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Based on the notes by Tom Leinster, Chapter 8

1 The Galois Correspondence
1.1 Terminology for Galois Correspondence
1.1.1 Definition: Intermediate Fields

Let M : K be a field extension, where we view K as a subfield of M .
An intermediate field of M : K is a subfield of M containing K.
We write:

F = {intermediate fields of M : K}
If L ∈ F , we can draw such fields by placing bigger fields higher up:

M

L

K

1.1.2 Definition: Subgroups of the Galois Group

Let M : K be a field extension, where we view K as a subfield of M .
We write:

G = {subgroups of Gal(M : K)}
If H ∈ G , we can draw such subgroups by placing bigger subgroups
lower down:

{ι}

H

Gal(M : K)
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1.1.3 Definition: The Fix Function

Define a function:

Fix : G → F

H 7→ Fix(H)

• Why does the Fix function define an intermediate field of M : K?

– since H ∈ G , this implies that:
H ⊆ Gal(M : K)

– every element of Gal(M : K) fixes every element of K, so:

K ⊆ Fix(H)

– since Fix(H) is automatically a subfield of M , by definition, it is an intermediate field:

Fix(H) ∈ F

1.1.4 Definition: The Gal Function

Define a function:

Gal(M : −) : F → G

L 7→ Gal(M : L)

• Why does the Gal function define a subgroup of Gal(M : K)?

– if L ∈ F , then Gal(M : L) contains all automorphisms φ of M that fix each element of L
– since K ⊆ L, any such φ will fix K, so:

Gal(M : L) ≤ Gal(M : K)

so clearly:
Gal(M : L) ∈ G
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1.1.5 Definition: The Galois Correspondence

Let M : K be an extension. The Galois Correspondence for M : K is
given by:

F
Fix−�=======�−

Gal(M :−)
G

when these functions are mutually inverse, such that for all L ∈
F , H ∈ G :

L = Fix(Gal(M : L)) H = Gal(M : Fix(H))

• When will the Galois Correspondence fail? That is, when will Gal and Fix not be mutual
inverses?

– consider the extension:
Q(

3
√
2) : Q

– by the Tower Law, since [M : K] = 3, this extension has no non-trivial intermediate fields, so:

F = {M,K}

– we have seen that Gal(Q( 3
√
2) : Q) is trivial (since an element of the Galois Group can only send

3
√
2 to itself)

– hence, |G | = 1, whereas |F | = 2, so no correspondence can exist

• Where does the Galois Correspondence fail above?

– if we compute:
Fix(Gal(Q(

3
√
2) : Q))

since Gal(Q( 3
√
2) : Q) is trivial, this is nothing but:

Fix(Gal(Q(
3
√
2) : Q)) = Fix({idQ( 3√2)}) = Q(

3
√
2) 6= Q

• What is the consequence of having a correct Galois Correspondence?

– if the Galois Correspondence is correct (i.e Gal and Fix are mutually inverse), then there
is a one-to-one correspondence between subgroups of the Galois Group Gal(M : K), and
intermediate fields of the extension M : K

– the Fundamental Theorem of Galois Theory gives us conditions under which they are mu-
tually inverse
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1.1.6 Lemma: Gal and Fix for All Extensions

Let M : K be a field extension. Then:

1. For L1, L2 ∈ F :

L1 ⊆ L2 =⇒ Gal(M : L2) ⊆ Gal(M : L1)

Similarly, for H1, H2 ∈ G :

H1 ⊆ H2 =⇒ Fix(H2) ⊆ Fix(H1)

2. For L ∈ F , H ∈ G :

L ⊆ Fix(H) ⇐⇒ H ⊆ Gal(M : L)

3. For all L ∈ F :
L ⊆ Fix(Gal(M : L))

Similarly, for all H ∈ G :

H ⊆ Gal(M : Fix(H))

(Lemma 8.1.2)

Proof.

1

Notice, this makes intuitive sense: if L1 is a smaller subfield than L2, then it is easier to find automor-
phisms of M which fix all of L1, instead of fixing all of L2. Similarly, if H1 is a smaller subgroup than H2,
it is more likely that all of its elements fix “stuff” in M . Diagrammatically:

M

L2

L1

K

{ι}

Gal(M : L2)

Gal(M : L1)

Gal(M : K)

To be more explicit, assume that L1, L2 ∈ F . Let φ ∈ Gal(M : L2). Since φ is an automorphism of M
over L2, it fixes L2. But since L1 ⊆ L2, φ also fixes L1. Hence, φ ∈ Gal(M : L1), so:

Gal(M : L2) ⊆ Gal(M : L1)
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as required.

