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Based on the notes by Tom Leinster, Chapter 7

1 Normality

1.1 Definition: Normality

An algebraic field extension M : K is normal if Vo € M, the mini-

mal polynomial of o splits in M.
(Definition 7.1.1)

1.2 Lemma: Normality from Irreducible Polynomials

Let M : K be an algebraic extension. Then, M : K is normal if and
only if every irreducible polynomial over K either:

e has no roots in M

o splits in M

In other words, M : K is normal if any irreducible polynomial over K

which has at least one root in M has all its roots in M .
(Lemma 7.1.2)

Proof. Assume that M : K is normal, and let f be an irreducible polynomial over K. Moreover, say that
f has a root & € M. Then, since f is irreducible, the minimal polynomial of « is f/c, where ¢ € K is the
leading coefficient of f. But now, M : K is normal, so f/c must split in M, so f must split too. Hence, if
M : K is normal, any irreducible polynomial over K with a root in M splits in M.

On the other hand, assume that every irreducible polynomial over K either has no roots in M or splits in
M, and let « € M. Since M : K is algebraic, o has a minimal polynomial over K. This minimal polynomial
is irreducible, and since it has at least one root (namely «), by assumption it must split in M. But then, we
have shown that any o € M has a minimal polynomial which splits in M, which is precisely the definition

of a normal extension, so M : K is normal.
O

1.2.1 Examples

e the prototypical example of a non-normal extension is:

Q) :Q
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where ¢ is the real root of 3 — 2. Namely, take ¢ itself, which has minimal polynomial t3 — 2. The
roots of t3 — 2 are:

£ w, w2

where w = €>™/3. Clearly, t> — 2 won’t split in Q(€), since w & Q(£) C R. Alternatively, notice that
3 — 2 only has one root in Q(¢), so even if it has a root, it doesn’t split, so by the Lemma, it can’t be
normal.

o we will see that the splitting field of a (non-zero) polynomial is always normal

1.2.2 Exercises

1. Prove that every extension of degree 2 is normal. This should remind you of the fact that
every subgroup of index 2 is normal.

2. [Exercise 7.1.4] What happens if we drop the word “irreducible” from Lemma 7.1.2?7 Does
it still hold?

1.3 Normality and Splitting Fields
1.3.1 Theorem: Finite, Normal Fields are Splitting Fields

Let M : K be a field extension. Then, for some non-zero f € K[t]:
M = SFk(f) < M : K is finite and normal
(Theorem 7.1.5)

Proof.

o (<= ) Assume that M : K is finite and normal. We need to show that M is the splitting field of some
non-zero polynomial f € K|[t].

Since M : K is finite, then there exists a basis:
A1y ..., Qp

of M over K, such that:
M=K(a,...,an)

By finiteness, each «; is algebraic over K, since:
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Let M : K be a field extension. Then, the following are equivalent:
1. M : K is finite
2. M : K is finitely generated and algebraic
3. for some finite set {a,...,a,} of algebraic elements of M over K :

M=K(a,...,ay)

(Proposition 5.2.4)

Define m; to be the minimal polynomial of «; over K. Since M : K is normal, each m; splits over M,
so in particular
f=mima...m, € K|t

also splits in M. But then, the set of roots of f in M contains {aq,...,a,}, and we have that
M = K(a1,...,ay), so M is generated over K by the set of roots of f, so by definition M must be
the splitting field of f, as required.

(=) Now, assume that M : K is a field extension, and that 3f € K[t], such that M = SFk(f). We
first show that M : K is finite, and then that it is normal.

@ M is finite
Since M = SFk(f), f splits over M, so let a,...,a, be the roots of f in M. Then, by definition of

splitting field, M = K(aq,...,ay). Moreover, each «; is algebraic, since they are roots of a non-zero
polynomial f, so by Proposition 5.2.4, M : K is finite.

@ K is normal

Let § € M have minimal polynomial m € K[t]. m splits in its splitting field over M, SFys(m). We
need to show that if ¢ € SFy(m) is a root of m, then ¢ € M. Then, we will have shown that any
polynomial in K[t] splits in M.

Hence, let € € SFy(m) be a root of m. m is the minimal polynomial of § over K, so it is a monic,
irreducible polynomial over K. Since it is an annihilating polynomial for €, it must also be its minimal
polynomial. Now recall:
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Let K be a field.

1. Letm € K[t] be a monic, irreducible polynomial. Then:
MK, JaeM : M =K(a)

where « is algebraic, and has a minimal polynomial m over K.
Moreover, if (My, aq) and (Ms, ) are 2 such pairs, there is exactly

one isomorphism:
(ol Ml — M2

over K, such that p(ay) = as.

