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Based on the notes by Tom Leinster, Chapter 5

1 Extensions as Vector Fields

1.1 Definition: Degree of an Extension

The degree of a field extension M : K (denoted [M : K]) is the di-

mension of M as a vector space over K.
(Definition 5.1.1)

e How can we think of M as a vector space over K7

— addition is the same as over M:
mi,mo €M : my+mo €M

— we define scalar multiplication via:
ke KkmeM : k-m=kmeM
where we use the fact that K is a subfield of M
— in a sense we are forgetting how to multiply elements of M together, unless they are in K
e What intuition does the notion of degree hold about the “size” of fields?

— extensions with larger degree can be thought of as bigger
— for instance, consider:
Q(V2) ={a+bv2|a,beQ}
. 5/=2
Q(V2) ={a+bV2+cV2 | a,b,c € Q}
— we can see that:
[Q(v2): Q] =2

since Q(v/2) has {1,v/2} as a basis over Q (clearly linearly independent, since one is rational and
the other is irrational, and we only allow scalar multiplication by rationals)

— similarly:

[Q(V2):Q] =3

1.1.1 Proposition: Degree 1 Iff Field Extends Itself

Let K be a field, and M : K be an extension. Then:
M:K]=1 < M=K
(Example 5.1.3, i)
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Proof. Let M = K. Then certainly {1/} is a basis, since:
YmeM : m=1y-m

so:
[M:K]=1

Alternatively, let [M : K] = 1. This means that the basis only contains a single element, which WLOG we
may assume to be {1;,}. But then this implies that every element of M is a - 1y = a for some a € K, so
M=K

O

1.1.2 Examples of Degrees

e every field M contains a non-zero element 1,;, which certianly must be part of a basis. Hence:

VM:K, [M:K|>1

o if 2 € C, then:
Jr,yeR : z=x+4+1y

Hence, {1,4} forms a basis of C over R, and:
[C:R]=2
o K(t) is the field of rational expressions over some field K. Clearly:
1,t,62,...

are linearly independent over K, and generate each element of K(t). Thus, K(t) is an infinite-

dimensional vector space over K, and:
[K(t) : K] =00
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1.2 Theorem: Algebraics/Transcendentals Define a Basis for Extensions

Let K(«) : K be a simple extension. Then:
1. Let:

o « be algebraic over K
o m € K]|t] be the minimal polynomial of «
o deg(m)=n

Then:

Lo,...,a" !
is a basis of K(«) over K, such that:
[K(«): K] =deg(m)=n
2. If a is transcendental over K, then:
l,a,a,...
are linearly independent over K, and so:

[K(a): K] =00

(Theorem 5.1.5)

Proof.
If o € K, then K(a) = K, so {1} is a basis, as required.
Hence, assume that o ¢ K. In particular, it is thus clear that:

La,...,a

is linearly independent over K (otherwise, the minimal polynomial would have degree less than n). To show
that it forms a basis, it is sufficient to show that any element of K () can be expressed as a unique K-linear
combination of 1, q,...,a" 1.

Recall from last week:
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Let K be a field. Then:

1. Let m € K[t] be monic and irreducible. Let:
m(t) = a € K[t]/ (m)
be the image of t under the canonical homomorphism:
™ K[t] = K[t/ (m)

Then, o has a minimal polynomial m over K, and K[t|/ (m) is
generated by a over K (K|[t]/ (m) = K(«a)).

2. The element t of the field K(t) is transcendental over K, and K (t)
is generated byt over K.

(Lemma 4.3.1)

Let K be a field.

1. Letm € K[t] be a monic, irreducible polynomial. Then:
IM:K,3aeM : M=K()

where « is algebraic, and has a minimal polynomial m over K .
Moreover, if (M, ay) and (Ma, ag) are 2 such pairs, there is exactly

one isomorphism:
(ol M1 — M2

over K, such that p(ay) = as.

2. There exists an extension M : K and a transcendental o € M,
such that:
M = K(«)

Moreover, if (My, a1) and (Ma, ) are 2 such pairs, there is exactly

one isomorphism:
(ol My — M2

over K, such that p(ay) = as.
(Theorem 4.3.16)

This tells us that without loss of generality, we may take:

K(a)= K[/ (m)  a=n(t)

where 7 is the canonical homomorphism.

