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Based on the notes by Tom Leinster, Chapter 6

1 Extending Homomorphisms
1.1 Definition: Homomorphism Extension
Homomorphism extensions allow us to go between field extensions.

Let:

• ι1 be a field extension:

ι1 : K1 →M1

• ι2 be a field extension:

ι2 : K2 →M2

• ψ be a field homomorphism:

ψ : K1 → K2

Then, a field homomorphism:

φ :M1 →M2

extends ψ if:
φ ◦ ι1 = ι2 ◦ ψ

If we think of K1 as a subset of M1 (and similarly with K2,M2), and view
ι1, ι2 as inclusions, then φ extends ψ if:

∀a ∈ K1, φ(ι1(a)) = ι2(ψ(a)) =⇒ φ(a) = ψ(a)

(Definition 6.1.1)
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1.1.1 Examples: Homomorphism Extensions

• let M1,M2 be extensions of K. If φ : M1 → M2 extends ψ = idK , then φ must be a homomorphism
over K:

∀a ∈ K, φ(a) = ψ(a) = a

• let κ : C → C denote complex conjugation. Then, κ extends the conjugation homomorphism over the
subfield Q(i), γ : Q(i) → Q(i). This is trivial:

∀p, q ∈ Q, κ(p+ iq) = p− iq = γ(p+ iq)

1.2 Lemma: Homomorphism Extension Preserves Roots

Consider field extensions:

M1 : K1 M2 : K2

and consider:

• ψ, the homomorphism:

ψ : K1 → K2

• φ, the homomorphism which extends ψ:

φ :M1 →M2

• ψ∗, the homomorphism induced by ψ, which maps between
polynomial rings:

ψ∗ : K1[t] → K2[t]

If:
α ∈M1 f(t) ∈ K1[t]

then, if we denote ψ∗f = ψ∗(f):

f(α) = 0K1 ⇐⇒ (ψ∗f)(φ(α)) = 0K2

(Lemma 6.1.3)
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Proof. We can write:
f(t) =

∑
i

ait
i ∈ K1[t], ai ∈ K1

Then:
ψ∗f =

∑
i

ψ(ai)t
i ∈ K2[t]

so:

(ψ∗f)(φ(α)) =
∑
i

ψ(ai)φ(α)
i

=
∑
i

φ(ai)φ(α)
i, (since φ extends ψ, so they are equal on K1)

= φ

(∑
i

aiα
i

)
= φ(f(α))

Since φ is a field homomorphism, in particular it is injective, so:

f(α) = 0 ⇐⇒ φ(f(α)) = (ψ∗f)(φ(α)) = 0

as required.

1.2.1 Corollary: Annihilating Polynomial

Let M1,M2 be extensions of a field K. Let:

φ :M1 →M2

be a homomorphism over K:

∀a ∈ K, φ(a) = a

Then, the annihilating polynomials of α ∈ M1 are the same as the
annihilating polynomials of φ(α).
(Example 6.1.4)

Proof. If φ is a homomorphism over K, then it is an extension of the trivial homomorphism ψ = idK (this
was the example above). Thus, by the above Lemma, if α ∈M and f(t) ∈ K[t]:

f(α) = 0 ⇐⇒ (ψ∗f)(φ(a)) = 0 ⇐⇒ f(φ(a)) = 0

where we have used the fact that ψ∗ maps any polynomial to itself, since ψ is the identity mapping.
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1.2.2 Exercises

1. [Exercise 6.1.5] Show that if a ring homomorphism ψ is injective, then so is ψ∗; and if ψ is
an isomorphism, then so is ψ∗.

1.3 Lemma: Unique Isomorphism Extension
We now see that if 2 base fields are isomorphic, we can find a unique isomorphism between their corresponding
extensions.

Let:

• ψ be a field isomorphism:

ψ : K1 → K2

• K1(α1) : K1 be a simple extension, where α1 has minimal
polynomial m ∈ K1[t]

• K2(α2) : K2 be a simple extension, where α2 has minimal
polynomial ψ∗m ∈ K2[t]

Then, there is exactly one isomorphism:

φ : K1(α1) → K2(α2)

that:

1. extends ψ

2. satisfies:
φ(α1) = α2

(Proposition 6.1.6)

Proof. We can think of K2(α2) as an extension of K1, by considering the homomorphism:

K1
ψ−→ K2 −→ K2(α2)
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Now, say that α1 has a minimal polynomial m ∈ K1[t], and α2 has a minimal polynomial ψ∗m ∈ K2[t].
Then, since ψ,ψ∗ will be isomorphism, we will have that m ∈ K1[t] is a minimal polynomial for α2 over K1

(since m and ψ∗m are isomorphic, we are just “renaming” the coefficients in m when defining ψ∗m).