2. There exists an extension M : K and a transcendental o € M,
such that:
M = K(«)

Moreover, if (My, ay) and (Ma, ag) are 2 such pairs, there is exactly

one isomorphism:
@ . M1 — M2

over K, such that p(ay) = as.
(Theorem 4.3.16)

Thus, it follows that there exists a unique isomorphism over K:
0: K(0)— K(e)

such that:
0(0) =c¢

Moreover, recall:
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1. Let:
— M :S: K bea field extension

Ox # f € K[t]
-YCM

Let S be the splitting field of f over K. Then, S(Y') is the
splitting field of f over K(Y):

S=8Fk(f) = S(Y)=5SFkx(f)

2. Let:

Ok # f € K[f]
— L be a subfield of SFx(f) containing K, such that:

SFr(f):L: K
Then, SFx(f) is the splitting field of f over L:
SFk(f) = SFL(f)

(Lemma 6.2.14)

Since M = SFk(f), by part 2 we have that:
M = SFg(f): K(©): K = M = SFx(f)=SFx4)/(f)
Moreover, since SFk(f) = K(a1,...,a,), we can use part 1 with Y = {¢} C M, which results in:
K(ai,...,an,e) = SFg)(f)

Lastly, since 6 is a homomorphism over K, and f € K[t], then:

where recall 0, is the canonical homomorphism of the form 6, : K(0)[t] — K(¢)[t].

The last step is to use:
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Let:

o 1 be an isomorphism of fields:

wIK1—>K2

Ok # [ € Kit]
o M be a splitting field of f over K;
o M, be a splitting field of V. f over Ky
Then:
1. there exists an tsomorphism:
w: M — M,
which extends

2. there are at most [M : K] such extensions ¢

(Proposition 6.2.11)

Indeed:
e 6 is an isomorphism from K (§) to K(g)
o f € KJt] is non-zero, so certainly f € K(4)[t] is non-zero
« we have that My = M = SFx ) (f)
« we have that My = K(a1,...,an,&) = SFk ) (f), since 0, f = f
so the theorem applies, and there exists an isomorphism:
o: M— K(a,...,ap,¢)

extending 6. Moreover, since 6 is an isomorphism over K, and ¢ extends 6, then ¢ is also an isomorphism
over K. Diagrammatically, we have:

M =K(ai,...,an) g >K(a1,...,a,8)
K(6) j ............................ > K(g)
K/

But now, notice that:
deM=K(ay,...,ap)

Page 8



Since ¢ is an isomorphism over K, then:

©(0) € K(p(a1),...,p(an))

@ extends 6, so by definition:

Moreover, we have that:

Let My, My be extensions of a field K. Let:
w: M — M,
be a homomorphism over K :
Yae K, ¢(a)=a
Then, the annthilating polynomials of « € M, are the same as the

annthilating polynomials of p(a).
(Ezample 6.1.4)

Since «; has annihilating polynomial f, it thus follows that ¢(«;) also has f as annihilating polynomial,
S0:

flpla;) =0 = p(a;) € {aa,...,an}
But then we have shown that:
ce K(ay,...,an) =M

so any root € of f is also in M, so M : K is a normal extension as required.

1.3.2 Corollary: Normality of Intermediate Fields

Let M : L : K be field extensions. If M : K is finite and normal,

then sois M : L.
(Corollary 7.1.6)

Proof. From the theorem above, if M : K is finite and normal, then M is a splitting field of some non-zero
polynomial f € KJt], so M = SFk(f). Then, using part 2 of:
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1. Let:
e M :S: K bea field extension

Ox # f € K[t]
e YCM

Let S be the splitting field of f over K. Then, S(Y') is the
splitting field of f over K(Y):

S=8Fk(f) = S(Y)=5SFkx(f)

2. Let:

Ok # f € K[f]
o L be a subfield of SFk(f) containing K, such that:

SFr(f):L: K
Then, SFx(f) is the splitting field of f over L:
SFk(f) = SFL(f)

(Lemma 6.2.14)

we must have that SFx(f) = SFp(f) is the splitting field of f over L; in other words,
be normal.

M : L must also

O

e If M : L:K is an extension, and M : K is normal, can L : K be normal too?

— yes, since for exmple we can consider trivial extensions:
Q(V2): Q(v2): Q

— Q(v/2) : Q is a normal extension, since Q(v/2) is the splitting field of 3 — 2

e What is an example of a field extension where M : K is normal, but L : K isn’t?

— let € be the real root of t3 — 2

— we already saw that Q(¢) : Q is not normal (#3 — 2 doesn’t split in Q(¢), as it is missing w¢ and

w?€, where w = €27/3)

— now consider the extension:

Q¢ w): Q6): Q
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— it is clear that Q(&,w) is the splitting field of 3 — 2, and so, normal (over Q and Q(¢))

— however, we know that Q(§) isn’t normal over Q

1.4 Galois Action on Normal Extensions

1.4.1 Proposition: Galois Maps Between Conjugates

Let M : K be a finite normal extension, and oy, a0 € M. Then:
aq, e are conjugate over K <= Jp € Gal(M : K) : ay = p(ay)

In other words, 2 elements are conjugate over K if there is an element of

the Galois Group which maps between them.
(Proposition 7.1.9)

Proof.

o (<= Assume that:
Jp € Gal(M : K) : ag = p(ag)

Since ¢ is an automorphism over K, by

Let My, My be extensions of a field K. Let:
w: M — M,
be a homomorphism over K :
Vae K, ¢(a)=a

Then, the annthilating polynomials of « € M are the same as the

annihilating polynomials of p(a).
(Ezample 6.1.4)

it follows that a1 and ¢(«;) have the same annihilating polynomial. But ¢(a;1) = ag, so by definition
of conjugacy, a1, as are conjugate over K.

o (=) Now, assume that oy, as are conjugate over K. By assumption, M : K is a finite and normal
extension, so in particular, it is algebraic. In particular, oy, as are algebraic over K, and since they
are conjugate, they must both have the same minimal polynomial m € KJt].

