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Based on the notes by Tom Leinster, Chapter 4

1 Introducing Field Extensions
1.1 Definition: Field Extension

Let K be a field.
An extension of K is:

• a field M

• alongisde a homomorphism:

ι : K →M

We write M : K (read “M over K”) to mean that M is an extension of
K, whereby ι is typically the inclusion homomorphism.
(Definition 4.1.1)

1.1.1 Clash Between Intuition and Definition

This definition might seem counterintuitive. We should think of an
extension as something that extends our field K.
For example, we defined:

Q(
√
2) = {a+ b

√
2 | a, b ∈ Q}

We have been considering these extensions as fields, which have K as a
subfield - or at least a subset (Q is a subfield of Q(

√
2)).

However, this isn’t formally the case: for example, it is simple to argue
that R isn’t a subset/subfield of C. This is rather simple: R contains ob-
jects like 6,−2, π2; but these objects aren’t part of C. However, C does
have 6 + 0i, −2 + 0i or π2 + 0i.
What we are doing under the hood is using a homomorphism ι : R → C:

x 7→ x+ 0i

1.1.2 Examples of Field Extensions

• C alongside the inclusion ι : Q → C is an extension of Q, so C : Q. Similarly, C : R and R : Q

• consider:
Q(

√
2) = {a+ b

√
2 | a, b ∈ Q}

Clearly, Q(
√
2) is a subring of C, since:

– it contains the identity of C
– it is clearly closed under subtraction (the

√
2 doesn’t “mix” with the rationals)
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– similarly, we have closure under multiplication

Moreover, it is a subfield, since the inverse of a+ b
√
2 (with a, b non-zero) is:

1

a+ b
√
2
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
+

−b
a2 − 2b2

√
2 ∈ Q(

√
2)

where the denominator is non-zero, since
√
2 is irrational. Hence, we have an extension:

C : Q(
√
2)

(again using inclusion). Moreover, again with inclusion we get that:

Q ⊆ Q(
√
2) =⇒ Q(

√
2) : Q

• we can see that we get a field:

Q(
√
2, i) = {a+ b

√
2 + ci+ d

√
2i | a, b, c, d ∈ Q}

which extends the rationals:
Q(

√
2, i) : Q

but which extends to the complex numbers:

C : Q(
√
2, i)

• the field of rational expressions K(t) over K with homomorphism ι : K → K(t):

ι(a) =
a

1

leads to a field extension:
K(t) : K

• complex conjugation is a homomorphism, and so we see that C : C

1.1.3 Exercises

1.2 Generating Fields from Sets
1.2.1 Definition: Subfield Generated by a Subset

Let K be a field, and X ⊆ K. The subfield of K generated by X is
the intersection of all the subfields of K containing X.
By definition, it is the smallest subfield of K containing X, in the sense
that any subfield of K containing X must contain F .
(Definition 4.1.4)

1.2.2 Definition: Subfield Generated by Adjoining Subsets

We now formalise and generalise what we have been using, with examples like Q(
√
2).
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Let M : K be a field extension, and consider Y ⊆M .
We write K(Y ) to denote the subfield of M generated by K ∪ Y .
K(Y ) is:

• K with Y adjoined

• or the subfield of M generated by Y over K

In particular, K(Y ) is the smallest subfield of M containing both K
and Y .

If Y is finite:
Y = {α1, . . . , αn}

we write:
K(Y ) = K(α1, . . . , αn)

(Definition 4.1.8)

1.2.3 Examples of Generated Fields

• the subfield of K generated by ∅ is the prime subfield: every subfield contains ∅, so ∅ must generate
the smallest possible subfield of K

• L = {a+ bi | a, b ∈ Q} is nothing but the subfield of C generated by {i}. It is clearly a subfield, and if
L′ is any other subfield of C, it must contain Q (since it is the prime subfield). Thus, L′ must contain
all the rationals, alongside i, so:

a, b, i ∈ L′ =⇒ a+ bi ∈ L′ =⇒ L ⊆ L′

• in fact, L = Q(i): since Q is the prime subfield of C, the subfield generated by Q ∪ {i} is simply
the smallest subfield of C containing i (since any subfield will automatically include Q). The same
reasoning works with Q(