Now, 7 is surjective, so:

Vz € K(a) = K[t]/ (m), 3f € K[t] : «(f) ==

Page 6




For any such f, recall that we can write it as:
f=qgm+r
where ¢q,r € K[t] are unique, and deg(r) < n. In particular:

f@) =r(t) =q(O)m(t) <= f-rec(m)

and r is a unique such polynomial. Equivalently, we thus have unique ag,...,a,—1 € K, such that:

10 =3 at € (m)
1=0

However, this means that f,r are in the same equivalence class under the canonical homomorphism, so:

m(f)=mr (i aiti>

(alternatively, 7(m) = 0 € K[t]/ (m), from which the equality follows). Moreover, by definition 7 (t) = «, so:

n—1
()= aia
i=0
Thus, we can express any 7(f) € K(«) using a unique linear combination of 1,...,a" !, and thus, this

linearly independent set forms a basis for K («) over K, as required.

©)

Using Theorem 4.3.16, Part 2, we can see that if « is transcendental, then K («) is isomorphic to K(t).
But we saw above that 1,¢,t2,... is a basis for K(t), and [K(t) : K] = oo, so the result follows.
O
1.2.1 Examples
o if @ € C is algebraic over Q with a quadratic minimal polynomial, then:
Qo) ={a+ba|abeQ}
We already saw this:
— /2 is algebraic with minimal polynomial ¢ — 2
— 4 is algebraic with minimal polynomial ¢2 — 1
e if p is prime, then e?™*/? has minimal polynomial 1 + ¢+ ...+ t?~!, so:
[Q(e*™/?): Q] =p —1
o consider the polynomial 1 4 t + t2 over Zs. If a is a root, then:
Zo(a) ={a+ba|abeZs}={0,1,a,1+c}

Notice, since 1 + a + a? = 0, then if we apply the Frobenius automorphism (and noting that p = 2 is
prime and Zs(«) has characteristic 2)
x — xP

then:
=-1l-a=1+a

14+a)P=1"+a*=a
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e notice, this Theorem tells us that if & € M is algebraic over K with minimal polynomial m of degree
n, the set {1,c,...,a" "1} forms a basis for K(«), such that:

n—1
{Zaiof | a; GK}

i=0
will be a subfield of M (since K(«) is by definition of the smallest subfield of M containing K U{a}).
This is not obvious at all: this implies that, for instance, the set is closed under taking reciprocals!

1.3 Corollaries

1.3.1 Definition: Degree of Elements

Let M : K be a field extension, with « € M. Then, the degree of
over K is:
degg (o) = [K(a) : K]

Alternatively:

degy (a) = deg(m)
where m is the minimal polynomial of o in K[t] (this follows from Theo-
rem 5.1.5 above).

1.3.2 Corollary: Finite Degree Iff Algebraic

Let M : K be a field extension with o € M. Then:

degp(a) < 0o <=« is algebraic over K
(Corollary 5.1.10)

Proof. This is immediate from the Theorem above, and using the fact that degy (o) = [K(a) : K].

1.3.3 Example: Field Extension Containing /2
Let & be the real cube root of 2. Last week we argued that:

Q) # {a+b¢ [ abeQ}

Proving this directly is messy. However, now we know that the minimal polynomial of £ is t3 — 2, so:

degQ(f) =3

In particular, this means that Q(&) is a 3-dimensional vector field over @, so the set {1,£} won’t be a basis.

In fact, this is a rather elegant proof that 22/3 can’t be written as a Q-linear combination of 1 and 21/3!
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1.3.4 Corollary: Degree of Chained Extensions

Let M : L : K be field extensions, and p € M. Then:
[L(B) : L] < [K(B) : K]
(Corollary 5.1.12)

This isn’t immediately obvious, but can be understood intuitively. Since L : K, L contains a copy of K.
Hence, the minimal polynomial of B in L will have at most the same degree as the minimal polynomial
of B in K (since L has “more” elements, we can potentially construct a polynomial of smaller degree with 3

as a root). Pictorially:

B M
[L(B):L]

Proof. Tt [K(f) : K] = oo (i.e if B is transcendental), then the result follows.

Otherwise, 5 will be algebraic over K, so let m € K[t] be its minimal polynomial. Since L : K, m is
certainly an annihilating polynomial of 5 over L. In particular, we must have that the degree of the minimal

polynomial p of § over L is at most deg(m), so:
[L(B) : L] = deg(p) < deg(m) = [K(B) : K]

as required.
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1.3.5 Corollary: Element in Field from Polynomial of Algebraics

Let M : K be a field extension. Let:
ay,...,o, €M
where each o is algebraic over K, and:
degy(ay) = d;
Then:

n

Va € K(ai,...,0), 3¢, €K 1 a= Z Cry v Ha:"

T1yeees"n =1

where:
r; € [0, dZ = 1]
(Corollary 5.1.14)