But now recall the Theorem on Classification of Simple Extensions:

Let K be a field.

1. Let m ∈ K[t] be a monic, irreducible polynomial. Then:

∃M : K, ∃α ∈M : M = K(α)

where α is algebraic, and has a minimal polynomial m over K.
Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.

2. There exists an extension M : K and a transcendental α ∈M ,
such that:

M = K(α)

Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.
(Theorem 4.3.16)

Since m is minimal, it is monic and irreducible. We have the pairs (M1, α1) and (M2, α2), where α1, α2

both have m as a minimal polynomial over K1. Hence, it follows that there exists a unique isomorphism:

φ : K1(α1) → K2(α2)

over K1, such that:
φ(α1) = α2

as required
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2 The Existence and Uniqueness of Splitting Fields
2.1 Definition: Polynomial Splits in a Field

Let f be a polynomial over a field M . Then, f splits in M if:

f(t) = β(t− α1) . . . (t− αn)

where:
n ≥ 0 β, α1, . . . , αn ∈M

(Definition 6.2.2)

2.1.1 Examples: Fields over Which Polynomials Split

• a field M is algebraically closed if and only if every polynomial over M splits in M .

• let f(t) = t4 − 4t2 − 5. Then, f splits in Q(i,
√
5), since:

f(t) = (t2 + 1)(t2 − 5) = (t− i)(t+ i)(t−
√
5)(t+

√
5)

However, f doesn’t split in Q(i), since its factorisation into irreducibles in Q(i)[t] is:

f(t) = (t− i)(t+ i)(t2 − 5)

which contains a non-linear factor.

• let M = Z2(α), where α is a root of:
f(t) = 1 + t+ t2

Then:
f(a+ α) = 1 + (1 + α) + (1 + 2α+ α2) = 1 + α+ α2 = 0

Hence, f has distinct roots α, 1 + α:

f(t) = (t− α)(t− (1 + α))

so f splits in M , since α ∈M =⇒ 1+α ∈M . However, it is not always the case (as we saw above),
that adjoining a root will give us a field containing all roots.

2.2 Definition: Splitting Field of a Polynomial
Intuitively, a splitting field for a polynomial is the smallest field which contains all the roots of the polynomial.

Let f be a non-zero polynomial over a field K. A splitting field of f
over K is an extension M : K, such that:

1. f splits in M

2. if α1, . . . , αn are roots of f in M , then:

M = K(α1, . . . , αn)

(Definition 6.2.6)
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2.2.1 Examples: Splitting Fields

• since C is an algebraically closed field containing Q, Q(α1, . . . , αn) is the splitting field of f ∈ Q[t] with
roots α1, . . . , αn

• let:
f(t) = t3 − 2 ∈ Q[t]

which has complex roots:
η, ωη, ω2η

where:

– η is the real cube root of 2
– ω = e2πi/3

Then, the splitting field of f over Q is:

Q(η, ωη, ω2η) = Q(η, ω)

To see that adjoining just η isn’t sufficient to get a splitting field, note that:

– f is irreducible, so:
degQ(η) = 3

– ω has minimal polynomial 1 + t+ t2, so:

degQ(ω) = 2

Thus, and applying the Tower Law:

[Q(η, ω) : Q] = [Q(η, ω) : Q(η)][Q(η) : Q] = 3[Q(η, ω) : Q(η)]

[Q(η, ω) : Q] = [Q(η, ω) : Q(ω)][Q(ω) : Q] = 2[Q(η, ω) : Q(ω)]

Hence, [Q(η, ω) : Q] is divisible by 3 and 2. Moreover, by the Corollary:

Let M : K be a field extension and:

α1, . . . , αn ∈M

Then:
[K(α1, . . . , αn) : K] ≤ [K(α1) : K] . . . [K(αn) : K]

(Corollary 5.1.21)

It follows that [Q(η, ω) : Q] ≤ 6. Since 2 and 3 are coprime, we must thus have that [Q(η, ω) : Q] = 6.
On the other hand, as we’ve seen:

[Q(ω) : Q] = 2 [Q(η) : Q] = 3

Hence, we sometimes need to adjoin all roots to obtain the splitting field.