√
2): it is the subfield of C generated by {

√
2}

• when we use K(t) to denote the field of rational expressions over K, we aren’t abusing notation: it
also corresponds to the smallest subfield of K(t) containing both K and t. To this end, let L be any
such subfield. Any polynomial over K is:

f(t) =
∑

ait
i

Clearly, f(t) ∈ L, since ai, t ∈ L, and L is a field (so there’s closure). Hence, if f(t), g(t) are polynomials
over K, then:

f(t), g(t) ∈ L =⇒ f(t)/g(t) ∈ L

since where f(t)/g(t) is a polynomial h(t) satisfying:

g(t)h(t) = f(t)

Thus, it follows that L = K(t)!
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1.2.4 Warning: On Adjoining to Create Subfields

In general, it is not the case that:

K(α) = {a+ bα | a, b ∈ K}

In fact, we have that:

K(α) =

{
n−1∑
i=1

ciα
i | ci ∈ K

}
where n is the degree of the minimal polynomial of α (we will see this
later on).
For example, we have just seen that K(t), the field of rational expressions
is bigger than {a + bt | a, b ∈ K}, which isn’t even a field (it isn’t closed
under multiplication)!
Another more concrete example: let ζ be the real cube root of 2. It can be
shown that ζ2 can’t be expressed as a+ bζ, but clearly:

ζ ∈ Q(ζ) =⇒ ζ2 ∈ Q(ζ)

by closure, so we must have:

Q(ζ) = {a+ bζ + cζ2 | a, b, c ∈ Q}

2 Algebraic and Transcendental Numbers ((((((((((
Over a Field

2.1 Definition: Algebraic and Transcendental Numbers

Let M : K be a field extension, and consider α ∈ M . α is algebraic
over K if:

∃f 6= 0K ∈ K[t] : f(α) = 0

If no such f exists, α is transcendental over K.
(Definition 4.2.1)

2.1.1 Examples of Algebraics and Transcendentals

• trivially, any k ∈ K is algebraic over K, since f(t) = t− k has k as a root

• classically, we know that π, e are transcendental over Q (given the extension C : Q), which also
gives us that all transcendentals over Q must also be irrational

• however, π, e are algebraic over R, since e, π ∈ R

• t ∈ K(t) is transcendental over K, since:

f(t) = 0 ⇐⇒ f = 0
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by definition of f

• the set of complex numbers algebraic over Q is denoted Q, which is a subfield of C - this is
extremely non-trivial (try showing that it is even closed under addition)

• if n ≥ 1, then e2πi/n is algebraic over Q, since f(t) = tn − 1 satisfies f(ω) = 0

2.2 The Minimal Polynomial
2.2.1 Definition: Annihilating Polynomial

Let M : K be a field extension, and let α ∈ M . An annihilating
polynomial of α is a polynomial:

f ∈ K[t] : f(α) = 0

Thus:

α is algebraic ⇐⇒ α has a non-zero annihilating polynomial

2.2.2 Lemma: The Minimal Polynomial Generates Annhiliating Polynomials

Let M : K be a field extension, and let α ∈M . Then:

∃m(t) ∈ K[t] : 〈m〉 = {annihilating polynomials of α over K}

In particular:

• if α is transcendental over K, then m = 0

• if α is algebraic over K, then m is a unique, monic polynomial
called the minimal polynomial of α

(Lemma 4.2.6)

Proof. Recall the Universal Property of Polynomial Rings:
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Let R,B be rings. Consider any homomorphism:

φ : R → B

and any b ∈ B.
Then, there exists a unique homomorphism:

θ : R[t] → B

such that:

∀a ∈ R, θ(a) = φ(a)

θ(t) = b

(Proposition 3.1.6)

In particular, this implies that (using φ to be the inclusion K →M) there is a unique homomorphism:

θ : K[t] →M

satisfying:
∀a ∈ K, θ(a) = a θ(t) = α

Explicitly:
θ
(∑

ait
i
)
=

∑
aiα

i

In particular, the kernel ker(θ) corresponds to all polynomial f ∈ K[t], such that f(α) = 0, so:

ker(θ) = {annihilating polynomials of α over K}

But a property of the kernel is that it is an ideal of K[t], and since K is a field, K[t] is a principal ideal
domain, it follows that:

∃m ∈ K[t] : ker(θ) = 〈m〉

Then:

• if α is transcendental, ker(θ) = 0 =⇒ m = 0

• if α is algebraic, then m 6= 0. We can freely multiply m by some non-zero constant, and this won’t
change the ideal, so we may assume that m is monic.