This is conceptually difficult, so it is easier to ground it with an example.
Consider the case n = 2. We have an extension M : K, and 2 algebraic elements oy, 0 € M. Say:
degK(ozl) = d1 degK(OéQ) = dg

Then, each element of K (a1, as) can be expressed as:

di—1da—1

TS
g E CrsQU] by

r=0 s=0

where c.s € K are some coefficients.
For example, recall how:
Q(V2,i) = {a+bV2 +ci+dv2i | a,b,c,d € Q}

Since:

degg(v2) = degg (i) = 2
any element of Q(v/2,1) can be written as:
11
Z Z crsV'2 0% = cop 4 cori 4 c10V2 + ¢11V/2i
r=0 s=0

as expected.
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Proof. We proceed by induction.
@ Base Case (n = 1)
(We skip n = 0, since this is trivial)

The case n = 1 is what we’ve been considering up until now (simple field extensions), for which we know
that, by using Theorem 5.1.5:

Let K(a) : K be a simple extension. Then:

1. Let:

o « be algebraic over K
o m € K]t] be the minimal polynomial of «

o deg(m)=n
Then:

La,...,a" !
is a basis of K(«) over K, such that:

[K(«): K] =deg(m)=n
2. If a is transcendental over K, then:
1La,a,...

are linearly independent over K, and so:

[K(a) : K] = oo
(Theorem 5.1.5)
1,a,...,a%9x(0)=1 formg a basis for K («) over K, so the result follows for n = 1.
@ Inductive Hypothesis: n < k
Now, assume the claim is true for any n € [1, k]; that is, for any o € K (a1, ..., ax), we have that:

k
a=3c, . €K a= Z Criyesme Ha?
r Tk i=1
where
degK(Ozi) = dz r; € [O,di — 1]

@ Inductive Step: n =k + 1

Now, let:
a€ K(ag,...,ap41)
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Notice, since K(aq,...,ax) is a field, we may also write:

a € (K(O{l, ey Oék))(()[k.t,_l)

Notice, this is a simple extension:

(K(ag,...,05))(ags1) : Ko, ..., o)
and since a1 is algebraic, again by Theorem 5.1.5, we may write:

dipy1—1

r
o= E CrQyq
r=0

where:
dit1 = deg (k1) > degra,, o) (Qkr1)
and:
Oy Capq—1 € K(ai,...,ay)

But them, we can apply the inducitve hypothesis for each c,.:

k
— T
Cr = Criyesri a;
T,y Tk =1

SO:
k+1

di4+1—1 k
_ E : T I _ § i
o= CT‘ly---J’k HOLJ ak+1 - CT1,~~-,TIC+1 H ail
i=1 =1

r=0 T1seesTk Tl Th+1

as required.

2 The Tower Law

2.1 Theorem: The Tower Law

The Tower Law is invaluable when dealing with extensions which involve adjoining multiple elements.

Let M : L : K be field extensions.
1. If:

o (@;)ies is a basis of L over K

 (Bj)jes is a basis of M over L

then, (0;f3;) i )cixa s a basis for M over K.
M : K is finite <= M : L and L : K are finite

M : K] =[M: L][L: K]
(Theorem 5.1.17)

Page 12



Proof. Notice, it is sufficient to prove @, since @, @ follow immediately.

To this end, we claim that (a;3;) j)erx. is a linearly independent, spanning set of M over K.

A family (a;);er to be finitely supported if the set:
{iel|a;#0}

is finite

Let (cij)(i,jyerxs be a finitely supported family of elements of K, such that:
Z iy =0
0,J
In particular, this means that for any j € J:
Z CijQ € L
i

(as o forms a basis of L over K). Thus, and using the fact that (5;),cs is linearly independent over L:

Zcijaiﬁj =0 <— Z <Z cijai> Bi=0 <= Zcijai =0
ij j i i

However, («;);er is linearly independent over K, so:
Viel,Vjed, cij =0

Hence:
Zcijalﬂj =0 <= Cij = 0
i,
)
(iBj)ig)erxt
is linearly independent over K, as required.

Now, we show it is a spanning set. Let e € M. (8;),es spans M over L, so:
e= diB
J
for some finitely supported family (d;);es € L. But then, (o;);er spans L over K, so for each j € J:
dj = Z Cij QY
i
for some finitely supported family (¢;;)ier of K. Hence:

e = Z Z cijaiﬁj

J

as required.
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2.1.1 Example: Tower Law for Degree of Complicated Extensions

Consider the extension Q(v/2,v/3) : Q. We know that this is in fact a simple extension, since:

Q(V2,V3) = Q(V2 + V3)

If we wanted to find the degree of Q(v/2,v3) = Q(\/ﬁ + \/3) we’d need to find the minimal polynomial of
V2 + /3 which isn’t immediately obvious.