Using:
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Let K be a field.

1. Letm € K[t] be a monic, irreducible polynomial. Then:
MK, JaeM : M =K(a)

where « is algebraic, and has a minimal polynomial m over K.
Moreover, if (My, aq) and (Ms, ) are 2 such pairs, there is exactly

one isomorphism:
(ol Ml — M2

over K, such that p(ay) = as.

2. There exists an extension M : K and a transcendental o € M,
such that:
M = K(«)

Moreover, if (My, ay) and (Ma, ag) are 2 such pairs, there is exactly

one isomorphism:
@ . M1 — M2

over K, such that p(ay) = as.
(Theorem 4.3.16)

we have that there exists a unique isomorphism over K:
0 : K(al) — K(Oéz)

such that:
9(&1) = Qg

Since M : K is normal, it is the splitting field of some non-zero polynomial f € K[t]. We once again
use:
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which implies that M = SFk(f) is also the splitting field of K (a1), K(az). Moreover, 6 is a homo-
morphism over K, so in particular 6, f = f. Thus, by:
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Let:
— ¢ be an tsomorphism of fields:

wIK1—>K2

Ox # f € Kit]
— M be a splitting field of f over K;

— M, be a splitting field of ¥, f over K,
Then:

1. there exists an tsomorphism:
Q : M, — M,y
which extends

2. there are at most [M : K] such extensions ¢

(Proposition 6.2.11)

there exists an automorphim ¢ of M extending #. Since 6 is an isomorphism over K, so is ¢. Thus, ¢
is an automorphism of M over K, so by definition ¢ € Gal(M : K), and we have that:

p(ar) = 0(ar) = ag

as required.

1.4.2 Corollary: Galois Acts Transitively on Roots

As a corollary to the above theorem, we can consider how the Galois Group acts upon the set of roots of a
polynomial.

Let f be an irreducible polynomial over a field K. Then, the action of
Galk(f) on the roots of f is transitive.
In other words, the action of the Galois Group on the set of roots gen-
erates one orbit, so from one root, we can always reach all other roots
through an element of the Galois Group; thus, if X denotes the set of roots
of f:

Vag,ap € X,3p € Galg(f) : olan) = ag
(Corollary 7.1.11)

Proof. This follows immediately from Proposition 7.1.9 above, since f is irreducible, so all of its roots in
SFk(f) have the same minimal polynomial (f/c where ¢ € K is the leading coefficient of f), and so, are
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conjugate over K. Lastly, we have that SFk(f) : K is finite and normal by Theorem 7.1.5 above, so
Proposition 7.1.9 applies.

O

1.4.3 Example: Mapping Between Roots of Unity

consider the pth roots of unity for prime p:

w=e>P W2 WPt

their minimal polynomial is the pth cyclotomic polynomial:
fO)=1+t+... 7" Q]

by Corollary 7.1.11 above, since f is irreducible over Q (as we showed), then for each i € {1,...,p—1}:
Jp € Galg(f) © p(w) =o'

this is highly non-trivial: before, we first had to manually find such a ¢, and then arduously check
root by root that it worked

in fact, for each ¢ € {1,...,p — 1}, there is exactly one element ¢; € Galg(f) such that:
pi(w) =’
Assume this isn’t the case, and that 3¢, ¢ € Galg(f) such that ¢ # ¢ but:
p(w) = w' = g(w)’
 is an automorphism, so it is invertible, so:
w=(p""og)(w)
But now, the Galois Group acts faithfully on the roots, so:
plop=1
By uniqueness of inverses, ¢ = .

this in fact tells us that:
G&l@(f) = {41013 RS @p—l} = Cp—l

1.4.4 Example: Galois Group of t3 — 2

consider #3 — 2, which has 3 distinct roots in its splitting field

this tells us that G = Galg(t® — 2) is isomorphic to a subgroup of S (so it must be one of ¢, Cy, C3 =
A37 53)

G acts transitively on the 3 roots, so it must have at least 3 elements (if £ is a root, we need that there
are enough elements which map ¢ to each of the roots)

thus, we have:
G = Cg or G2 Sg

2 of the roots are complex conjugates, so one of the elements of G must be complex conjugation, which
is an element of order 2

Cs has no elements of order 2 by Lagrange’s Theorem

hence:
Gal(t3 —2)x S5y
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1.4.5 Exercises

1. [Exercise 7.1.12] Show by example that Corollary 7.1.11 becomes false if you drop the word
“irreducible”.