Now we just need to show that m is unique. To this end, consider any other m̃ such that:

ker(θ) = 〈m̃〉

In particular this means that m̃ = cm for some non-zero constant c. But since m, m̃ are both monic, we
must have that c = 1, so m = m̃, as required.
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2.2.3 Lemma: Equivalent Conditions for Minimal Polynomials

Let M : K be a field extension, let α ∈ M be algebraic over K, and
let m ∈ K[t] be a monic polynomial. Then, the following are equivalent:

1. m is the minimal polynomial of α over K

2. m(α) = 0K, and for any annihilating polynomial f of α over K:

m | f

3. m(α) = 0K, and for any non-zero annihilating polynomial f of
α over K:

deg(m) ≤ deg(f)

That is, the minimal polynomial is the monic, annihilating
polynomial of least degree.

4. m(α) = 0K and m is irreducible over K

Proof.

• 1 =⇒ 2 : this is immediate from the definition of a minimal polynomial (f ∈ 〈m〉 ⇐⇒ m | f)

• 2 =⇒ 3 : since m | f , it is immediate that deg(m) ≤ deg(f)

• 3 =⇒ 4 : firstly, m can’t be constant (unit), since m is monic, so we’d have m = 1K , and clearly

m(α) = 1K 6= 0K . Thus, we must have:
∃f, g ∈ K[t] : m(t) = f(t)g(t)

By 3 :
m(α) = 0K =⇒ f(α)g(α) = 0K

WLOG assume that f(α) = 0, so f must be an annihilating polynomial. Thus, deg(f) ≥ deg(m) by 3 .
However, since f is a factor of g, we also have deg(m) ≥ deg(f), which implies that deg(f) = deg(m),
and so, deg(g) = 0, which implies that g is a unit. Hence, m is irreducible over K.

• 4 =⇒ 1 : let mα denote the minimal polynomial of α. Assuming 4 , we know that m(α) = 0,

and m is irreducible over K, so:
mα | m

by definition of the minimal polynomial. But since m is irreducible, and mα can’t be constant (a unit),
it follows that m is a non-zero, constant multiple of mα. Since both m,mα are monic by assumption,
it must be the case that m = mα.
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2.2.4 Examples of Minimal Polynomials

• t2 − 2 is the minimal polynomial of
√
2 over Q. To see why, we can first note that it is clearly

annihilating and monic:

– since
√
2 is irrational, there is no polynomial with deg(f) ≤ 1 which is annihilating, so by 3

t2 − 2 must be minimal
– recalling

Let K be a field and f ∈ K[t]. Then:

1.
deg(f) ≤ 0 =⇒ f is not irreducible

2.
deg(f) = 1 =⇒ f is irreducible

3.
deg(f) ≥ 2 and f has a root =⇒ f is reducible

4.
deg(f) ∈ {2, 3} and f has no root =⇒ f is irreducible

(Lemma 3.3.1)

we can see that t2 − 2 has no root in Q, and is of degree 2, so it is irreducible, so by 4 , t2 − 2

must be minimal

• the minimal polynomial of 3
√
2 over Q is t3 − 2. This can be shown by noting that it has no root in Q

and degree 3 (or using Eisenstein with p = 2). However, notice it isn’t trivial to show that t3 − 2 is
the annihilating polynomial of least degree

• if ω = e2πi/p, ω is a root of tp − 1, but this isn’t the minimal polynomial, as it is reducible:

tp − 1 = (t− 1)m(t) = (t− 1)(tp−1 + . . .+ t+ 1)

Since ω − 1 6= 0, we must have that m(ω) = 0, and m is irreducible over Q (it is the pth cyclotomic
polynomial), so it must be the minimal polynomial
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3 Simple Extensions
3.1 Motivation
3.1.1 Extending the Rationals to Contain Roots

Suppose we want to find a field K, such that for any non-constant polyno-
mial over Q, K contains the roots of the polynomial. For Q this is trivial:
by the Fundamental Theorem of Algebra, we know that any root of a
polynomial in Q will lie in C, so we take K = C, and we are done!

Now, lets try to be a bit more economical. Say we have an irreducible,
monic polynomial m over Q. Say that α ∈ C is a root of m. We know
that Q(α) is the smallest subfield of C containing α.

