Galois Theory - Week 4 - Field Extensions

Antonio León Villares

January 2023

Contents

1	\mathbf{Intr}	Introducing Field Extensions			
	1.1	Defini	tion: Field Extension	2	
		1.1.1	Clash Between Intuition and Definition	2	
		1.1.2	Examples of Field Extensions	$\frac{2}{3}$	
		1.1.3	Exercises	3	
	1.2	Gener	ating Fields from Sets	3	
		1.2.1	Definition: Subfield Generated by a Subset	3	
		1.2.2	Definition: Subfield Generated by Adjoining Subsets	3	
		1.2.3	Examples of Generated Fields	4	
		1.2.4	Warning: On Adjoining to Create Subfields	5	
2	Alg	ebraic	and Transcendental Numbers Over a Field	5	
	2.1	Defini	tion: Algebraic and Transcendental Numbers	5	
		2.1.1	Examples of Algebraics and Transcendentals	5	
	2.2	The M	finimal Polynomial	6	
		2.2.1	Definition: Annihilating Polynomial	6	
		2.2.2	Lemma: The Minimal Polynomial Generates Annhiliating Polynomials	6	
		2.2.3	Lemma: Equivalent Conditions for Minimal Polynomials	8	
		2.2.4	Examples of Minimal Polynomials	9	
3	Simple Extensions 11				
	3.1	3.1 Motivation			
		3.1.1	Extending the Rationals to Contain Roots	11	
		3.1.2	Extending Arbitrary Fields to Contain Roots	12	
		3.1.3	Example	12	
	3.2	Lemm	Lemma: Formalising the Motivation		
	3.3	Morph	nisms Over Fields	14	
		3.3.1	Definition: Homomorphisms Over Fields	14	
		3.3.2	Lemma: Homomorphisms Over Fields are Determined by Value on Subsets	15	
		3.3.3	Proposition: Universal Properties of $K[t]/\langle m \rangle$ and $K(t)$	16	
		3.3.4	Definition: Isomorphisms Over Fields	20	
		3.3.5	Corollary to the Universal Property	21	
		3.3.6	Examples	22	
	3.4	Simple	e Field Extensions	22	
		3.4.1	Definition: Simple Field Extension	22	
		3.4.2	Examples	22	
		3.4.3		23	
				$\frac{23}{24}$	

1 Introducing Field Extensions

1.1 Definition: Field Extension

Let K be a **field**. An **extension** of K is:

- a **field** M
- alongisde a homomorphism:

$$\iota:K\to M$$

We write M: K (read "M over K") to mean that M is an **extension** of K, whereby ι is typically the **inclusion homomorphism**. (Definition 4.1.1)

1.1.1 Clash Between Intuition and Definition

This definition might seem **counterintuitive**. We should think of an **extension** as something that **extends** our **field** K. For example, we defined:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$$

We have been considering these extensions as **fields**, which have K as a **subfield** - or at least a **subset** (\mathbb{Q} is a **subfield** of $\mathbb{Q}(\sqrt{2})$).

However, this isn't **formally** the case: for example, it is simple to argue that \mathbb{R} isn't a subset/subfield of \mathbb{C} . This is rather simple: \mathbb{R} contains objects like $6, -2, \pi^2$; but these objects aren't part of \mathbb{C} . However, \mathbb{C} **does** have 6 + 0i, -2 + 0i or $\pi^2 + 0i$.

What we are doing under the hood is using a **homomorphism** $\iota : \mathbb{R} \to \mathbb{C}$:

$$x \mapsto x + 0i$$

1.1.2 Examples of Field Extensions

- \mathbb{C} alongside the inclusion $\iota: \mathbb{Q} \to \mathbb{C}$ is an **extension** of \mathbb{Q} , so $\mathbb{C}: \mathbb{Q}$. Similarly, $\mathbb{C}: \mathbb{R}$ and $\mathbb{R}: \mathbb{Q}$
- consider:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$$

Clearly, $\mathbb{Q}(\sqrt{2})$ is a **subring** of \mathbb{C} , since:

- it contains the identity of $\mathbb C$
- it is clearly closed under subtraction (the $\sqrt{2}$ doesn't "mix" with the rationals)