1.5 Theorem: Normal Extensions and Normal Subgroups

Let M : L : K be a field extension, with M : K finite and normal.
Then:

1. let
oL ={p(a)|a€ L}
then

L : K is a normal extension <= Yy € Gal(M : K), oL =L

2. if L : K is a normal extension, then:

e Gal(M : L) is a normal subgroup of Gal(M : K)

Gal(M : K)

(Theorem 7.1.15)

¢« What does the first statement of this Theorem say?

— an element of the Galois Group simply permutes the elements of a normal extension

— it fixes the extension as a set
e« What is the significance of the second statement of the Theorem
— we know that Gal(M : L) C Gal(M : K) since the automorphism over L (which fix L) are surely

automorphisms over K (since K C L, so they fix K)

— we also know that Gal(M : L) < Gal(M : K), since both are subgroups of S,,, and Gal(M : K)
contains all elements of Gal(M : L) (by the argument above)

— this theorem tells us that, in fact, Gal(M : L) is a normal subgroup whenever M : K is finite
and normal

Proof.
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o (=) Let p € Gal(M : K), and assume that L : K is normal. We claim that ¢L = L.

Notice, L : K is finite and normal (as M : K is finite). If we take any o € L so by Proposition 7.1.9:

Let M : K be a finite normal extension, and oy, a0 € M. Then:
aq, ay are conjugate over K <= Jp € Gal(M : K) : as = p(aq)

In other words, 2 elements are conjugate over K if there is an element of

the Galois Group which maps between them.
(Proposition 7.1.9)

a and ¢(a) must be conjugate over K. But then, they have the same minimal polynomial. By
normality, this polynomial splits in L, which means that ¢(«) € L, so we have that oL C L. Similarly,
we can take a € L, and since ¢! is in the Galois Group, by Proposition 7.1.9 we have that o, o ~1(«)
are conjugate, have the same minimal polynomial, and this minimal polynomial splits in L, so ¢~ (a) €
L = ae€ypl,soL CyL, which completes the proof.

o (<= ) Now, assume that Yo € Gal(M : K), we have that oL = L. We need to show that L : K is
normal.

Let a € L have minimal polynomial m € K[t]. By assumption, M : K is finite and normal, so m splits
in M. Now, by definition, « is conjugate to every other root o’ of m over K. Then, using Proposition
7.1.9 again, we must have that p € Gal(M : K) : ¢(a) = «/. But then, o € ¢ L = L by assumption.
Thus, m must split in L aswell, and since it was an arbitrary polynomial, L : K must be normal

®

Now, assume that L : K is normal. We need to show that Gal(M : L) is a normal subgroup of Gal(M : K).
Define:
peGal(M: K) 0 € Gal(M : L)

To show that Gal(M : L)< Gal(M : K), it is sufficient to show that:
0 '0p € Gal(M : L)
An element of Gal(M : L) is an automorphism over L, so this is equivalent to:
Yae L, ¢ 'p(a)=a = 0Op(a)=p(a)
But using @, since L : K is normal, oL = L, so p(«) € L. Since § € Gal(M : L), it fixes any element of
L, so clearly:
as required.

To prove the second part, we make use of the First Isomorphism Theorem:
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Let:
0:G— H

be a group homomorphism.
Let:
N = ker(0)

so that N <« G; and, im(0) < H.
There is an isomorphism:

Y G/ker(0) — im(0)

defined by:
Y(gN) = 0(g)

If 0 is surjective, then im(0) = H, and so:

G/ker(0) = H

To prove the claim, it is thus sufficient to find a group homomorphism:
v:Gal(M: K)— Gal(L: K)
such that ker(v) = Gal(M : L).

To this end, since L : K is normal, we know that any ¢ € Gal(M : K) is such that ¢L = L. In
other words, ¢ permutes the elements of L, and thus, restricts to an automorphism ¢ of L. Since ¢ is an
automorphism of M over K, then ¢ is an automorphism of L over K, so ¢ € Gal(L : K). This indicates
that we should define:

v(p) =&
v will ba group homomorphism, as it preserves function composition. What is its kernel? Well, this is the

set of all automorphisms of M which act as the identity on elements of L; that is, all automorphisms of M
which fix each element of L. This is precisely the definition of Gal(M : L), so:

ker(v) = Gal(M : L)
Hence, all we have left to show is that v is surjective.

To do this, we need to show that we can “reach” any automorphism ¢ of L over K by applying v to some
automorphism ¢ of M over K. Notice, this is equivalent to showing that ¢ extends v, since by definition of
homomorphism extension, we’d require that:

Vae K, ¢(a)=1(a)
and we will just set ¢ = v(¢). In other words, we just need to show that ¢ extends to some ¢.