• let f(t) = 1 + t + t2 ∈ Z2[t]. Since f is the minimal polynomial of α (by definition), and {1, α} is a
linearly independent set in Z2(α), it follows that it forms a basis over Z2, so:

Z2(α) = {0, 1, α, 1 + α} = Z2 ∪ {roots of f in Z2(α)}

so by definition Z2(α) is a splitting field of f over Z2
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2.3 Uniqueness of Polynomial Splitting Fields
We now seek to show that every non-zero polynomial f has exactly one splitting field. To do so, we first
show existence (easy), and then uniqueness (hard).

2.3.1 Lemma: Bounding Degree of Splitting Field of a Polynomial

We begin by showing not only existence, but a bound on the degree of the splitting field.

Let f 6= 0 be a polynomial over a field K. Then, there exists a split-
ting field M of f over K, such that:

[M : K] ≤ deg(f)!

(Lemma 6.2.10)

Proof. We prove by induction on deg(f), for an arbitrary field K.

1 Base Case: n = 0

If deg(f) = 0, then we have a constant polynomial. But then, M = K will be a splitting field (since it
has no roots, and f will trivially split), so:

[M : K] = 1 ≤ 1 = 0!

2 Inductive Hypothesis: n = k

Assume that the claim is true when deg(f) ≤ k. That is, for such f , there exists a splitting field M of f
over K, such that:

[M : K] ≤ deg(f)! = k!

3 Inductive Step: n = k + 1

Consider some polynomial f ∈ K[t], such that deg(f) = k + 1. We can factorise f with some irreducible
factor m. By the Theorem on Classification of Simple Extensions:
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Let K be a field.

1. Let m ∈ K[t] be a monic, irreducible polynomial. Then:

∃M : K, ∃α ∈M : M = K(α)

where α is algebraic, and has a minimal polynomial m over K.
Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.

2. There exists an extension M : K and a transcendental α ∈M ,
such that:

M = K(α)

Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.
(Theorem 4.3.16)

we know that if α is some root of m (m(α) = 0), there exists an extension:

K(α) : K

In particular, we know that in K(α)[t]:
(t− α) | f(t)

so define:
g(t) = f(t)/(t− α) ∈ K(α)[t]

Then, it follows that deg(g) = deg(f) − 1 = k, so by the inductive hypothesis, there exists a splitting field
M of g over K(α), such that:

[M : K(α)] ≤ deg(g)! = k!

Notice, M will be a splitting field of f over K. We can write:

f(t) = (t− α)g(t)

and g splits over M , so f will also split over M . Moreover, by the Tower Law:

[M : K] = [M : K(α)][K(α) : K] ≤ deg(g)! deg(m) = k! deg(m) ≤ k! deg(f) = (k + 1)!

which completes the induction.

2.3.2 Proposition: Isomorphisms Between Splitting Fields

The following result is useful in proving the uniqueness of splitting fields for polynomials.
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Let:

• ψ be an isomorphism of fields:

ψ : K1 → K2

•
0K1 6= f ∈ K1[t]

• M1 be a splitting field of f over K1

• M2 be a splitting field of ψ∗f over K2

Then:

1. there exists an isomorphism:

φ :M1 →M2

which extends ψ

2. there are at most [M : K] such extensions φ
(Proposition 6.2.11)

Proof. Again, we prove this by induction on deg(f), for arbitrary K1,K2.

1 Base Case: n = 0

If deg(f) = 0, then we have a constant polynomial, so M1 = K1 and M2 = K2. In particular, by:
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Let:

• ψ be a field isomorphism:

ψ : K1 → K2

• K1(α1) : K1 be a simple extension, where α1 has minimal
polynomial m ∈ K1[t]

• K2(α2) : K2 be a simple extension, where α2 has minimal
polynomial ψ∗m ∈ K2[t]

Then, there is exactly one isomorphism:

φ : K1(α1) → K2(α2)

that:

1. extends ψ

2. satisfies:
φ(α1) = α2

(Proposition 6.1.6)

it follows that there is a unique isomorphism:

φ :M1 →M2

which extends ψ. Hence, there is a single extension, and [M : K] = 1, so both parts follow.