However, we can look at this from a different perspective. Say we want
to find an extension for Q containing some α ∈ C. By the Universal
Property, we know that there’s a homomorphism:

θ : Q[t] → C∑
ait

i 7→
∑

aiα
i

We know that the kernel ker(θ) is the ideal containing all the annihilat-
ing polynomials of α over Q, which is generated by the minimal polyno-
mial:

ker(θ) = 〈m〉
Moreover, by the First Isomorphism Theorem we have that:

im(θ) ∼= Q[t]/ 〈m〉

We know that Q[t]/ 〈m〉 will be a subfield of C (im(θ) is a subring, and the
quotient of an integral domain by an ideal of an irreducible element is a
field). Moreover, we know that α = θ(t) ∈ im(θ). In other words, im(θ) is
a subfield of C containing α!

In fact, we have that:
Q(α) ∼= Q[t]/ 〈m〉

That is, we can start with a root or a minimal polynomial, and we arrive
at the same subfield of C! To see why, as we discussed above Q(α) must
contain any polynomial in α, f(α). But any such polynomial must be in
Q[t], so f(α) ∈ im(θ).
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3.1.2 Extending Arbitrary Fields to Contain Roots

Unfortunately, we don’t always get to work with nice fields like Q and C.
However, it is easy to adapt what we’ve done above to an abstract field K.

Generally, given a field K and an irreducible polynomial m ∈ K[t], we can
adjoin a root α of m to K by considering:

K[t]/ 〈m〉

where α will be the equivalence class of t in K[t]/ 〈m〉.

More concretely, we know that K[t]/ 〈m〉 is a field, and we have a homo-
morphism:

K → K[t]/ 〈m〉
which can be constructed by chaining homomorphisms:

K
ϕ→ K[t]

π→ K[t]/ 〈m〉

(ϕ is the inclusion a 7→ a, and π is the canonical homomorphism). In par-
ticular, this means that we have a field extension K[t]/ 〈m〉 : K, given
by the homomorphism ϕ ◦ π. If we call π(t) = α, then:

π
(∑

ait
i
)
=

∑
aiα

i

Below, we formalise our discussion above for K, involving how α is a root
of m, and how this extension is actually economical: it is as small as
can be.

3.1.3 Example

Example from this video

Consider the field F = Z2 and the polynomial m = t3 + t+ 1 (you can see that this is irreducible, since
it has degree 3 and no roots in F ). What field is the field F [t]/ 〈m〉?

From Honours Algebra, we can intuitively think of it as the set of equivalence classes, such that 2 elements
are equal if subtracting one from the other leads to a polynomial with a factor of m. This immediately allows
us to discard polynomials of degree 3 or more, since we can always write such polynomials as p = mq + r,
which reduces to r over F [t]/ 〈m〉, and deg(r) ≤ 2. Hence, we immediately get:

F [t]/ 〈m〉 = {0, 1, t, 1 + t, t2, 1 + t2, t+ t2, 1 + t+ t2}

Notice, this extends our base field F , and contains a root t, such that m(t) = 0.
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3.2 Lemma: Formalising the Motivation

Let K be a field. Then:

1. Let m ∈ K[t] be monic and irreducible. Let:

π(t) = α ∈ K[t]/ 〈m〉

be the image of t under the canonical homomorphism:

π : K[t] → K[t]/ 〈m〉

Then, α has a minimal polynomial m over K, and K[t]/ 〈m〉 is
generated by α over K (K[t]/ 〈m〉 = K(α)).

2. The element t of the field K(t) is transcendental over K, and K(t)
is generated by t over K.

(Lemma 4.3.1)

Proof.

1

Write:
M = K[t]/ 〈m〉

We have that:
π
(∑

ait
i
)
=

∑
aiα

i

which implies that ker(π) = 〈m〉 contains the set of annihilating polynomials of α over K. By definition, m
must be the minimal polynomial of α over K.

Now, any subfield L of M which contains K and α must contain every polynomial in α over K (1 +
α2, 2 + 3α3, . . .), so L =M . In other words, M = K(α).

2

We already showed above that t is transcendental in K(t). Let L be a subfield of K(t) which contains
both K and t. If f, g ∈ K[t] are in L, then by properties of fields f/g ∈ L, so L =M , and M = K(t).
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3.3 Morphisms Over Fields
3.3.1 Definition: Homomorphisms Over Fields

Let K be a field, and let:
ι1 : K →M1

ι2 : K →M2

define extensions of K.
A homomorphism:

φ :M1 →M2

is said to be an homomorphism over K if the following commutes:

(Here M =M1 and M ′ =M2)
Explicitly, we must have:

∀a ∈ K, φ(ι1(a)) = ι2(a)

If ι1, ι2 are just inclusions, we can shorten notation, and just require:

∀a ∈ K, φ(a) = a

(Definition 4.3.3)

• Is complex conjugation a homomorphism over R?