To do this, we can proceed as in the proof of Proposition 7.1.9. To this end, since M : K is a normal
extension, it is the splitting field of some f € KJt]. Then, from Lemma 6.2.14, M will also be the splitting
field of f over L. We also have that ¢, f = f, as ¢ is a homomorphism over K, and f € K[t]. Thus, applying
Proposition 6.2.11, there exists an automorphism ¢ of M which extends 1, so v is surjective, and so: by the
First Isomorphism Theorem:

Gal(M : K)

AT D = Gal(L : K)
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1.5.1 Example: Normal Extensions and Normal Subgroups

Consider the extensions:
Q¢ w): Qw): Q
where £ is the real root of t* — 2, and w = e2™/3, Q(&,w) is the splitting field of 3 —2 over Q, so in particular

it is a finite, normal extension of Q. Similarly, Q(w) is the splitting field of the cyclotomic polynomial
14+t 4+t over Q, so it too is a finite, normal extesnion of Q.

Using

Let M : L : K be a field extension, with M : K finite and normal.
Then:

1. let
oL ={p(a)|ae L}
then

L : K is a normal extension <= Vo € Gal(M : K), pL =1L

2. if L : K is a normal extension, then:

o Gal(M : L) is a normal subgroup of Gal(M : K)

Gal(M : K)

Gal(M L) =~ Gal(L : K)

(Theorem 7.1.15)

since Q(w) : Q is normal, any ¢ € Gal(Q(§,w) : Q) restricts to an automorphism of Q(w). Since:
Gal(Q(€,w) : Q) = Galg(t* —2)
it follows that the element of Galg(t® — 2) fix Q(w) as a set.

Moreover, by normality, we also have that:

Gal(Q(§,w) : Q)

Gal(QlE,w) : Q) CHQw) @)

Now, we showed above that:
Galg(t? —2) = S

so the elements of Galg(t® —2) are 6 permutations, which operate over all the roots &, wé, w?¢. Now, consider
the elements of Gal(Q(§,w) : Q(w)). This group contains a subset of these 6 permutations which fix w. In
particular, this means that its elements are fully determined by where they map £ (since then we can figure
out where all the other roots get mapped to). There are 3 such options, so we must have that:

Gal(Q(§,w) : Qw)) = A3 = (3

Finally, we know that Gal(Q(w) : Q) = C5 (this just contains the identity and complex conjugation). Thus,

what the isomorphism above says is that:

SgN
A4,

which is what we’d expect.
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2 Separability

2.1 Motivating Separability
e How can the degree of an extension be used to bound the order of its Galois group?

— we have that:

Let f be a non-zero polynomial over a field K. Then:
1. there exists a splitting field of f over K
2. any 2 splitting fields of f are isomorphic over K
3. if M is a splitting field of f over K :

# of automorphisms of M over K < [M : K] < deg(f)!

(Theorem 6.2.13)

— this implies that if M : K is a splitting field extension, then:
|Gal(M : K)| < [M : K]
e Why is this a bound? That is, why is it an inequality?

— this comes from the fact that in deriving the above Theorem, we made a distinction between the
the degree of a polynomial and the number of distinct roots

— after all, if there’s repeated roots, the degree will be larger than the number of distinct roots
e What is the purpose of separability?

— with separable extensions, we can guarantee that a polynomial has no repeated roots in its
splitting field

— this will then allow us to have that:

|Gal(M : K)| =M : K]

2.2 Definition: Separable Polynomials

An irreducible polynomial over a field is separable if it has no re-
peated roots in its splitting field.
Alternatively:

« f € KJt] is separable if it splits into distinct linear factors in
SFk(f):
f&)=alt—ay)...(t —ay)

o fis separable if and only if it has deg(f) distinct roots in its
splitting field

(Definition 7.2.2)
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2.2.1 Example: Non-Separable Polynomial

generally, most polynomials are separable (for isntance, 3 — 2 is separable, since it has 3 distinct
roots in its splitting field C)

to come up with an irreducible polynomial that is inseparable is a bit complicated

the simplest example is:
ft) =t —u e K[t]

where K = Fj,(u): the field of rational expressions over F, (p is prime) with an indeterminate
variable symbol «

so f(t) is a polynomial, whose coefficients are rational expressions over a symbol u (in this case, the
non-zero coefficients are 1,u € Fp(u))

notice, the roots of f in SFg(f) will be the pth roots of u, and:

Let p be a prime:

1. In a field of characteristic p, every element has at most one pth
7001

2. In a finite field of characteristic p, every element has exactly
one pth root

(Corollary 2.3.22)

thus, there is a single root of f in its splitting field, but deg(f) > 1,

alternatively, one can argue by using the Frobenius Map:

Let p be a prime, and R a ring of characteristic p. Then:

1. The Frobenius map:

f:R— R
O(r)=r?

is a homomorphism.
2. If R is a field, then 0 is injective.