2 Inductive Hypothesis: n = k

Assume that if deg(f) ≤ k, the result follows: there are at most [M : K] isomorphisms φ : M1 → M2

extending ψ.

3 Inductive Step: n = k + 1
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2.3.3 Theorem: Non-Zero Polynomials Have a Unique Splitting Field

Let f be a non-zero polynomial over a field K. Then:

1. there exists a splitting field of f over K

2. any 2 splitting fields of f are isomorphic over K

3. if M is a splitting field of f over K:

# of automorphisms of M over K ≤ [M : K] ≤ deg(f)!

(Theorem 6.2.13)

Proof.

1

This is immediate from Lemma 6.2.10:

Let f 6= 0 be a polynomial over a field K. Then, there exists a split-
ting field M of f over K, such that:

[M : K] ≤ deg(f)!

(Lemma 6.2.10)

2

This follows from Proposition 6.2.11:
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Let:

• ψ be an isomorphism of fields:

ψ : K1 → K2

•
0K 6= f ∈ K1[t]

• M1 be a splitting field of f over K1

• M2 be a splitting field of ψ∗f over K2

Then:

1. there exists an isomorphism:

φ :M1 →M2

which extends ψ

2. there are at most [M : K] such extensions φ
(Proposition 6.2.11)

by letting K1 = K2 and ψ = idK1
.

3

The first inequality follows from Proposition 6.2.11 again, with K1 = K2,M1 = M2, ψ = idK1
, and the

second follows from Lemma 6.2.10.

2.3.4 Definition: THE Splitting Field

The above theorem allows us to talk about the splitting field of f un-
ambiguously. We denote the splitting field of f over a field K via
SFK(f).
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2.4 Lemma: Splitting Field From Subset

1. Let:

• M : S : K be a field extension
•

0K 6= f ∈ K[t]

• Y ⊆M

Let S be the splitting field of f over K. Then, S(Y ) is the
splitting field of f over K(Y ):

S = SFK(f) =⇒ S(Y ) = SFK(Y )(f)

2. Let:

•
0K 6= f ∈ K[t]

• L be a subfield of SFK(f) containing K, such that:

SFK(f) : L : K

Then, SFK(f) is the splitting field of f over L:

SFK(f) = SFL(f)

(Lemma 6.2.14)

Proof.

1

Since S is the splitting field of f , f splits in S. S(Y ) contains S, so f splits in S(Y ).

Now, let X be the set of roots of f in S. By definition of the splitting field:

S = K(X)

so:
S(Y ) = (K(X))(Y ) = K(X ∪ Y ) = (K(Y ))(X)

In other words, S(Y ) will be the splitting field of f over K(Y ), by definition.

2
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We have:
S = SFK(f) : L : K

Let Y = L. Then by 1 , S(L) = S is the splitting field of f over K(L) = L. That is:

SFK(f) = SFL(f)

as required.

3 Galois Groups Revamped
One of the things that makes Galois Theory special is that we can leverage groups to study fields and

polynomials. We explore this relationship in this section, where we redefine the Galois Group.

3.1 Motivating a New Definition for Galois Group

At the start of the course, we defined the Galois Group in terms of the
subset of Sk such that the roots of a polynomial were conjugate un-
der the application of the symmetry. This made computing the Galois
Group extremely difficult.
We now present an alternative view of the Galois Group: it can be de-
fined by using the symmetry group of the splitting field of a polyno-
mial.
Why is this more convenient?

• this generalise to every field, not just Q (before we needed to
consider “conjugacy over Q”)

• some field extensions don’t arise from polynomials, but have
nonetheless interesting symmetry groups

• by leveraging abstract algebra, we don’t require as much explicit
computations involving polynomials
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3.2 Redefining Galois Groups
3.2.1 Definition: Galois Group of Field Extension

Let M : K be a field extension. The Galois Group of M : K, denoted
Gal(M : K), is the group of automorphisms of M over K, where
composition is the group operation.