– yes, since clearly it defines a homomorphism, and:

∀a ∈ R, ā = a
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3.3.2 Lemma: Homomorphisms Over Fields are Determined by Value on Subsets

Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

Proof. Recall the equalizer:

Let X,Y be sets, and let S be a subset of all functions of the form X →
Y .
The equalizer of S is:

Eq(S) = {x | x ∈ X, ∀f, g ∈ S : f(x) = g(x)}

That is, the equalizer is the set of all x ∈ X which are equal under all
functions in S.
(Definition 2.3.7)

alongside the fact that:

Let K,L be fields, and let S be a subset of all homomorphisms of the
form K → L.
Then, the equalizer Eq(S) is a subfield of K.
(Lemma 2.3.8)

Now, since φ,ψ are homomorphisms over K, we have that:

∀a ∈ K, φ(a) = a = ψ(a)

Moreover, by assumption:
∀a ∈ Y, φ(a) = ψ(a)

Hence, it follows that K ∪Y is a subset of Eq{φ,ψ}. But then, Eq{φ,ψ} is a subfield of M1, which contains
K ∪ Y , so it must be the case that:

Eq{φ,ψ} = K(Y )
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but by assumption K(Y ) =M1, so:

Eq{φ,ψ} =M =⇒ φ = ψ

as required.

3.3.3 Proposition: Universal Properties of K[t]/ 〈m〉 and K(t)

Let K be a field. Then:

1. Let:

• m ∈ K[t] be monic and irreducible
• L : K be an extension of K
• β ∈ L have minimal polynomial m

If we write α = π(t) (where π is the canonical homomorphism
π : K[t] → K[t]/ 〈m〉), then there is exactly one homomorphism:

φ : K[t]/ 〈m〉 → L

over K, such that φ(α) = β.

2. Let:

• L : K be an extension of K
• β ∈ L be transcendental

Then, there is exactly one homomorphism:

φ : K(t) → L

over K, such that φ(t) = β

(Propostion 4.3.7)

The first universal property can be described with a diagram:
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Notice, L is drawn higher than K[t]/ 〈m〉 to convey that L may be bigger. This says that if m is a monic,
irreducible polynomial over K, the extension K[t]/ 〈m〉 contains a root of m, and said root generates the
extension. In fact, we will show that this is the only such extension (up to isomorphism).

For instance, if:

• K = Q

• m(t) = t2 − 2

• L = C

• β = −
√
2 ∈ C

Then the universal property says that there exists a unique homomomorphism:

φ : Q[t]/
⟨
t2 − 2

⟩
→ C

which maps the equivalence class of t (namely π(t)) to −
√
2.

Proof.

1

We begin by showing that there is at least one homomorphism:

φ : K[t]/ 〈m〉 → L

over K, such that φ(a) = β.

To this end, by the Universal property of Rings, there is exactly one homomorphism:

θ : K[t] → L

such that:

• ∀a ∈ K, θ(a) = a

• θ(t) = β

Then:
θ(m(t)) = m(β) = 0 =⇒ 〈m〉 ⊆ ker(θ)

But now, recall the Universal Property of Factor/Quotient Rings:
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Let I be an ideal of the ring R. Define the canonical homomor-
phism:

πI : R → R/I

Then:

1. πI is surjective, and:
ker(πI) = I

2. If:
φ : R → S

is a ring homomorphism, and:

φ(I) = {0S}

(so that I ⊆ ker(φ)), then there exists a unique ring
homomorphism

φ̄ : R/I → S

such that:
φ = φ̄ ◦ πI

Diagrammatically, we have:

Here, identifying R = K[t], I = 〈m〉, S = L, it follows that there exists a unique homomorphism
φ : K[t]/ 〈m〉 → L such that:

Moreover, φ will be a homomorphism over K:

∀a ∈ K, φ(a) = φ(π(a)) = θ(a) = a

and also:
φ(α) = φ(π(t)) = θ(t) = β
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so we must have φ(α) = β. Thus, we have demonstrated existence.