3. If R is a finite field, then 0 is an automorphism of R.
(Proposition 2.3.20)

from which we get that if « is a root of f in SFk(f):
fOy=t?P —u=tr —a? = (t —a)?

so « is a repeated root
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e to show that it is irreducible, we can use contradiction, and assume it is reducible
« if this is the case, then it can be factorised into 2 non-trivial factors:
f&)=(t—a) =(t—a)(t—a)f"
where both factors are in K[t] and i € (0,p)
o the coefficient of #*~! in (t — a) is —ic, so —ia € K
o since i € IF,, it is invertible in K, so o € K

o this would imply that w has a pth root in K = F,(u), but this is impossible (we saw this in W3):
assume that u has a pth root in Fj,(u). In particular, this means that there exist f, g € F,,[u] such that:

<f>p:u = fP=ugP
g

Considering degree:
deg(f*) = deg(ug’) = pdeg(f) =1+ pdeg(g)

But this is impossible: p divides the LHS, but won’t divide the RHS. Hence, u can’t have a root in

K =T, (u).
2.3 Formal Derivatives
2.3.1 Motivation

e In real analysis, how can one check if a root is repeated?
— say f(x) is some polynomial over R

— to check if @ € R is a repeated root of f, we can differentiate f, and evaluate f'(z) at z = «

— if f'(a) = 0, then f(x) and f’(z) must share a linear factor z — «, which implies that « is a
repeated root of f

2.3.2 Definition: The Formal Derivative

Let K be a field, and let:

n

&)= ait' € K[t]

=0

The formal derivative of f is:
(DF)(t) = iat™" € KIt]
i=1

(Definition 7.2.6)
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2.3.3 Lemma: Rules for the Formal Derivative

Let K be a field. Then:

Vf,g € K[t], D(f +g) = Df + Dg
Vf,g€ K[t],D(fg)=f-Dg+Df-g
Va € K, Da = 0k

(Lemma 7.2.7)

2.3.4 Lemma: Number of Roots and the Formal Derivative

This is the algebraic analogue to the real analysis test for root repetition. In fact, it gives us a way of checking
for repeated roots in the splitting field, without having to know what the splitting field is!

Let f be a non-zero polynomial over a field K. The following are equiv-
alent:

1. f has a repeated root in SEFk(f)
2. f and D f have a common root in SF(f)

3. f and Df have a non-constant common factor in K|t

(Lemma 7.2.9)

Proof.

O=0
Assume that f has a repeated root a € SF(f). Then, we have that:
R(t) € SF (A, F(8) = (¢ — a)g(t)
Computing the formal derivative:
Df = D((t - a)?)

=2(t — a)g + (t — a)*(Dg)
=(t—a)(29+ (t —a)- Dy)

Thus, « € SFk(f) is a common root between f and Df.

®=06
Assume that f and Df have a common root in SFk(f), say a. Then, « will be algebraic over K (as

f # 0), and thus has a minimal polynomial g over K. But then, g will be a non-constant common factor
shared by both f and Df, as required.
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® =0

Assume that f and D f have a non-constant common factor in K[t]. g will split in SFk(f), and any root
of g in SFk(f) will be a common root of f and Df.

@ =0

Assume that f and Df have a common root o € SFi(f). Then, there exists some g € SFx(f)[t], such
that:

f(t) = (t—a)g(t)
Computing the formal derivative:
Df=g+({t—a) Dy

Since f and D f have a as a common root, then:
(Df)(e@) =0 = g(a)=0

so there exists some h € SFg(f)[t] such that:

But then:

and f has a repeated root in SFg(f).

2.3.5 Proposition: Separability from Formal Derivative

Let f be an irreducible polynomial over a field. Then, f is insepara-
ble if and only if:

Df=0
(Proposition 7.2.10)

Proof. Assume that f is irreducible. f is inseparable if and only if it has repeated roots in its splitting field.
By Proposition 7.2.9 above, this is true if and only if f and Df have a non.-constant common factor, so f
divides Df. But then:

deg(Df) <deg(f) = [f|Df <= Df=0
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2.3.6 Corollary: Separability from Field Characteristic

Let K be a field. Then:

1. If char(K) = 0, then every irreducible polynomial over K is
separable.

2. If char(K) = p > 0, then for an irreducible polynomial f € K|t]:
f is inseparable <— f(t) = Zbiti”
i=0

where by, ..., b, € K.
(Corollary 7.2.11)

Notice, this says that the only irreducible polynomials which are inseparable are those polynomials in tP
over fields of characteristic p.

Proof. Let f be an irreducible polynomial given by:

fO)=>ait’
f is inseparable if and only if Df = 0. Thus, f is inseparable if and only if:
Vi>1,ia; =0

When char(K) = 0, by definition, this can only be the case if Vi > 1,a; = 0, so f will be a constant
polynomial, which contradicts the fact that f is irreducible. Thus, in fields of characteristic 0, no irreducible
polynomial can be inseparable.