Explicitly, an element of Gal(M : K) is an automorphism:

θ :M →M

such that:
∀a ∈ K, θ(a) = a

(Definition 6.3.1)

3.2.2 Definition: Galois Group of a Polynomial

Let f ∈ K[t] be a non-zero polynomial. The Galois Group of f over
K, denoted GalK(f), is the Galois Group of the splitting field of f
over K:

Gal(SFK(f) : K)

(Definition 6.3.5)

• Is the Galois Group always finite?

– recall Theorem 6.2.13:

Let f be a non-zero polynomial over a field K. Then:

1. there exists a splitting field of f over K

2. any 2 splitting fields of f are isomorphic over K

3. if M is a splitting field of f over K:

# of automorphisms of M over K ≤ [M : K] ≤ deg(f)!

(Theorem 6.2.13)
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– in particular, 3 implies that:

|GalK(f)| ≤ [SFK(f) : K] ≤ deg(f)!

so GalK(f) is always a finite group

3.2.3 Examples: Galois Group for Field Extensions

• consider the extension C : R. Both the identity mapping id and complex conjugation κ are automor-
phisms of C over R, so:

{id, κ} ⊆ Gal(C : R)

Are there any other elements? Assume this is the case, and let θ ∈ Gal(C : R). Then, in particular:

(θ(i))2 = θ(i2) = θ(−1) = −θ(1) = −1

This implies that θ(i) = ±i. But then:

– if θ(i) = i, θ = id by the fact that C = R(i) and using:

Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

with M1 =M2 = C,K = R, Y = {i}
– applying similar logic, if θ(i) = −i, then θ = κ

Hence:
Gal(C : R) = {id, κ} ∼= C2

• let η be the real cube root of 2. If θ ∈ Gal(Q(η9 : Q):

(θ(η))3 = θ(η3) = θ(2) = 2

Hence:
θ(η) ∈ Q(η) ⊆ R

Thus, θ(η) is a real cube root of 2, so θ(η) = η. using Lemma 4.3.6, we must have that θ = id, so
Gal(Q(η) : Q) is trivial.

3.2.4 Exercises

1. [Exercise 6.3.4] Prove that:
Gal(Q(e2πi/3 : Q) = {id, κ}

where κ denotes complex conjugation.
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3.2.5 Examples: Galois Group for Polynomials

• if f ∈ K[t] splits in K, we have that SFK(f) = K, so:

|GalK(f)| ≤ [SFK(f) : K] = 1 =⇒ |GaLK(f)| = 1

so GalK(f) is trivial.

• the above example shows that any polynomial over an algebraically closed field has a trivial Galois
group

• if f = t2 + 1 ∈ Q[t], then:
SFQ(f) = Q(i)

Using similar arguments as above (where we considered C : R) it can be shown that:

GalQ(f) = Gal(Q(i) : Q) = {id, κ} ∼= C2

• let:
f(t) = (t2 + 1)(t2 − 2)

Then, GalQ(f) is the group of automorphisms of Q(i,
√
2) over Q. Using similar arguments to the ones

in the examples above, it can be shown that:

θ ∈ GalQ(f) =⇒ θ(i) = ±i, θ(
√
2) = ±

√
2

The choice of sign determines θ, so:
|GalQ(f)| = 4

There are 2 groups of order 4 (C4 and C2 ×C2), but any θ ∈ GalK(f) has order 1 or 2 (since if θ isn’t
the identity map for both i,

√
2, we have that θ2 = id). Thus, GalQ(f) 6∼= C4, so GalQ(f) ∼= C2 × C2

• notice, all these examples show a rather interesting property: when GalQ(f) acts on the set of roots,
it always returns a root. In particular, if X is the set of roots of f :

α ∈ SFK(f) ∩X, θ ∈ GalK(f) : (θ, α) 7→ θ(a) ∈ X

This turns out to be true in general: the action of GalK(f) on SFK(f) restricts to an action on the
set of roots; in other words, the Galois Group permutes the roots of f

3.3 Connecting Definitions for Galois Groups
3.3.1 Lemma: Action of Galois Groups Defined by Effect on Polynomial Roots

Let f be a non-zero polynomial over a field K. Then, the action of
GalK(f) on SFK(f) restricts to an action on the set of roots of f in
SFK(f).
(Lemma 6.3.7)

Given a group G acting on X, and a subset A ⊆ X, the action restricts to A if:

∀g ∈ G, ∀a ∈ A, ga ∈ A

That is, the action of G on X is completely determined by how G acts on A.
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Proof. We need to show that if θ ∈ GalK(f) and α ∈ SFK(f) is a root of f . Then θ(α) is also a root. But
this is immediate from Example 6.1.4:

Let M1,M2 be extensions of a field K. Let:

φ :M1 →M2

be a homomorphism over K:

∀a ∈ K, φ(a) = a

Then, the annihilating polynomials of α ∈ M1 are the same as the
annihilating polynomials of φ(α).
(Example 6.1.4)

where M1 =M2 = SFK(f), and φ = θ ∈ GalK(f).

