely finite and normal.
For solvability, we only need to worry about the extensions of the form LM; : LM;_; (since solvability

is immediate for any L, : L;_1). But since M; : M;_; are finite and normal with abelian Galois Group, by
Lemma 9.2.6, 3), it follows that so are LM, : LM;_4, as required. O

2.2 The Field of Solvable Complex Numbers
2.2.1 Definition: Field of Solvable Complex numbers

The field:

Q*' ={a e C|ac L, where L is some L < C
which is finite, normal and solvable over Q}

It is in fact a subfield of C.
(Lemma 9.2.8)

Proof. This follows immediately from the fact that if o, 3 € Q*%, then there exist finite, normal and solvable
fields L, M such that o € L, 3 € M, so by 9.2.7 above, LM is also finite, normal and solvable, and contains
a, B, from which it follows that « — 8 € LM, a8, *,0,1 € LM so these are all in Q%°. O

2.2.2 Lemma: Solvable Field Closed Under nth Roots

Leta € Candn > 1. Ifa” € Q*%, then o € Q*°.
(Lemma 9.2.9)
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Proof. Let a = a™ € Q*°'. Choose a subfield K of C, such that a € K with K : Q finite, normal and solvable.
We prove this in 2 steps. Firstly, we enlarge K to be a field where ¢t — 1 splits. Then, we adjoin conjugates
of a.

@ Enlarge K

Let L = SFg(t™ —1). Since K : Q is finite and normal, 3f € K[t] such that K = SFy(f). Hence, we
must have that L = SFu(f(t)(t" — 1)), so L : Q is finite and normal. We must have that Galg (t" — 1)
is isomorphic to a subgroup of Galg(t" — 1), which is abelian. Thus, L : K is a normal extension with an
abelian Galois Group. Since K : Q is solvable by hypothesis, we have a series Q C K C L with normal
composition factors and abelian Galois Groups, so L : Q is solvable. Thus, L : Q is a subfield of C containing
a, which is finite, normal, solvable and ¢ — 1 splits in it.

@ Adjoin Conjugates

Let m € QJt] be the minimal polynomial of a over Q and put M = SFy(m(t")) € C. Then, a € m,
since m(a™) = m(a) = 0. We show that M : Q is finite, normal and solvable. M : Q is finite and normal,
as M = SFgp(gm(t™)), where g is such that L = SFy(g), since L is finite and normal. Moreover, M : L is a
splitting field extension, so it is also finite and normal. To show that M : Q is solvable, it is enough to show
that M : L is solvable (since L : Q is solvable, we can just “join” their respective field extensions). Since
L : Q is normal, and a € L, its minimal polynomial m splits in L, say:

T

m(t)=[[(t—a), a€l

i=1
Define subfiels Lo C ... C L, of C by:

Lo=1L
Ll = SFLO(tn — al)

LR = SFLril(tn - (lr)

Hence:
Ll' :L(ﬁEM | ﬁn S {al,...,ai})

so in particular L, = M. Now, L; : L;_; is a splitting field extension, so it is finite and normal. Gal(L; : L;_1)
is abelian, since t" — 1 splits in L C L;_; (and applying Lemma 9.1.8). Hence, M : L will be solvable. Since
a € M and M is finite, normal and solvable, o € Q%°. 0O

2.2.3 Proposition: Radicals are Subset of Solvables

Every radical number is contained in some subfield of C that is afinite,
normal and solvable extension of Q. That is:

@’r‘ad C Qsol
(Proposition 9.2.12)
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In fact, the above is actually an equality, but the inclusion is all we really need.

By Lemma 9.2.8 and 9.2.9, Q°° is a subfield of C such that if o™ € Q% then o € Q*°'. ALl elements of
QU satisfy this, by definition.

2.3 Theorem: Polynomials Solvable by Radicals Implies Galois Group Solvable

Let f € Q[t] be non-zero. If f is solvable by radicals, then Galg(f) is

solvable.
(Theorem 9.2.13)

Proof. Assume f is solvable by radicals. Then, its roots ai,...,a, € C are radical, so a; € Q¢ C Q*°.
Hence, each root is contained in some subfield of C that is finite, normal and solvable over Q. By Lemma
9.27, there is a subfield M of C which if finite, normal an doslvable over Q which contains a4, ..., a,. Then,

it follows that:
Qa,...,a,) =SFy(f) S M

Now, since M : Q is solvable, by Lemma 9.2.4, Gal(M : Q) is solvable. Moreover, SFg(f) : Q is a normal
extension of Q, so it’s Galois Group is a normal subgroup of Gal(M : Q). Since Gal(M : Q) is solvable,
Gal(SFy(f) : Q) = Galg(f) is solvable. O