Now, assume that char(K) = p. Then ia; = 0 whenever ¢ divides p, from definition of characteristic.
Hence, for the remaining cases, we must have that a; = 0. Thus, in fields of characteristic 0, the irreducible
polynomials which are inseparable are those polynomials in terms of ¢?. O

In fact, it can be shown that every irreducible polynomial over a finite
field is separable. Thus, inseparability only arises in infinite fields of
characteristic p!
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2.4 Definition: Separable Field Elements

Let M : K be an algebraic extension. o € M is separable over K if

its minimal polynomial over K is separable.
(Definition 7.2.13)

2.5 Definition: Separable Field Extension

Let M : K be an algebraic extension. M : K is separable if every

element of M is separable over K .
(Definition 7.2.13)

2.5.1 Examples: Separable and Inseparable Extensions

 since in fields of characteristic 0 all polynomials are separable, any algebraic extension M : K where
char(K) = 0 will be separable

o furthermore, any algebraic extension of a finite field will be a separable extension
o we saw that t? —u € F,(u) was an inseparable polynomial, so its splitting field will be inseparable

(since the root of ¢ — u has an inseparable minimal polynomial, and the root is in the splitting field)

2.6 The Order of the Galois Group
2.6.1 Lemma: Algebraicity of Intermediate Fields

Let M : L : K be field extensions. Then
M : K is algebraic — M : L, L : K are algebraic

(Ezercise 7.2.15)

Proof. Assume that M : K is algebraic. Then, if & € M it has a minimal polynomial f € K[t]. Thus, L : K
must be algebraic, since L C M. Moreover, M : L must be algebraic, since K C L, so if o has annihilating
polynomial f € K[t], then f € L[t] annihilates « aswell. O
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2.6.2 Lemma: Separability of Intermediate Fields

Let M : L : K be field extensions, and let M : K be algebraic. Then:

M : K is separable — M : L, L : K are separable
(Lemma 7.2.16)

Proof. By Exercise 7.2.15 above, since M : K is algebraic, so are M : L and L : K. It is immediate that
L : K is separable: if every element of M is separable over K, and L C M, then every element of L must be
separable over K too.

To see why M : L must be separable, let o € M. Let my, mg be the minimal polynomials of « over L, K
respectively. mg is an annihilating polynomial of « over L (since K C L), so my, | mg in L[t]. Moreover,
M : K is separable, so my splits into distinct linear factors in SFx(myg). But my, divides mg, so my, must
also split into distinct linear factors, so my, € Llt] is separable, so « is separable over L.

O

2.6.3 Proposition: Counting Isomorphisms Extensions

Let:
@D : Kl — KQ

be an tsomorphism of fields, and let:
o f € K]t] be a non-zero polynomial
o M, be the splitting field of f over K,
o Ms be the splitting field of V. f over K,
If M, : K, is separable, then there are exactly [M; : K1] isomorphisms:
w: M — M,

extending 1.
(Proposition 7.2.17)

Proof. This is an adaptation of the proof for:
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Let:

o 1 be an isomorphism of fields:

wIK1—>K2

Ok # [ € Kit]
o M be a splitting field of f over K;
o M, be a splitting field of V. f over Ky
Then:
1. there exists an tsomorphism:
w: M — M,
which extends

2. there are at most [M : K] such extensions ¢

(Proposition 6.2.11)

but since we have a separable field extension, we have s = deg(¢.m). For the inductive hypothesis, we
have that M, : Ky (a?) is also separable, since M : K> is. O

2.6.4 Theorem: Order of Galois Group for Normal and Separable Extensions

For every finite, normal, separable extension M : K :
|Gal(M : K)| = [M : K]
(Theorem 7.2.18)

Proof. Since M : K is finite and normal, then:
Af e K[t] : M = SFk(f)

(Theorem 7.1.5). Since M : K is separable, we can apply Theorem 7.2.17 above, using M = M; = Mo,
K = K1 = K3 and 9 = idg, which shows that there are exactly [M : K] automorphisms of M over K, as
required. O
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2.6.5 Examples: Computing Orders of Galois Groups

o if K is a field of characteristic 0, then for any f € K[t], SFk(f) also has characteristic 0 (we have a
homomorphism between K and SFk(f), and this can only be the case if they have the same charac-
teristic). But then, this means that:

|Galg (f)| = [SFx(f) : K]
since SFk (f) will be separable (and trivially normal and finite).

« for instance, with f = t> — 2, we have that:

SFa(f) = Q& w)

and so:
[Q(¢,w) : Q] = [Q(§,w) : QENQ(E) : Q=2 x3 =6

Hence, |Galg(t? —2)| = 6. But also Galg(t> —2) < S, so the only possibility is that Galg(t? —2) = Ss,
as we showed above.

e we can see that without separability, the above Theorem won’t work. Let:
K =T,(u) M = SFk(t? —u)
If « is the root of t? — u, then:
M=K(a) = [M:K|=degg(a)=p

On the other hand, since t* — u has a single (non-repeated) root, it follows by:

Let f be a non-zero polynomial over a field K , with k distinct roots
in SFk(f). Then:
|Galk (f)] | k!

(Corollary 6.3.14)

that |Galk (t? — u)| = 1 # p. So without separability, we can’t use this convenient equality!

3 Fixed Fields

3.1 Recap: Fixed Set
We recall the definition of a fized set from Week 2.

Let G be a group acting on X, and consider a subset S C G.
The fixed set of S is:

Fiz(S)={z|z€ X, Vs€ S : sz =z}
(Definition 2.1.14)
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3.2 Lemma: Elements Fixed by Automorphisms form Subfields

Let M be a field. Denote with Aut(M) the group of automorphisms
of M. Then:

VS C Aut(M), Fix(S) is a subfield of M

We call Fiz(S) the fized field of S.
(Lemma 7.5.1

Proof. Recall the following Lemma:

Let K, L be fields, and let S be a subset of all homomorphisms of the
form K — L.