Next, we show that there is at most one homomorphism K[t]/ 〈m〉 → L over K such that α 7→ β. Assume
that φ1, φ2 are 2 such homomorphism. Then:

φ1(α) = φ2(α)

and by Lemma 4.3.1:

Let K be a field. Then:

1. Let m ∈ K[t] be monic and irreducible. Let:

π(t) = α ∈ K[t]/ 〈m〉

be the image of t under the canonical homomorphism:

π : K[t] → K[t]/ 〈m〉

Then, α has a minimal polynomial m over K, and K[t]/ 〈m〉 is
generated by α over K (K[t]/ 〈m〉 = K(α)).

2. The element t of the field K(t) is transcendental over K, and K(t)
is generated by t over K.

(Lemma 4.3.1)

α generates K[t]/ 〈m〉 over K so by:

Let M1,M2 be extensions of a field K, and let:

φ, ψ :M1 →M2

be homomorphisms over K.
Let Y be a subset of M1, such that M1 = K(Y ). Then:

∀a ∈ Y, φ(a) = ψ(a) =⇒ φ = ψ

In other words, knowing the behaviour of φ, ψ on Y is sufficient to under-
stand φ, ψ on all of M1.
(Lemma 4.3.6)

with Y = {α}, we must have that φ1 = φ2, as required.

2

We begin by showing that there is at least one homomorphism φ : K(t) → L over K such that φ(t) = β.
Recall, every element of K(t) is given by f/g, with f, g ∈ K[t] and g 6= 0. Since by assumption β is
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transcendental over K, we have that g(β) 6= 0, so f(β)/g(β) ∈ L is well-defined. In particular:

φ : K(t) → L

defined by:
f(t)

g(t)
7→ f(β)

g(β)

is a well-defined homomorphism. Moreover, it is clearly a homomorphism over K:

∀a ∈ K, φ(a) = a φ(t) = β

proving the “at most” one case is similar to part 1 . Consider 2 homomorphism φ1, φ2 : K(t) → L over K

satisfying:
φ1(t) = β = φ2(t)

Since t generates K(t) (again by 4.3.1), it follows (again by 4.3.6) that φ1 = φ2 on all K(t).

3.3.4 Definition: Isomorphisms Over Fields

Let M1,M2 be extensions of a field K. Then, a homomophism:

φ :M1 →M2

is an isomorphism over K, if:

• it is a homomorphism over K

• it is an isomorphism of fields

If such a φ exists, then M1,M2 are isomorphic over K.

It is important to remark that even if M1,M2 are isomorphic, this need
not mean that they are isomorphic over K.
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3.3.5 Corollary to the Universal Property

Let K be a field.

1. Let:

• m ∈ K[t] be monic and irreducible
• L : K be an extension of K
• β ∈ L have minimal polynomial m and L = K(β)

If α = π(t) (where π is the canonical homomorphism
K[t] → K[t]/ 〈m〉), then there is exactly one isomorphism:

φ : K[t]/ 〈m〉 → L

over K, such that φ(α) = β.

2. Let:

• L : K be an extension of K
• β ∈ L be transcendental with L = K(β)

Then, there is exactly one isomorphism:

φ : K(t) → L

over K, such that φ(t) = β.

Notice, this differs from the Universal Property in the sense that L =
K(β).
(Corollary 4.3.11)

Proof.

1

The Universal Property tells us that there is a unique homomorphism:

φ : K[t]/ 〈m〉 → L

over K, such that φ(α) = β. We just need to show that this is an isomorphim under the assumption that
L = K(β).

Homomorphism of fileds are automatically injective, so it is sufficient to show that φ is surjective. We
know that im(φ) is a subfield of L. Moreover:

• K ∈ im(φ) (φ is a homomorphism over K, so ∀a ∈ K, φ(a) = a)
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• β ∈ L (since φ(α) = β)

But then, since im(φ) is a subfield containing K and β, it must be K(β). But by assumption, L = K(β), so
L = im(φ), so φ is surjective.

2
Again, this involves showing that φ : K(t) → L is surjective, which it is by following identical reasoning

as above for 1 .

3.3.6 Examples

• let m be a monic, irreducible polynomial over Q, with complex root β ∈ C. We know that the
subfield Q(β) of C is an extension of Q, generated by β. By the Corollary of the Universal Property,
it follows that we have an isomorphism:

Q[t]/ 〈m〉 ∼= Q(β)

over Q.