3 Worked Example: Polynomial not Solvable by Radicals

3.1 Preliminary Lemmas

3.1.1 Lemma: Degree of Irreducible Divides Order of Galois Group

Let f € K[t] be irreducible, with K a field. If SFk(f) : K is separable,

then deg(f) divides |Galk(f)|.
(Lemma 9.3.1)

Proof. Let o € SFk(f) be a root of f. By irreducibility, the Tower Law and separability:
|Galk (f)| = [SFx(f) : K] = [SFk(f) : K(a)][K(e) : K] = [SFk(f) : K(a)]deg(f)

as required.
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3.1.2 Lemma: Generating the Symmetric Group

Forn > 2,5, is generated by (12) and (12...n).
(Lemma 9.3.2)

Proof. Tt is a fact that S, is generated by adjacent transpositions (12), (23),...,(n—1n). It is thus sufficient
to show that (12),(12...n) generate these transpositions. But using conjugation over S,,, it follows that if
o=(12),7=(12...n):

rlgri = (F(1) P(2)) = (G 3 + 1)

as required. O

3.1.3 Lemma: Galois Group of Prime Degree Polynomial

Let p be prime, and f € Q[t] be such that:

» deg(f) =p
o f has exactly p — 2 real roots
Then:

Galg(f) = 5y
(Lemma 9.3.3)

Proof. char(Q = 0 and f irreducible, so it is separable and has p distinct roots in C. By

Let f be a non-zero polynomial over a field K , with k distinct

roots:
Ay, ..., Ok eSFK(f)
Then:
{o |0 €Sk (ai,...,o) and (asq), - - -, Qo)) are conjugate over K}

is a subgroup of Sy, isomorphic to Galk(f).
(Proposition 6.5.10)

the action of Galg(f) on the roots defines an isomorphism between Galg(f) and a subgroup H of S,. By
Lemma 9.3.1 above, by irreducibility and separability, it follows that deg(f) = p divides |Galg(f)| = |H].
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By Cauchy’s Theorem, H has an elment o of order p. The order of elements in S,, is given by the lowerst
common multiple of the cycle orders of elements, so it follows that ¢ must be a p-cycle. Now, complex
conjugation is an automorphism of SFp(f) over Q. Since exactly 2 of the roots of f are non-real, complex
conjugation transposes them, fixing the rest. Thus, H contains both a p-cycle o and a transposition 7.

Without loss of generality, let 7 = (12). As a p-cycle, 3r € [1,p—1] such that ¢"(1) = 2. Since p is prime,

o” must also have order p (again, using lowest common multiple), and so, is a p-cycle. Hence, without loss
of generality, " = (12...p). Since (12), (12...p) € H, we must have that H = S, so Galg(f) = S,. O

3.2 Theorem: Solvability by Radicals of Degree 5 Polynomials

Not every polynomial over Q of degree 5 is solvable by radicals.

(Theorem 9.3.5)

Proof. We claim that f(t) = t> — 6t + 3 has Galois Group Ss (by using Lemma 9.3.3 above), which isn’t
solvable. Then, by Theorem 9.2.13, f won’t be solvable by radicals.

By Eisenstein with p = 3, f is irreducible. Moreover, deg(f) = 5, which is prime. We need to show that
f has exactly 3 real roots. Thinking of f as a function R — R, then:

e lim, o f(z) = —00
e f(0)>0

« f(1) <0

o lim, o f(z) = 00

By continuity of f over R, it follows by the Intermediate Value Theorem that f has at least 3 real roots (one
on (—00,0), one on (0,1) and one on (1,00)). Computing the derivative, f/(x) = 5z* — 6, f’ has only 2 real
roots (£+/6/5). Now, recall Rolle’s Theorem:

Let f :
fla) =

)b] — R be continuous on [a, b], differentiable on (a,b) and with

la,
f(b). Then, 3c € (a,b) such that f'(c) = 0.

Since f’ only has 2 real roots, there can be at most 3 roots a; < as < asz, whereby we must have that
—+/6/5 € [a1,az] and /6/5 € [az,a3]. Hence, f has exactly 3 roots, so f satisfies the conditions of Lemma
9.3.3, so f isn’t solvable by radicals. O

Non-solvability by radicals can also apply to polynomials of degree 5 with Galois Group As, which isn’t
solvable. For example, f = t° 4 20t + 16.
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