Similarly, assume that H1 ⊆ H2, and let α ∈ Fix(H2). Then, by definition, for any θ ∈ H2:

θ(α) = α

But H1 ⊆ H2, so for any θ ∈ H1:
θ(α) = α

so α ∈ Fix(H1) and:
Fix(H2) ⊆ Fix(H1)

as required.

2

Notice, L ⊆ Fix(H) if and only if:

∀α ∈ L, ∀θ ∈ H, θ(α) = α

Similarly, H ⊆ Gal(M : L) if and only if:

∀θ ∈ H, ∀α ∈ L, θ(α) = α

Thus, both statements are equivalent.

3

This follows immediately from 2. For the first statement, let H = Gal(M : L), and for the second
statement take L = Fix(H).

1.1.7 Exercises

1. [Exercise 8.1.8] Let p be a prime number, let K = Fp(u) and let M be the splitting field of
tp − u over K. Prove that Gal(M : −) and Fix are not mutually inverse.
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2 The Fundamental Theorem of Galois Theory
2.1 Theorem: Fundamental Theorem of Galois Theory

Let M : K be a finite, normal, separable extension. Write:

F = {intermediate fields of M : K}

G = {subgroups of Gal(M : K)}

1. The functions:

Gal(M : −) : F → G Fix : G → F

are mutually inverse.

2.
∀L ∈ F , |Gal(M : L)| = [M : L]

∀H ∈ G , [M : Fix(H)] = |H|

3. Let L ∈ F . Then:

L is a normal extension of K
⇐⇒

Gal(M : L) is a normal subgroup of Gal(M : K)

Moreover, in that case:

Gal(M : K)

Gal(M : L)
∼= Gal(L : K)

(Theorem 8.2.1)

• What sort of extensions does the Fundamental Theorem of Galois Theory talk about?

– we require that M : K be finite, normal and separable
– we know that all finite and normal extensions are splitting fields
– for separability, we operate either over fields of characteristic 0, or finite fields
– thus, this theorem is about splitting fields which are either finite, or have characteristic 0

Proof. Note the following:
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• Since M : K is finite, normal and separable, for every L ∈ F , the extension M : L is finite and normal,
as:

Let M : L : K be field extensions. If M : K is finite and normal,
then so is M : L.
(Corollary 7.1.6)

Moreover, it is separable:

Let M : L : K be field extensions, and let M : K be algebraic. Then:

M : K is separable =⇒ M : L, L : K are separable

(Lemma 7.2.16)

• Gal(M : K) is a finite group by

For every finite, normal, separable extension M : K:

|Gal(M : K)| = [M : K]

(Theorem 7.2.18)

so in particular any subgroup H ∈ G is finite too.

1 & 2

Let H ∈ G . Then:

• by Lemma 8.1.2 above (part 3):

H ⊆ Gal(M : Fix(H)) =⇒ |H| ≤ |Gal(M : Fix(H))|

• by the preamble above, since Fix(H) ∈ F , M : Fix(H) is a finite, normal and separable extension,
and

For every finite, normal, separable extension M : K:

|Gal(M : K)| = [M : K]

(Theorem 7.2.18)

we have that:
|Gal(M : Fix(H))| = [M : Fix(H)]
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• lastly, since H is finite (as Gal(M : K) is), and using

Let M be a field and H a finite subgroup of Aut(M). Then:

[M : Fix(H)] ≤ |H|

(Theorem 7.3.3)

it follows that:
[M : Fix(H)] ≤ |H|

But then, we have the following chain of inequalities:

|H| ≤ |Gal(M : Fix(H))| = [M : Fix(H)] ≤ |H|

But certainly |H| = |H|, so in fact:

|H| = |Gal(M : Fix(H))| = [M : Fix(H)]

Since we have that H ⊆ Gal(M : Fix(H)), it also follows that:

H = Gal(M : Fix(H))

which shows that Gal inverts Fix.
Now, consider L ∈ F .