- similarly, we have closure under multiplication

Moreover, it is a **subfield**, since the inverse of $a + b\sqrt{2}$ (with a, b non-zero) is:

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

where the denominator is non-zero, since $\sqrt{2}$ is irrational. Hence, we have an extension:

$$\mathbb{C}:\mathbb{Q}(\sqrt{2})$$

(again using inclusion). Moreover, again with inclusion we get that:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \implies \mathbb{Q}(\sqrt{2}) : \mathbb{Q}$$

• we can see that we get a field:

$$\mathbb{O}(\sqrt{2}, i) = \{a + b\sqrt{2} + ci + d\sqrt{2}i \mid a, b, c, d \in \mathbb{O}\}\$$

which extends the rationals:

$$\mathbb{Q}(\sqrt{2},i) : \mathbb{Q}$$

but which extends to the complex numbers:

$$\mathbb{C}: \mathbb{Q}(\sqrt{2}, i)$$

• the field of rational expressions K(t) over K with homomorphism $\iota: K \to K(t)$:

$$\iota(a) = \frac{a}{1}$$

leads to a field extension:

• complex conjugation is a homomorphism, and so we see that $\mathbb{C}:\mathbb{C}$

1.1.3 Exercises

1.2 Generating Fields from Sets

1.2.1 Definition: Subfield Generated by a Subset

Let K be a **field**, and $X \subseteq K$. The **subfield** of K **generated by** X is the **intersection** of all the **subfields** of K containing X. By definition, it is the **smallest** subfield of K containing X, in the sense that any subfield of K containing X must contain F.

(Definition 4.1.4)

1.2.2 Definition: Subfield Generated by Adjoining Subsets

We now formalise and generalise what we have been using, with examples like $\mathbb{Q}(\sqrt{2})$.

Let M : K be a **field extension**, and consider $Y \subseteq M$. We write K(Y) to denote the **subfield** of M generated by $K \cup Y$. K(Y) is:

- K with Y adjoined
- or the subfield of M generated by Y over K

In particular, K(Y) is the **smallest subfield** of M containing both K and Y.

If Y is **finite**:

$$Y = \{\alpha_1, \dots, \alpha_n\}$$

we write:

$$K(Y) = K(\alpha_1, \dots, \alpha_n)$$

(Definition 4.1.8)

1.2.3 Examples of Generated Fields

- the subfield of K generated by \emptyset is the **prime subfield**: every subfield contains \emptyset , so \emptyset must generate the smallest possible subfield of K
- $L = \{a + bi \mid a, b \in \mathbb{Q}\}$ is nothing but the subfield of \mathbb{C} generated by $\{i\}$. It is clearly a subfield, and if L' is any other subfield of \mathbb{C} , it must contain \mathbb{Q} (since it is the prime subfield). Thus, L' must contain all the rationals, alongside i, so:

$$a, b, i \in L' \implies a + bi \in L' \implies L \subseteq L'$$

- in fact, $L = \mathbb{Q}(i)$: since \mathbb{Q} is the prime subfield of \mathbb{C} , the subfield generated by $\mathbb{Q} \cup \{i\}$ is simply the smallest subfield of \mathbb{C} containing i (since any subfield will automatically include \mathbb{Q}). The same reasoning works with $\mathbb{Q}(\sqrt{2})$: it is the subfield of \mathbb{C} generated by $\{\sqrt{2}\}$
- when we use K(t) to denote the field of rational expressions over K, we aren't abusing notation: it also corresponds to the smallest subfield of K(t) containing both K and t. To this end, let L be any such subfield. Any polynomial over K is:

$$f(t) = \sum a_i t^i$$

Clearly, $f(t) \in L$, since $a_i, t \in L$, and L is a field (so there's closure). Hence, if f(t), g(t) are polynomials over K, then:

$$f(t), g(t) \in L \implies f(t)/g(t) \in L$$

since where f(t)/g(t) is a polynomial h(t) satisfying:

$$g(t)h(t) = f(t)$$

Thus, it follows that L = K(t)!

1.2.4 Warning: On Adjoining to Create Subfields

In general, it is not the case that:

$$K(\alpha) = \{a + b\alpha \mid a, b \in K\}$$

In fact, we have that:

$$K(\alpha) = \left\{ \sum_{i=1}^{n-1} c_i \alpha^i \mid c_i \in K \right\}$$

where n is the degree of the **minimal polynomial** of α (we will see this later on).