It is easier to just use the Tower Law. Indeed, let:
M=0Q(V2v3) L=QV2) K=Q

Then clearly:
M:L:K

so by the Tower Law:
[M:K]|=[M:L]L: K]
— [Q(V2,v3): Q] = [Q(V2,V3) : Q(vV2)[Q(V2) : Q]
— [Q(V2,v3): Q] = [Q(V2,V3) : Q(V2)] - 2

Moreover, recall that:

Let M : L : K be field extensions, and 5 € M. Then:

[L(B) : L] < [K(B) : K]
(Corollary 5.1.12)

Using L = Q(v/2), K = Q, 8 = v/3 then implies that:
[L(V3): L] < [K(V3): K] = [Q(V2,v3):Q(v2)] < [Q(V3):Q] =2
Moreover, since v/3 & Q(+/2) it is clear that:
QV2,v3) # Q(v2)

SO:

[@(v2.v3): Q(v2)] > 1
(recall, [M : K] =1 <= M = K). Hence, we must have that:
[Q(v2,v3) : Q(v2)] =2

such that:

[Q(v2,v3): Q] =4

Moreover, by closure under multiplication, we know that:
{1,v2,v3,V6} C Q(v2,V3)

This is a linearly independent set of 4 elements; since Q(v/2, v/3) has dimension 4, it must be a basis, so:

acQW2,V3) = a=a+b/2+cV3+dV6
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2.2 Corollaries of the Tower Law

2.2.1 Corollary: Divisibility of Degree for Stacked Extensions

Let:
M:Ly:Ly: K

be field extensions. If M : K is finite then [Ly : Ly| divides [M : K].
(Corollary 5.1.19)

Proof. Just apply the Tower Law twice:

[M . K} = [M . Ll][Ll K] = [MLl}[Ll . LQHLQK]

2.2.2 Exercises

1. [Ezxercise 5.1.20] Show that a field extension whose degree is a prime number must be simple.
This might remind you of the fact that a group of prime order is cyclic.

2.2.3 Corollary: Upper Bound on Degree for Adjoined Extensions

Let M : K be a field extension and:
ay,...,a, € M

Then:
[K(aq,...,00): K| <[K(aq): K]...[K(a,): K]
(Corollary 5.1.21)

Proof. Applying the Tower Law, and defining L; = K(a,...,q;):

[K(ala"'van):K]
=[K(a1,...,00)  K(ag,...,0n-1)] ... [K(a1,02) : K(aq)][K(a1) : K]
:[Ln_l(an) : Ln—l] ce [Ll(ag) : Ll][K(al) : K]

Then, recall:
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Let M : L : K be field extensions, and 5 € M. Then:

[L(B) : L] < [K(B) : K]
(Corollary 5.1.12)

from which we get:

as required.

3 Algebraic Extensions

3.1 Definition: Finitely Generated Field Extension

The field extension M : K is finitely generated if:

Y C M : |Y] < o0and M = K(Y)
(Definition 5.2.1)

3.2 Definition: Algebraic Field Extension

The field extension M : K is algebraic if every element of M is alge-
braic over K.

Recall, « is algebraic over K if and only if K(«) : K is finite (this is
Corollary 5.1.19). Thus, if a field extension is algebraic, we can think

of it as some kind of finiteness condition.
(Definition 5.2.2)
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3.3 Proposition: Finite Extensions are Finitely Generated and Algebraic

Let M : K be a field extension. Then, the following are equivalent:
1. M : K is finite
2. M : K is finitely generated and algebraic
3. for some finite set {a, ..., a,} of algebraic elements of M over K :

M:K(Oél,...,Otn)

(Proposition 5.2.4)

Proof.

O=00
Assume that M : K is finite.

We begin by showing that M : K is finitely generated. Since M : K is finite, we have a basis aq, ..., ay,
of M over K. Notice, any subfield L of M containing K will be a K-linear subspace of M, so:

ay,...,on €L = L=M
In particular, the only subfield of M containing:
KU{ay,...,a,}

is M itself:

Thus, M : K is finitely generated.

It is also algebraic. Let o € M. Notice, by the Tower Law, and since M : K is finite, and we have that
M : K(a) : K, it follows that in particular K(«) : K is finite, so @ must be algebraic (Corollary 5.1.10).
Hence, M : K is algebraic.