• if we take H = Gal(M : L) the equality |H| = [M : Fix(H)] above becomes:

[M : Fix(Gal(M : L))] = |Gal(M : L)|

• using

For every finite, normal, separable extension M : K:

|Gal(M : K)| = [M : K]

(Theorem 7.2.18)

we have that:
|Gal(M : L)| = [M : L]

Thus, we have the following chained equality:

[M : Fix(Gal(M : L))] = |Gal(M : L)| = [M : L]

Notice, by using Lemma 8.1.2 (part 3) above, we have that:

L ⊆ Fix(Gal(M : L))

By the Tower Law:

[M : Fix(Gal(M : L))] = [M : L] = [M : Fix(Gal(M : L))][Fix(Gal(M : L)) : L]
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This is true if and only if:

[Fix(Gal(M : L)) : L] = 1 ⇐⇒ L = Fix(Gal(M : L))

which shows that Fix inverts Gal.

Thus, we have shown that Gal and Fix are mutually inverse, and that:

∀L ∈ F , |Gal(M : L)| = [M : L]

∀H ∈ G , [M : Fix(H)] = |H|

as required.

3

We already did most of the work for this when proving part 2 of:

Let M : L : K be a field extension, with M : K finite and normal.
Then:

1. let
φL = {φ(α) | α ∈ L}

then

L : K is a normal extension ⇐⇒ ∀φ ∈ Gal(M : K), φL = L

2. if L : K is a normal extension, then:

• Gal(M : L) is a normal subgroup of Gal(M : K)

•
Gal(M : K)

Gal(M : L)
∼= Gal(L : K)

(Theorem 7.1.15)

We just need to show that if L ∈ F , and Gal(M : L) is a normal subgroup of Gal(M : K), then L is a
normal extension of K (Theorem 7.1.15 already gives us the =⇒ direction and the statement on quotients).

Assume that H = Gal(M : L) is a normal subgroup of Gal(M : K). Then from:

Let M : K be a finite normal extension, and let H be a normal sub-
group of Gal(M : K). Then, Fix(H) : K is normal.
(Proposition 7.3.7)

it follows that Fix(Gal(M : L)) : K is a normal extension. But from 1 , we know that Fix(Gal(M :

L)) = L, so L : K is normal, which is what we wanted to show.
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2.2 Using the Fundamental Theorem
2.2.1 Useful Remarks

1. The Galois Group permutes the roots of polynomials

• the action of GalK(f) on SFK(f) is completely determined by how it operates on the roots of f
in SFK(f):

Let f be a non-zero polynomial over a field K. Then, the action of
GalK(f) on SFK(f) restricts to an action on the set of roots of f in
SFK(f).
(Lemma 6.3.7)

• the action is faithful:

Let f be a non-zero polynomial over a field K. Then, the action of
GalK(f) on the roots of f is faithful.

Recall, G acts faithfully on X if:

∀g, h ∈ G, ∀x ∈ X : gx = hx =⇒ g = h

Equivalently, G acts faithfully if:

∀g ∈ G : gx = x =⇒ g = eG

(Lemma 6.3.8)

2. If k is the number of distinct roots of f in SFK(f), then:

|GalK(f)| | k!

• GalK(f) is isomorphic to a subgroup of Sk:

Let f be a non-zero polynomial over a field K, with k distinct
roots:

α1, . . . , αk ∈ SFK(f)

Then:

{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K}

is a subgroup of Sk, isomorphic to GalK(f).
(Proposition 6.3.10)
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• by Lagrange’s Theorem, the order of the Galois Group divides k!:

Let f be a non-zero polynomial over a field K, with k distinct roots
in SFK(f). Then:

|GalK(f)| | k!
(Corollary 6.3.14)

3. The Galois Group maps conjugates to conjugates (over the base field)

• this is immediate from:

Let M : K be a finite normal extension, and α1, α2 ∈M . Then:

α1, α2 are conjugate over K ⇐⇒ ∃φ ∈ Gal(M : K) : α2 = φ(α1)

In other words, 2 elements are conjugate over K if there is an element of
the Galois Group which maps between them.
(Proposition 7.1.9)

• moreover, 2 elements of M are conjugate if they share the same minimal polynomial:

Let M1,M2 be extensions of a field K. Let:

φ :M1 →M2

be a homomorphism over K:

∀a ∈ K, φ(a) = a

Then, the annihilating polynomials of α ∈ M1 are the same as the
annihilating polynomials of φ(α).
(Example 6.1.4)

4. If f is irreducible, then GalK(f) acts transitively on the roots, so if α, β are roots of f , we can
always find φ which satisfies φ(α) = β

• this is immediate from:
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Let f be an irreducible polynomial over a field K. Then, the action of
GalK(f) on the roots of f is transitive.
In other words, the action of the Galois Group on the set of roots gen-
erates one orbit, so from one root, we can always reach all other roots
through an element of the Galois Group; thus, if X denotes the set of roots
of f :

∀α1, α2 ∈ X, ∃φ ∈ GalK(f) : φ(α1) = α2

(Corollary 7.1.11)

2.2.2 Finding Fixed Fields for a Subgroup

• For a given subgroup, how can you compute its corresponding fixed field explictly?