• if β is a transcendental complex number, by the Corollay of the Universal Property, the field Q(t) is
isomorphic to Q(β) ⊆ C.

3.4 Simple Field Extensions
3.4.1 Definition: Simple Field Extension

A field extension M : K is simple if:

∃α ∈M : M = K(α)

(Definition 4.3.13)

3.4.2 Examples

• the field extension:
Q(

√
2,
√
3) : Q

is simple, since:
Q(

√
2,
√
3) = Q(

√
2 +

√
3)

To see why, notice that (
√
2 +

√
3)3 = 11

√
2 + 9

√
3. Thus:

√
2 ∈ Q(

√
2,
√
3) =

(
√
2 +

√
3)3 − 9(

√
2 +

√
3))

2
∈ Q(

√
2 +

√
3)

√
3 ∈ Q(

√
2,
√
3) =

(
√
2 +

√
3)3 − 11(

√
2 +

√
3))

−2
∈ Q(

√
2 +

√
3)

so:
Q(

√
2,
√
3) = Q(

√
2 +

√
3)

• K(t) : K is simple
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3.4.3 Theorem: Classification of Simple Extensions

Let K be a field.

1. Let m ∈ K[t] be a monic, irreducible polynomial. Then:

∃M : K, ∃α ∈M : M = K(α)

where α is algebraic, and has a minimal polynomial m over K.
Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.

2. There exists an extension M : K and a transcendental α ∈M ,
such that:

M = K(α)

Moreover, if (M1, α1) and (M2, α2) are 2 such pairs, there is exactly
one isomorphism:

φ :M1 →M2

over K, such that φ(α1) = α2.
(Theorem 4.3.16)

This theorem simply states that by adjoining a root α of some monic, irreducible polynomial m to any field
K, we obtain an extension K(α) : K. Similarly, we can obtain an extension by adjoining a transcendental.

Proof.

1

We can easily construct an extension M = K[t]/ 〈m〉, and pick α = π(t). Again by Lemma 4.3.1, we have
that M = K(α). Moreover, by the Corollary to the Universal Property, we get the unique homomorphism
φ, with β = α1, and α = α2.

2

This part follows similarly, but by using the second parts of Lemma 4.3.1 and the Corollary of the
Universal Property.
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3.4.4 Examples

• if K is a field without a square root of 2 (i.e for any α ∈ K, we never have α2 = 2 ∈ K), then t2 − 2 is
irreducible over K (and clearly monic). Hence, by the classification of simple extensions, we can adjoin
to K a root of t2 − 2 to give an extension K(

√
2) : K

This might not seem “revolutionary”, since we have seen this done when K = Q, where Q(
√
2) is

regarded as a subfield of C. What makes it remarkable is that it works for any field with this property.
For example, in Z3, 2 has no square root, so Z3(

√
2) defines an extension of Z3. To construct it, we

consider:
Z3[t]/

⟨
t2 − 2

⟩
= {0, }

Page 24


	Introducing Field Extensions
	Definition: Field Extension
	Clash Between Intuition and Definition
	Examples of Field Extensions
	Exercises

	Generating Fields from Sets
	Definition: Subfield Generated by a Subset
	Definition: Subfield Generated by Adjoining Subsets
	Examples of Generated Fields
	Warning: On Adjoining to Create Subfields


	Algebraic and Transcendental Numbers Over a Field-8.5-.25ex
	Definition: Algebraic and Transcendental Numbers
	Examples of Algebraics and Transcendentals

	The Minimal Polynomial
	Definition: Annihilating Polynomial
	Lemma: The Minimal Polynomial Generates Annhiliating Polynomials
	Lemma: Equivalent Conditions for Minimal Polynomials
	Examples of Minimal Polynomials


	Simple Extensions
	Motivation
	Extending the Rationals to Contain Roots
	Extending Arbitrary Fields to Contain Roots
	Example

	Lemma: Formalising the Motivation
	Morphisms Over Fields
	Definition: Homomorphisms Over Fields
	Lemma: Homomorphisms Over Fields are Determined by Value on Subsets
	Proposition: Universal Properties of K[t]/m  and K(t)
	Definition: Isomorphisms Over Fields
	Corollary to the Universal Property
	Examples

	Simple Field Extensions
	Definition: Simple Field Extension
	Examples
	Theorem: Classification of Simple Extensions
	Examples