® =06

Assume that M : K is finitely generated and algebraic over K. Then there exists a finite set {a1,...,a,}
such that:
M=K(ar,...,an)

But since M is algebraic, each of the aj, ..., a, must also be algebraic in K, as required.

® =
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Assume that we have algebraic «; over K, such that:
M=K(ar,...,an)
Then, by the second Corollary of the Tower Law:
[M: K] =[K(ay,...,ap): K] <[K(ay) : K]...[K(ap): K]

Since «a; are algebraic, then:
Vie[l,n] : [K(a;): K] <o

SO:
[M: K] <o

as required.

3.3.1 Corollary: Finite, Simple Extensions are Algebraic

Let K(«) : K be a simple extension. The following are equivalent:

1.
[K(a): K] < o0

2. K(a) : K is algebraic

3. « is algebraic over K

(Corollary 5.2.6)

Proof.
. @ = @ is the above Proposition (Proposition 5.2.4)
. @ = @ is immediate from the definition of an algebraic extension

. @ == @ is again immediate from the above Proposition (Proposition 5.2.4)
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3.3.2 Proposition: Algebraics Over Rationals are a Subfield of Complex Numbers

The set of algebraic numbers over Q (denoted Q) is a subfield of C.
(Proposition 5.2.7)

Proof. We have that a € C is algebraic if and only if Q(a) : Q is finite. Tn other words:
Q={a]acC[Q): Q] < oo}
Now, let o, 8 € Q. Then, by the Second Corollary of the Tower Law:
[Q(e, 8) : Q] < [Q(a) : QIQ(B) : Q] < 0

Importantly, we thus know that Q(a, ) is finite.
We have that a — 5 € Q(«, 8), so in particular:

[Q(a—5): Q] < [Q(a, ) : Q] <0

Thus, since Q(a — ) : Q is a finite, simple field extension, by the above Corollary it follows that o — f is
algebraic, so o — 8 € Q. The same argument can be used to show that a8 € Q. Moreover, it is clear that
0,1 € Q. Hence, Q is a subring of C.

To show it is a subfield, we just need to show that 1/a € Q. Clearly, and using the fact that Q(a) is a
field:

[Q(1/a) : Q] = [Q(a) : Q] < o0
so 1/a is algebraic, and 1/a € Q.

Hence, Q must be a subfield of C, as required.

3.3.3 Exercises

1. [Ezercise 5.2.8] By imitating the prove above, show that L is a subfield of M, where M : K
is a field extension, and L is the set of elements of M algebraic over K.

4 Ruler and Compass Constructions

4.1 Formalising Ruler and Compass Constructions
e What constructions are possible in a ruler and compass problem?
— we are allowed an unmarked edge (“ruler”), and a compass

— if ¥ is a subset of the plane:

% given A, B € ¥, we can draw the (infinite) line through A and B
x given A, B € ¥, we can draw the circle with centre A passing through B
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4.1.1 Definition: Immediately Constructible Points

A point is immediately constructible from X if it is a point of inter-
section between:

e 2 distinct lines
e 2 distinct circles

e aline and a circle

4.1.2 Definition: Constructible Points

A point C,, is constructible from X if there is a finite sequence of
poInts:

Cy,...,C,
such that:

Vi € [1,n] C; is immediately constructible from X U {C1,...,C;_1}

4.2 Field Theory and Constructions

When performing ruler and compass constructions, points of intersection correspond to solutions to linear
or quadratic equations (since these are the form of the equations of lines and circles). As such, we expect

points like / V243 to be constructible, whilst V2 shouldn’t be (no way a cube root could turn up). We

now attempt to formalise this notion in terms of field theory.

4.2.1 Definition: Iterated Quadratic Extension

Let K C R be a subfield. The extension K : Q is iterated quadratic
if there exists from finite sequence of subfields:

Q=K CKiC...CK,=K

such that:
Vi € [1,’)’1,], [Kz 5 Kifl] =2

4.2.2 Example of Iterated Quadratic Extensions

2 (V5 va) o

The extension:

is iterated quadratic, since:

Q C Q(v2) CQ(V2,V3) = Q(vV2 + V3) g@<\/\/§+\/§)
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The fact that @(\/ﬁ + \/§) cQ ( V2 + \/§) comes from the fact that closure under multiplication gives:

(m>2ﬁ+\/§e@(ﬁ+x/§)

In fact, a similar argument tells us that there is an interated quadratic extension of Q containing v/v/5 + v/7.

4.2.3 Definition: Compositum of Fields

Let Ly, Lo be subfields of the field M. The compositum L L, is the
subfield of M, generated by Ly U Ls.