3.3.2 Lemma: Galois Group Acts Faithfully

Let f be a non-zero polynomial over a field K. Then, the action of
GalK(f) on the roots of f is faithful.

Recall, G acts faithfully on X if:

∀g, h ∈ G, ∀x ∈ X : gx = hx =⇒ g = h

Equivalently, G acts faithfully if:

∀g ∈ G : gx = x =⇒ g = eG

(Lemma 6.3.8)

Proof. Let X be the set of roots of f in SFK(f). By definition, we have that:

SFK(f) = K(X)

By Lemma 4.3.6:
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Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

Hence, assume that θ ∈ GalK(f) is such that ∀x ∈ X, θ(x) = x. Then, by Lemma 4.3.6, it follows that
θ = id on all of SFK(f). Hence, θ must act faithfully.

• What does this Lemma imply about the elements of the Galois Groups?

– let θ ∈ GalK(f)

– the above Lemma tells us that θ acts faithfully
– in other words, it is entirely determined by how it permutes the roots of f
– hence, we can view θ as a permutation of roots

• Is the Galois Group a subgroup of Sk?

– suppose f ∈ K[t] has k distinct roots:

α1, . . . , αk ∈ SFK(f)

– since we can identify each θ ∈ GalK(f) with a permutation of the roots, we know that:

∃σθ ∈ Sk : θ(αi) = ασθ(i)

– since the action is faithful, in particular, we have an isomorphism:

θ 7→ σθ

such that:
GalK(f) ∼= {σθ | θ ∈ GalK(f)} ⊆ Sk

3.3.3 Definition: Conjugates Over Field Extensions

We first defined conjugate tuples in terms of elements in C or R which were indistinguishable when viewed
by polynomials over Q. Notice, we were actually working over field extensions: C : Q and R : Q. We now
formalise the notion of conjugacy for arbitrary extensions.
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Let M : K be a field extension, and consider k-tuples of elements of M :

k ≥ 0 (α1, . . . , αk) (α′
1, . . . , α

′
k)

These tuples are conjugate over K if:

∀p ∈ K[t1, . . . , tk], p(α1, . . . , αk) = 0 ⇐⇒ p(α′
1, . . . , α

′
k)

(Definition 6.3.9)

3.3.4 Proposition: Equivalence of Galois Group Definitions

Let f be a non-zero polynomial over a field K, with k distinct
roots:

α1, . . . , αk ∈ SFK(f)

Then:

{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K}

is a subgroup of Sk, isomorphic to GalK(f).
(Proposition 6.3.10)

Proof. Let σ ∈ Sk be “good” if it belongs to the set:

{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K}

We want to show that σ is good if and only if σ = σθ for some θ ∈ GalK(f).

Firstly, assume that there is some θ ∈ GalK(f), such that:

σ = σθ

In other words:
θ(αi) = ασ(i)

Notice:

p(ασ(1), . . . , ασ(k))

= p(θ(α1), . . . , θ(αk))

= θ(p(α1, . . . , αk))

where the last step follows from the fact that p is a polynomial over K, and θ is an isomorphism over K.
Moreover, this further implies that:

p(ασ(1), . . . , ασ(k)) = 0 ⇐⇒ θ(p(α1, . . . , αk)) = 0 ⇐⇒ p(α1, . . . , αk) = 0
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so σ is good.

On the other hand, assume that σ is good. Since α1, . . . , αk are algebraic over SFK(f), they form a
basis (Corollary 5.1.14) for SFK(f) over K, so in particular, any element of SFK(f) can be expressed as
p(α1, . . . , αk) for some p ∈ K[t1, . . . , tk].