Then, the equalizer Eq(S) is a subfield of K.
(Lemma 2.3.8)

where the equalizer is:

Let XY be sets, and let S be a subset of all functions of the form X —
Y

Tl.ze equalizer of S is:
Eq(S)={z |z € X,Vf,ge€ S: f(zx) =g(z)}

That is, the equalizer is the set of all x € X which are equal under all
functions in S

(Definition 2.5.7)

But then, notice that:
Fix(S) = Eq(SU{idy})

Thus, Fiz(S) is a subfield of M.

3.3 Theorem: Bounding Extension Degree with Subgroup Order

This result requires the most ingenious proof of the whole course.
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Let M be a field and H a finite subgroup of Aut(M). Then:
[M : Fiz(H)] < |H|
(Theorem 7.3.3)

It must be noted that, in fact, this is an equality, and:

(M : Fiz(H)) = |H|

Proof. Let |H| = n. It is sufficient to show that if we take n + 1 elements of M, they are linearly dependent
over Fiz(H), since then a set of linearly independent elements in M will have at most n elements, and so:

M : Pia(H)| < |H]
To this end, define:

=0

W:{(afo,...7xn)€Mn+1 VHEH,Z.I‘LG(O(&):OM}

where ayg,...,q, are an arbitrary set of n 4+ 1 elements of M. W contains n + 1-tuples in M"™*!. Since
there are n elements in H, W is defined by the solutions to a system of n homogeneous equations in n + 1
variables, so it is a non-trivial M-linear subspace of M™+1,

Now, we claim that that if (zg,...,2,) € W and ¢ € H, then:

(p(z0), -, p(xn)) € W

Since (zg,...,7,) € W and o=t o8 € H (for any § € H), it follows by definition of W that:
> aile™ o f)(a) =0
i=0

Applying ¢ to both sides implies that for all § € H:

n

Z @(xi)f(a;) =0

SO:

as required.

Now, let = (zo, ..., %) be some non-zero vector. Define its length as the unique number ¢ € [0, n] such
that:

ez, #0

e« Vje(ln],z; =0
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W is a non-trivial subspace, so there always exists an element of minimum length ¢. Moreover, by properties
of a subspace, W is closed under scalar multiplication by elements of M, so without loss of generality, we
may assume that zy = 1. This element of minimum length will be of the form:

z = (zo,...,%p-1,1,0,...,0)

Moreover, since z has minimal length, the only element of W of the form (yo,...,y¢—1,0,0,...,0) must be
0.

‘We now show that:
Vi € [0,n],z; € Fiz(H)

Let ¢ € H. We showed that:
(o,...,zn) €W = (¢(x0),...,p(xzy)) €W

Define:
Y= (50(-%'0) — TGy, gp(;gn) _ xn)

By closure of subspaces y € W. Since ¢ is a field homomorphism, in particular:
Vie (n),x; =0 = p(z;) =0
Moreover, again by properties of field homomorphisms, ¢ preserves the multiplicative identity:
olx) =1 = o(ay) —x¢=0

Hence,
Y= (SO(:CO) — 20, - .- 7@('%@—1) - '1:@—1707 s 70)

so by the previous argument, y = 0, which implies that:
Vi e [0,n],o(x;) =2; = x; € Fiz(H)

Overall, this shows that there is a non-zero vector x € Fixz(H)"!. Moreover, if we now take 6 = id in the
definition of W, and use z, we get that we have found coefficients in Fiz(H), not all of which are 0, such
that:

Hence, the set of n + 1 elements in M {«o,...,a,} is linearly dependent over Fix(H), which implies that:

[M: Fiz(H)] <n=|H|

3.4 Proposition: Fixed Field Yields a Normal Extension

Let M : K be a finite normal extension, and let H be a normal sub-
group of Gal(M : K). Then, Fiz(H) : K is normal.
(Proposition 7.3.7)
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Proof. H is a group containing automorphisms of M over K, so K C Fix(H). Now, recall:

Let G be a group acting on X, and consider a subset S C G.
Then:

Vg € G : Fiz(gSg™') = gFiz(S)
(Lemma 2.1.15)

Taking G = Gal(M : K) and S = H, we get that for any ¢ € Gal(M : K):
oFiz(H) = Fiz(pHp ™)
But then, since H is a normal subgroup of Gal(M : K):
Fiz(pHp ') = Fiz(H)
Hence, we have shown that for any ¢ € Gal(M : K), we have:
pFix(H) = Fixz(H)

so Fiz(H) : K is a normal extension by

Let M : L : K be a field extension, with M : K finite and normal.
Then:

1. let
oL ={p(a)|a€ L}
then

L : K is a normal extension <= Vo € Gal(M : K), oL =L

2. if L : K is a normal extension, then:

o Gal(M : L) is a normal subgroup of Gal(M : K)

Gal(M : K)

CalOr T = Gal(L : K)

(Theorem 7.1.15)
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