That is, the compositum is the smallest subfield of M containing both
Ly and Lo:

LiLy = Li(Ls) = La(L)
(Definition 5.5.3)

« What is the compositum of Q(v/2) and Q(/3)?
— the field Q(v/2,v/3)

4.2.4 Lemma: Degree of a Compositum

Let M : K be a field extension, such that L, Lo are subfields of M
containing K. Then:

[L1: K]|=2 = [L1Ly: Ly) € {1,2}

More generally, it is the case that:

[LlLQ 5 LQ] S [Ll o K]
(Lemma 5.3.6)
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Proof. We seek to show that:
[Lng : LQ] S 2

Let 8 € Ly \ K. We can then apply the Tower Law to:
Li:K(B): K
which alongside the hypothesis that [Ly : K| = 2 yields:
L Kl=2 = (L KB)KB): K] =2
Since § ¢ K, we must have that [K(3) : K] > 2, which then implies that [K(8) : K] = 2, and thus forces:
[Li: K(B)]=1 < Li=K(p)

Using this, we now seek to show that:
LiLy = Ly(PB)

Since Lo C L1Lo and 8 € Ly C Lq1Lo, it is clear that:
Ly(B) € L1Ly

Conversely, Ly () is a subfield of M containing K (3) = Ly (since K C L) and Lo, so it must contain Lj Ls.
Hence, it follows that Li Lo = Lo(f).

Hence, using Corollary 5.1.12:
[L1Ls : Lo] = [La(B) : Lo] < [K(B) : K] =2

as required.
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4.2.5 Lemma: Generating Iterated Quadratic Subfields

Let K and L be subfields of R, such that the extensions:
K:Q L:Q

are iterated quadratic. Then, there is some subfield M of R, such
that:

o the extension M : Q is iterated quadratic
e K,LC M
(Lemma 5.3.8)

Proof. Since K : Q, L : Q are iterated quadratic, we have that:
Q=KyCKiCK,C...CK,=KCR
Q=LyCL;CLy;C...CL,=KCR

such that:
Viaja [Kz : Ki—l} =2= [Lj : Lj—l}

Now, consider the chain of subfields of R given by:
Q=K¢CK;C..CK,=K=KLyCKL;C...CKL,,=KL

Then, it is sufficient to show that M = KL is an iterated quadratic extension of K, since K, L C K L clearly.

We know that for all i:
[Kz : Ki—l] =2

and similarly that for each j:
[Lj : Lj]

Recall Lemma 5.3.6 on the degree of compositums:

Let M : K be a field extension, such that L, Ly are subfields of M
containing K. Then:

[Ll : K] = [LlLQ : LQ] € {1,2}

More generally, it is the case that:
[LlLQ 5 LQ] S [Ll o K]
(Lemma 5.3.6)
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We have that L;, KL;_; are subfields of R which both contain L;_; by assumption. Thus, applying the
Lemma:
[Lj : Lj—l] =2 = [Lj(KLj_l) : KLj_l] = [KLJ : KLj_l] S {172}

Hence, in the chain of subfields, all the successive degrees are either 1 or 2. Extensions with degree 1 are
an equality, which can be ignored. This then yields that KL : Q is an iterated quadratic extension, which
trivially contains K and L.

O

4.3 The Problems Which Stumped the Greeks
4.3.1 Proposition: Iterated Quadratic Extensions Contain Constructible Points

Ruler and compass constructibility involves a set ¥ C R? of points. For simplicity, we may assume that X
only contains 2 points, and we can orient the coordinate axes, such that these 2 points have coordinates (0,0)
and (1,0).

Let (z,y) € R%. If (z,y) is constructible from:

¥ = {(0,0), (170)}

then there is an iterated quadratic extension of Q containing both x

and y.
(Proposition 5.5.9)

Proof. We operated inductively on the number of steps n required to construct (z,y) from X.

@ Base Case: n =0

If n =0, then (z,y) € ¥, so z,y € Q, which is an iterated quadratic expression of itself.

@ Inductive Hypothesis: n =k

Assume that if (x,y) is constructible in k steps from 3, then there is an iterated quadratic extension of
Q containing both = and y.