– let H be a subgroup of Gal(M : K)

– then:
1. Find elements α1, . . . , αr fixed by H. Then:

K(α1, . . . , αr) ⊆ Fix(H)

2. Ensure that:
[M : K(α1, . . . , αr)] = |H|

3. Then, using the Fundamental Theorem, we know that:
[M : Fix(H)] = |H|

so by the Tower Law:
[M : K(α1, . . . , αr)] = [M : Fix(H)] ⇐⇒ K(α1, . . . , αr) = Fix(H)

– this is similar to how in linear algebra, we prove that 2 subspaces are equal by showing that
one is a subset of the other, and they have the same dimension

2.2.3 Corollary: Corollary to the FTGT

Let M : K be a finite, normal, separable extension. Then:

∀α ∈M \K, ∃φ : φ(α) 6= α

where φ is an automorphism of M over K.
(Corollary 8.2.7)

Proof. By the Fundamental Theorem, we have that:
K = Fix(Gal(M : K))

Let α ∈ M \K. Since α 6∈ K, then:
α 6∈ Fix(Gal(M : K))

Thus, none of the elements of the Galois Group fix α, as required.
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2.2.4 Example: Galois Group of Extensions of Prime Degree

Let M : K be a normal, separable extension of prime degree p.

• by the Fundamental Theorem of Galois Theory, it follows that:

|Gal(M : K)| = [M : K] = p

• every group of prime order is cyclic, so:

Gal(M : K) ∼= Cp

• by Lagrange’s Theorem, Gal(M : K) won’t have any (non-trivial) subgroups; similarly, by the
Tower Law, M : K won’t have any (non-trivial) intermediate fields

• hence, we obtain the following correspondence structure:

F = {M,K}

M

K

G = {{ι}, Gal(M : K)}

{ι}

Gal(M : K)

• M is a normal extension of K by construction, and K is a normal extension of K (since if f is an
irreducible polynomial, and f has a root in K, then f must be linear, and this trivially splits in K)

• the trivial subgroup and the group itself are always normal subgroups

2.2.5 Example: Verifying a Known Galois Group

Back in Week 6, we considered the Galois Group of:

f(t) = (t2 + 1)(t2 − 2) ∈ Q[t]

and showed that:
GalQ(f) = C2 × C2

However, this was rather “hacky”, and we now have tools which allow us to better explore the group
structure.

Let:

• M = SFQ(f) = Q(
√
2, i)

• G = Gal(M : K) = GalQ(f)

M is, by construction, finite and normal (since it is a splitting field). It is also separable, since it has
characteristic 0. Hence, the Fundamental Theorem of Galois Theory applies, so:

|G| = [M : K] = [Q(
√
2, i) : Q(

√
2)][Q(

√
2) : Q]

The minimal polynomial of
√
2 over Q is t2 − 2, so:

[Q(
√
2) : Q] = 2
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Similarly, since Q(
√
2) ⊆ R, i has minimal polynomial t2 + 1 over Q(

√
2), so:

[Q(
√
2, i) : Q(

√
2)] = 2

Hence:
|G| = 4

The roots of f are ±
√
2,±i, so the action of G on SFQ(f) restricts to an action on these roots. Moreover,

±
√
2 are conjugate, whereas ±i are conjugate. Thus, for any φ ∈ G, we must have that:

φ(i) = ±i φ(
√
2) = ±

√
2

The choice of sign for where i,
√
2 get sent to thus determine φ entirely, and since |G| = 4, all 4 possibilities

must occur. Thus, define:
G = {ι, φ+−, φ−+, φ−−}

where:
φ+−(

√
2) =

√
2 φ+−(i) = −i

φ−+(
√
2) = −

√
2 φ−+(i) = i

φ−−(
√
2) = −

√
2 φ−−(i) = −i

Each element of G has order 2, and the only group of order 4 with all elements of order 2 is C2 × C2, so:

G ∼= C2 × C2

and we have the following subgroup structure:

For the Galois Correspondence, we now have to find the corresponding intermediate subfields associated
with these subgrouops. To this end, we follow the strategy outlined above: we find elements in M which get
fixed by the subgroups, and adjoin these elements to Q until we have an extension whose degree agrees with
the order of the subgroup. For this case, this is relatively easy:

• by construction:
φ+−(

√
2) =

√
2

so it follows that Q(
√
2) ⊆ Fix(〈φ+−〉). Moreover, [Q(

√
2, i) : Q(

√
2)] = 2. By the Fundamental

Theorem, we also have that [Q(
√
2, i) : Fix(〈φ+−〉] = | 〈φ+−〉 | = 2. Hence, using the Tower Law, it is

clear that:
Q(

√
2) = Fix(〈φ+−〉)

• similar logic then gives:
φ−+(i) = i =⇒ Fix(〈φ−+〉) = Q(i)

φ−−(
√
2i) =

√
2i =⇒ Fix(〈φ−−〉) = Q(

√
2i)
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which then gives us the intermediate field structure:

The Galois Correspondence then tells us that, for example:

Gal(Q(
√
2, i) : Q(i)) = 〈φ−+〉

Every subgroup of an abelian group is normal, so in particular all the intermediate fields lead to normal
extensions.

2.2.6 Example: Working Out the Galois Correspondence for a New Polynomial

We now work with an example that is “big enough”: smaller examples are easy/boring from the perspective of
using the fundamental theorem (as we saw above), whilst larger examples are too complex and would require
too much time. In particular, we want to work out all the details pertaining to the Galois Correspondence
of:

t4 − 2 ∈ Q[t]

Using Eisenstein’s Criterion with p = 2 shows that this is an irreducible polynomial. Finally, let:

G = GalQ(f)

1 The Splitting Field

Let ξ denote the real, positive root of f . It is easy to check that the 4 roots of f are then:

±ξ,±ξi

It helps to build intuition if we plot these 4 roots on the complex plane:

ξi
ξ−ξ

−ξi

The splitting field of f over Q is:
SFQ(f) = Q(ξ, i)

2 The Galois Group

For the Galois Group, we first determine the number of elements it contains, by using the Fundamental
Theorem of Galois Theory. Indeed:

|G| = [Q(ξ, i) : Q] = [Q(ξ, i) : Q(ξ)][Q(ξ) : Q]
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Since t4 − 2 is an irreducible, annihilating polynomial for ξ over Q, it is it’s minimal polynomial, so:

[Q(ξ) : Q] = degQ(ξ) = 4

Moreover, Q(ξ) ⊆ R, so certainly i 6∈ Q(ξ). t2 + 1 is an irreducible, annihilating polynomial for i over Q(ξ),
so:

[Q(ξ, i) : Q(ξ)] = degQ(ξ)(i) = 2

Overall, it follows that:
|G| = [Q(ξ, i) : Q] = 2× 4 = 8

To find its elements, we first note that complex conjugation is certainly a non-trivial automorphism of
Q(ξ, i) over Q; denote it with κ.

We now claim that there exists ρ ∈ G satisfying:

ρ(ξ) = ξi ρ(i) = i

This is motivated by the fact that the roots ±ξ,±ξi are conjugate. Since f is irreducible, G acts transitively
on these roots, thus mapping each root to one of the other roots. In particular, ∃φ ∈ G such that:

φ(ξ) = ξi

Now, t2 + 1 is the minimal polynomial of i over Q, so ±i are conjugate. In particular, since φ is an
automorphism over Q, we must have that:

φ(i) = ±i

If φ(i) = i, then we can set ρ = φ, and the claim is true. Otherwise, φ(i) = −i. Then, we can define
ρ = φ ◦ κ, and then:

(φ ◦ κ)(ξ) = φ(ξ) = ξi (φ ◦ κ)(i) = φ(−i) = −φ(i) = i

The action of ρ, κ on the roots can be visualised:

ξi
ξ−ξ

−ξi

ρ

κ

This action structure is strangely familiar: it highly ressembles that of D4, the set of symmetries of the
square. Notice, κ is an element of order 2, whereas ρ is an element of order 4 (see the diagram). If G is
really the dihedral group, then we should have that:

κρ = ρ−1κ

It is sufficient to check the effect of ρ, κ on ξ, i. Notice, using:
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Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

if φ, θ ∈ G and:

φ(ξ) = θ(ξ) φ(i) = θ(i)

then φ = θ.