Define a function:
θ : SFK(f) → SFK(f)

via:
θ(p(α1, . . . , αk)) = p(ασ(1), . . . , ασ(k))

We claim that θ ∈ GalK(f). For this, we need to show it is both injective and surjective (it is clear it is an
endomorphism).

Since σ is good, let q, P ∈ K[t1, . . . , tk], such that P = p− q. Applying the definition of conjugacy to P
implies that:

P (α1, . . . , αk) = 0 ⇐⇒ P (ασ(1), . . . , ασ(k))

so:

p(α1, . . . , αk) = q(α1, . . . , αk)

⇐⇒ p(ασ(1), . . . , ασ(k)) = q(ασ(1), . . . , ασ(k))

⇐⇒ θ(p(α1, . . . , αk)) = θ(q(α1, . . . , αk))

and thus, θ is an injective mapping.

Moreover, it is surjective. Let:

α =

k∑
i=1

aiαi ∈ SFK(f)

Then:

θ(α) =

k∑
i=1

aiθ(αi) =

k∑
i=1

aiασ(i) ∈ SFK(f)

Now, for any other α′ ∈ SFK(f), the difference between α′, α will purely be based on the coefficients of the
linear combination, and by applying σ to an appropriate α, we can always ensure that:

θ(α) = α′

Thus, we have that θ is an automorphism of SFK(f), so θ ∈ GalK(f) and σ = σθ, as required.

3.3.5 Corollary: Galois Subgroups from Extensions

We know see how the Galois Groups of polynomials vary over different extensions.

Let L : K be a field extension and:

0 6= f ∈ K[t]

Then, GalL(f) is isomorphic to a subgroup of GalK(f).
(Corollary 6.3.12)
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This might seem counterintuitive at first: after all, L is “larger” so we might expect that more auto-
morphisms are possible, so we’d expect GalK(f) ≤ GalL(f). The key is to notice that precisely since L is
larger, it is more likely that the roots of f lie in L, which then makes it so that any automorphism must
fix said roots. For example, we saw that Gal(C : Q) ∼= C2 × C2, whilst, since C is algebraically closed,
Gal(C : C) is trivial (since |Gal(C)| ≤ [C : C] = 1).

Proof. Say we have an extension M : L : K, and consider a set of k-tuples in M , which are conjugate
over L. Then, they must also be conjugate over K. Intuitively, this follows by the fact that if a k-tuple is
“indistinguishable” from L, it must be “indistinguishable” from K, since L contains K. In particular, this
implies that:

{σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over L}
⊆ {σ | σ ∈ Sk, (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate over K}

which implies that:
GalL(f) ⊆ GalK(f)

Since Galois Groups are subgroups, this thus implies that:
GalL(f) ≤ GalK(f)

as required.

3.3.6 Example: Galois Subgroups

Consider the polynomial:
f(t) = (t2 + 1)(t2 − 2)

We’ll consider its Galois Group over different fields.

1 Q
We already saw above that:

GalQ(f) ∼= C2 × C2

since any automorphism of SFQ(f) led to:

θ(i) = ±i θ(
√
2) = ±

√
2

2 R
Both roots of t2 − 2 are real, so the splitting field of f over R will only have to adjoin i. In particular:

SFR(f) = SFR(t
2 + 1) = R(i) = C

Hence:
GalR(f) = Gal(C : R) ∼= C2

as we showed in examples above.

3 C
As discussed, GalC(f) is the trivial subgroup, since C is algebraically closed, so SFC(f) = C.

Hence, as predicted:
• GalC(f) is isomorphic to a subgroup of GalR(f)

• GalR(f) is isomorphic to a subgroup of GalQ(f)

• GalC(f) is isomorphic to a subgroup of GalQ(f)
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3.3.7 Corollary: Order of Galois Group Divides Order of Symmetric Group

Let f be a non-zero polynomial over a field K, with k distinct roots
in SFK(f). Then:

|GalK(f)| | k!
(Corollary 6.3.14)

This is important for 2 reasons. Firstly, it gives us a tighter bound on the order of a Galois Group:

|GalK(f)| ≤ k! ≤ deg(f)!

Secondly, not only do we have a bound, but it limits the set of possible values to divisors of k!.

Proof. This follows immediately, by applying Lagrange’s Theorem and using the fact that GalK(f) is iso-
morphic to a subgroup of Sk.
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