@ Inductive Step: n=k+1

Now, assume that (z,y) is constructible in k + 1 steps from X. If this is the case, by definition, (z,y)
must be the intersection point of 2 distinct lines and/or circles, through points which are constructible in at
most k steps. By the inductive hypothesis, each of these points must lie in some iterated quadratic extension
of Q, so by Lemma 5.3.8:
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Let K and L be subfields of R, such that the extensions:
K:Q L:Q

are iterated quadratic. Then, there is some subfield M of R, such
that:

o the extension M : Q is iterated quadratic
e K,LCM
(Lemma 5.3.8)

there is an iterated quadratic extension L of Q containing all of the points’ coordinates. The coefficients
in the equations of the lines and/or circles must also lie in L, due to the closure of the field.

We now claim that:
degy (z) € {1,2}

If deg, () = 1, then the minimal polynomial of z in L has degree 1, which implies that 2 € L. Alternatively,
[L(z) : L] =1 <= L(z) =L, so x € L. Otherwise, if deg;(z) = 2, then by definition [L(z) : L] = 2,
so L(x) is an iterated quadratic extension of Q (since L is by inductive hypothesis). The same logic will
apply to y, and then using Lemma 5.3.8, we can combine these to create an iterated quadratic extension of
Q containing x,y.

Hence, to show that deg; (x) € {1,2} we consider 3 cases:
1. If (x, y) is the point of intersection of 2 distinct lines, then they satisfy 2 linearly independent equations:

a1x+b1y+01:0
asx +boy+c2 =0

where a;, b;, c; € L. But then:

- —C2 — A2
ba
Co + asx
= a1z — b (> +c1=0
bo
bias bica
- @ rx— —T=—C+—F—
by ba
—c1 + b117§2
r= _ bias
aq by

so x € L, since it is a rational function of the a;, b;, ¢; € L. Thus:

degy (z) =1

2. If (x,y) is the point of intersection of a line and a circle, then:

axr+by+c=0
2+ +detey+f=0
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where a,b,c,d, e, f € L. If b = 0, then since a can’t be 0, we have:
T = _c €L
a

Otherwise, we can use the linear equation to solve for y, and plug in the result into the quadratic. This
results in a quadratic over L, satisfied by x, so:

degy (z) € {1,2}

the minimal polynomial of x over L must have degree at most 2, since we have a quadratic solved by
g
ZL’)

3. If (x,y) is the point of intersection of 2 circles, then:

P4+ +diz+ey+ f1 =0
22+ y? +dox +eay+ fo =0

where d;, e;, f; € L. If we subtract both equations, we get a linear equation that must be satisfied by
(z,y), which thus means that (z,y) must satisfy the case of a line and a circle, and so

deg; (x) € {1,2}

Hence, as required, x,y must lie in an iterated quadratic extension of Q.

4.3.2 Theorem: Constructible, Algebraic Points Have Power of 2 Degree

Let (z,y) € R%. If (z,y) is constructible from:
2 ={(0,0),(1,0)}
then:

e x,y are algebraic over Q

o their degrees over Q are powers of 2

(Theorem 5.3.10)

Proof. By the above proposition, there is an iterated quadratic extension M of QQ, such that x € M. Hence,
by the Tower Law:
In>0: [M:Q =2"

Moreover, and again by the Tower Law:
[M:Q] =[M:Q)][Q(x): Q] = [Qz):Q]|2"

Hence, it follows that degg(z) < oo (so x will be algebraic), and since it divides 2", it must itself be a power
of 2, as required.
O
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4.3.3 Proposition: Angles Can’t be Trisected by Ruler and Compass

An angle cannot be trisected by ruler and compass.

(Proposition 5.3.11)

Proof. Assume that an angle can be trisected with ruler and compass.

Using ruler and compass, we can construct an equilateral triangle with (0,0) and (0,1) at its vertices.

(0,0) (1,0)

Then, we can trisect the angle of the triangle at the vertex (0,0). Let (x,y) be the point where the
trisector meets the circle with centre (0,0) going through (1, 0):
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In particular, this implies that x is constructible, and so, by Theorem 5.3.10 above:
degg(z)
must be a power of 2. Simple trigonometry tells us that:
x = cos(m/9)

Now, there’s an identity for cos:
cos(3x) = 4 cos®(z) — 3 cos(x)

Plugging in z = 7/9 and using cos(r/3) = 1:

1
cos®(m/9) — §Cos(7r/9) —=-=0
4 8
so x = cos(7/9) is a root of:
(t) =13 — 3,1
PO=0747%

We claim that p(t) is also the minimal polynomial of cos(7/9). By Lemma 4.2.10, m € Q[t] (a monic
polynomial) is the minimal polynomial of a over Q if and only if m is irreducible over Q, and it annihilates
«. To this end, recall the mod p method:
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Let:
ft) =ap+ait+ ...+ a,t" € Z[t]