φ ∈ G φ(ξ) φ(i)

ι ξ i

ρ ξi i

ρ2 −ξ i

ρ3 = ρ−1 −ξi i

κ ξ −i

κρ −ξi −i

κρ2 −ξ −i

κρ3 = κρ−1 ξi −i

Notice, we have defined 8 elements, each of which act differently on ξ, i, so these 8 elements must be the
8 elements of G. Moreover, computing:

κρ(ξ) = κ(ξi) = −ξi κρ(i) = κ(i) = −i

ρ−1κ(ξ) = ρ−1(ξ) = −ξi ρ−1κ(i) = ρ−1(−i) = −i

Thus, we have that κρ = ρ−1κ, so G ∼= D4, as required.

3 Galois Subgroups
We now look at the subgroup structure of G. By Lagrnage’s Theorem, it follows that any non-trivial

subgroup of G will have order 2 or 4.
The subgroups of order 2 are easy: these are the subgroups generated by elements of order 2, namely:〈

ρ2
〉
, 〈κ〉 , 〈κρ〉 ,

〈
κρ2

〉
,
〈
κρ3

〉
Notice, ρ2 (trivially) commutes with any ρr, and furthermore:

κρ2 = ρ2κ
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by properties of the dihedral group. In other words, ρ2 commutes with every element of G, so
〈
ρ2
〉

will be
a normal subgroup of G. On the other hand, for r ∈ Z, the subgroup 〈κρr〉 won’t be 2 normal, since:

ρ(κρr)ρ−1 = (ρκ)ρr−1

= (κρ−1)ρr−1

= κρr−2 6∈ 〈κρr〉

where for the last step, we use the fact that κρr−2 is never the identity, and:

κρr−2 = κρr ⇐⇒ ι = ρ2

which is false, since ρ has order 4. Hence, G has 5 subgroups of order 2 (isomorphic to C2), but only one of
these is a normal subgroup.

Since ρ has order 4, it generates a subgroup of order 4. In fact, it is the only element of order 4 alongside
ρ3 = ρ−1, and ρ generates ρ3. Hence, there is a single subgroup of order 4 isomorphic to C4, namely:

〈ρ〉 = {ι, ρ, ρ2, ρ3}

The other group of order 4 that exists is C2 × C2. This group is characterised by all of its elements being
its own inverses (it is isomorphic to the Klein 4 group). Any such group must contain ρ2: it must contain
elements of the form κρr, and none of the powers of ρ (aprt from ρ2 are their own inverses). Knowing this,
and using the fact that κ, κρ are their own inverses, it follows that:〈

κ, ρ2
〉
= {ι, κ, ρ2, κρ2} ∼= C2 × C2〈

κρ, ρ2
〉
= {ι, κρ, ρ2, κρ3} ∼= C2 × C2

are the remaining subgroups of order 4.

Finally, notice that if |H| = 4, then |G/H| = 2, which immediately implies that H is a normal subgroup.
Thus, the subgroup structure of G looks like:

4 Intermediate Fields

This is perhaps where most ingenuity is required, as for each subgroup we need to find an element which
gets fixed by its elements. For this, it is sufficient to look at which elements of Q(ξ, i) get fixed by the
generators of the subgroup.

We can start looking at the subgroups of order 2:〈
ρ2
〉
, 〈κ〉 , 〈κρ〉 ,

〈
κρ2

〉
,
〈
κρ3

〉
For convenience, let M = Q(ξ, i).
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• since ρ fixes i, clearly ρ2 fixes it too. However, this isn’t enough, since by the Fundamental Theorem:

[M : Fix(ρ2)] = |
〈
ρ2
〉
| = 2

but
[M : Q(i)] = 4

so we need more elements. One example is:

ρ2(ξ2) = (ρ2(ξ))2 = (−ξ)2 = ξ2

Then, we have that Q(ξ2, i) ⊆ Fix(ρ2):

[M : Q(ξ2, i)] = 2

To see why, we can think of M as (Q(ξ2, i))(ξ). If we look at the minimal polynomial of ξ over Q(ξ2, i),
it will no longer be t4 − 2, but rather:

t2 − ξ2

from which the above degree follows. Thus, by the Tower Law:

Fix(ρ2) = Q(ξ2, i)

• now consider κ. It is easy to see that κ(ξ) = ξ, so Q(ξ) ⊆ Fix(κ). Moreover, we saw above that:

[M : Q(ξ)] = 2

and by the Fundamental Theorem:

[M : Fix(κ)] = | 〈κ〉 | = 2

Thus, by the Tower Law:
Fix(κ) = Q(ξ)

• for κρ, finding a fixed element isn’t as simple. However, if we think about it geometrically, we might
get an idea. κρ represents a rotation by 90º, followed by a reflection. This can be thought of as a
reflection through the diagonals (from top left to bottom right) of a square.

ξi

ξ−ξ

−ξi

Thinking like this, we can pick any element along this diagonal, and it should get fixed by κρ. We
have 2 easy choices for this:

ξ − ξi = ξ(1− i) − ξ + ξi = ξ(i− 1)

We can check that indeed these get fixed (we only check the first one):

κρ(ξ(1− i)) = κ(ξi(1− i)) = κ(ξ(1 + i)) = ξ(1− i)
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Thus, Q(ξ(1− i)) ⊆ Fix(κρ). Now we just need to find:

[M : Q(ξ(1− i))]

Now, ξ(1− i) can’t be the root of a quadratic over Q, since:

(ξ(1− i))2 = ξ2(1− i)2 = ξ2(1− 2i− 1) = −2ξ2i 6∈ Q

Moreover, we must have that [Q(ξ(1− i)) : Q] divides 8 (the degree of [M : Q]), which implies that:

[Q(ξ(1− i)) : Q] ≥ 4 ⇐⇒ [M : Q(ξ(1− i))] ≤ 8/4 = 2

[M : Q(ξ(1 − i))] 6= 1 as M 6= Q(ξ(1 − i)) (ξ isn’t an element of Q(ξ(1 − i))). Hence, we must have
that [M : Q(ξ(1− i))] = 2, so again by the Fundamental Theorem and the Tower Law:

[M : Fix(κρ)] = | 〈κρ〉 | = 2 =⇒ Fix(κρ) = Q(ξ(1− i))

• for the remaining cases, similar arguments can be followed to see that:

– Fix(κρ2) = Q(ξi)

– Fix(κρ3) = Q(ξ(1 + i))

Now, we look at the subgroups of order 4:

〈ρ〉 ,
〈
κ, ρ2

〉
,
〈
κρ, ρ2

〉
• ρ fixes i by definition, so:

Q(i) ⊆ Fix(ρ)

By the Fundamental Theorem:
[M : Fix(ρ)] = | 〈ρ〉 | = 4

Since i 6∈ Q, the minimal polynomial of ξ over Q(i) is still t4 − 2, so:

[M : Q(i)] = 4

and by the Tower Law:
Fix(ρ) = Q(i)

• with identical arguments, one can see that:

– ξ2 is fixed by both κ and ρ2, so:
Fix(

〈
κ, ρ2

〉
) = Q(ξ2)

– ξ2i is fixed by both κρ and ρ2, so:

Fix(
〈
κρ, ρ2

〉
) = Q(ξ2i)

Overall, this results in the following subfield structure:
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5 Normality

The last step in using the Fundamental Theorem is in computing quotients. In particular, the Funda-
mental Theorem tells us that:

Gal(M : Q)

Gal(M : L)
∼= Gal(L : Q)

Considering non-trivial normal intermediate fields L:

• if L = Q(ξ2, i), then:
G/

〈
ρ2
〉 ∼= Gal(Q(ξ2, i) : Q)

Using Lagrange’s Theorem, we see that Gal(Q(ξ2, i) : Q) = 8/2 = 4. But this group contains no
elements of order 4 (only ρ, ρ3 have order 4 in G, but their images have order 2 in G/

〈
ρ2
〉
). Thus:

Gal(Q(ξ2, i) : Q) ∼= C2 × C2

This is easy to see if we notice that Q(ξ2, i) is the splitting field of (t2 − 2)(t2 + 1), which we already
saw has Galois Group isomorphic to C2 × C2

• if L is any of the subfields of degree 4, then:∣∣∣∣Gal(M : Q)

Gal(M : L)

∣∣∣∣ = 8/4 = 2

so it follows that:
Gal(Q(ξ2) : Q) ∼= Gal(Q(i) : Q) ∼= Gal(Q(ξ2i) : Q) ∼= C2
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