Let 7 : Z — 7Z, be the canonical homomorphism, and m, : Z[t] — Z,[t| the
resulting induced homomorphism. Define notation:

7'('((1) =a 7T*(f>:f
If there exists a prime p such that:
e pfan
o f € 7Z,[t] is irreducible

then f is trreducible over Q.
(Proposition 3.5.9)

p(t) is irreducible over Q if and only if:
8p(t) = 8t3 — 6t — 1
is irreducible over Q. Letting p = 5, we reduce our polynomial to:

3p(t) =3t —t—1eZs

Moreover, by Lemma 3.3.1:

Let K be a field and f € K][t]. Then:

1.

deg(f) <0 = f is not irreducible
2.
deg(f) =1 = f isirreducible
o
deg(f) > 2 and f has a root —> [ is reducible
4.
deg(f) € {2,3} and f has no root = f is irreducible

(Lemma 3.3.1)

it follows that it is sufficient to show that 3p has no roots in Zs. Indeed:
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t|3t3—t—1
0 4
1 1
2 1
3 2
4 2

Hence, 3p has no roots over Zs, and so, is irreducible. It thus follows that cos(/9) has p(t) = ¢3 — 2t — &
as an irreducible, annihilating polynomial over Q, so p must be its minimal polynomial.

(you can also check Stack Exchange Post, which gives a more satisfying, albeit complicated, way of finding

a minimal polynomial for cos(w/9))

But then, we must have that:
degg(cos(m/9)) =3
which isn’t a power of 2. This is a contradiction, and so, it is impossible to trisect an angle just using ruler
and compass. O

4.3.4 Proposition: Cube Can’t be Duplicated by Ruler and Compass

The cube cannot be duplicated by ruler and compass.

That is, given a length, we can’t construct a new length whose cube is
twice the cube of the original. In other words if 2 points are a distance L
apart, we can’t construct 2 new points which are a distance /2L apart.

(Proposition 5.5.12)

Proof. Assume that we can duplicate a cube with ruler and compass.

Then, since (0,0) and (1,0) are a distance 1 apart, we can construct from them 2 points A, B a distance
V/2 apart. Using ruler and compass, we can the construct the point (¥/2,0):
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A=1(0,0)

(1

Hence, since (1/2,0) is constructible, we must have that:

ngQ( \3/5)

70)

(V2,0)

is a power of 2. But we know that the minimal polynomial of /2 is t* — 2, so degQ(Q) = 3, a contradiction.
Hence, we can’t duplicate a cube by using ruler and compass.

4.3.5 Proposition: Circle Can’t be Squared by Ruler and Compass

The circle cannot be squared by ruler and compass.

points a distance /7L apart.

—

7L
N

N

/‘\\]

m%

b4

(Proposition 5.5.13)

\_/

That is, given a circle, we can’t construct a square with the same area.
in other words, if 2 points are a distance L apart, we can’t construct 2

O

Proof. Assume that we can square a circle.

Consider the circle with centre (0,0) going through (1,0) with area w. Then, we can construct a square

with side length /7, and then with ruler and compass, we can construct the point (/7 0):
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(0,0) (1,0) (v, 0)

However, this implies that /7 must be algebraic over Q, with degg(y/7) as a power of 2. In particular,
this means that /7 € Q, which is a subfield, which thus implies that 7 € Q. Thus, we must have that 7 is
algebraic, which is a contradiction, as we know that 7 is transcendental over Q.

O

4.3.6 Proposition: Constructing Regular N-Sided Polygons

A regular, n-sided polygon is constructible if and only if:

n=2"p;...pk
where:
e k>0
e p1,...,pr are Fermat Primes, which are primes of the form:

2%+1

We can show that if p = 2% + 1 is prime, then u must be a power of 2. To this end, we know that if n is
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odd:
"+ l=(z+ D" -2 )

Now, let m = nd, where n is odd. Then:
1= )" +1= (@ + D) ()" - @)+, 1)

Hence, the only way for ™ + 1 to not be composite (and thus prime) is if m has no odd factors. In other
words, m must be some power of 2.

Proof. [This is more of a sketch than a formal proof.]

Let p be prime, and assume that the regular p-sided polygon is constructible. W ecna consider inscirbing
the regular p-sided polygon inside the unit circle in C, such that one of its vertices is at 1.

We will have that another vertex will be at €27/P, and since such a vertex is constructible:
degQ(eQTri/p)

is a power of 2. Moreover, we saw that degQ(eZWi/p) = p— 1. Hence, p — 1 must be a power of 2, or in other

words, p must be a Fermat Prime.
O
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