For example, we have just seen that K(t), the field of rational expressions is bigger than $\{a + bt \mid a, b \in K\}$, which isn't even a field (it isn't closed under multiplication)!

Another more concrete example: let ζ be the **real** cube root of 2. It can be shown that ζ^2 can't be expressed as $a + b\zeta$, but clearly:

$$\zeta \in \mathbb{Q}(\zeta) \implies \zeta^2 \in \mathbb{Q}(\zeta)$$

by closure, so we must have:

$$\mathbb{Q}(\zeta) = \{ a + b\zeta + c\zeta^2 \mid a, b, c \in \mathbb{Q} \}$$

2 Algebraic and Transcendental Numbers Over a Field

2.1 Definition: Algebraic and Transcendental Numbers

Let M: K be a **field extension**, and consider $\alpha \in M$. α is **algebraic** over K if:

$$\exists f \neq 0_K \in K[t] : f(\alpha) = 0$$

If no such f exists, α is **transcendental over** K. (Definition 4.2.1)

2.1.1 Examples of Algebraics and Transcendentals

- trivially, any $k \in K$ is algebraic over K, since f(t) = t k has k as a root
- classically, we know that π, e are **transcendental over** \mathbb{Q} (given the extension $\mathbb{C} : \mathbb{Q}$), which also gives us that all transcendentals over \mathbb{Q} must also be irrational
- however, π , e are algebraic over \mathbb{R} , since $e, \pi \in \mathbb{R}$
- $t \in K(t)$ is transcendental over K, since:

$$f(t) = 0 \iff f = 0$$

by definition of f

- the set of **complex numbers algebraic over** \mathbb{Q} is denoted $\overline{\mathbb{Q}}$, which is a **subfield** of \mathbb{C} this is extremely non-trivial (try showing that it is even closed under addition)
- if $n \ge 1$, then $e^{2\pi i/n}$ is algebraic over \mathbb{Q} , since $f(t) = t^n 1$ satisfies $f(\omega) = 0$

2.2 The Minimal Polynomial

2.2.1 Definition: Annihilating Polynomial

Let M: K be a **field extension**, and let $\alpha \in M$. An **annihilating polynomial** of α is a polynomial:

$$f \in K[t] : f(\alpha) = 0$$

Thus:

 α is algebraic \iff α has a non-zero annihilating polynomial

2.2.2 Lemma: The Minimal Polynomial Generates Annhiliating Polynomials

Let M: K be a **field extension**, and let $\alpha \in M$. Then:

$$\exists m(t) \in K[t] : \langle m \rangle = \{annihilating polynomials of \alpha \ over \ K\}$$

In particular:

- if α is transcendental over K, then m=0
- if α is algebraic over K, then m is a unique, monic polynomial called the minimal polynomial of α

(Lemma~4.2.6)

Proof. Recall the Universal Property of Polynomial Rings:

Let R, B be **rings**. Consider **any** homomorphism:

$$\varphi: R \to B$$

and any $b \in B$.

Then, there exists a **unique** homomorphism:

$$\theta: R[t] \to B$$

such that:

$$\forall a \in R, \, \theta(a) = \varphi(a)$$

 $\theta(t) = b$

(Proposition 3.1.6)

In particular, this implies that (using φ to be the inclusion $K \to M$) there is a unique homomorphism:

$$\theta:K[t]\to M$$

satisfying:

$$\forall a \in K, \ \theta(a) = a \qquad \theta(t) = \alpha$$

Explicitly:

$$\theta\left(\sum a_i t^i\right) = \sum a_i \alpha^i$$

In particular, the kernel $ker(\theta)$ corresponds to all polynomial $f \in K[t]$, such that $f(\alpha) = 0$, so:

 $ker(\theta) = \{\text{annihilating polynomials of } \alpha \text{ over } K\}$

But a property of the kernel is that it is an ideal of K[t], and since K is a field, K[t] is a principal ideal domain, it follows that:

$$\exists m \in K[t] : ker(\theta) = \langle m \rangle$$

Then:

- if α is transcendental, $ker(\theta) = 0 \implies m = 0$
- if α is algebraic, then $m \neq 0$. We can freely multiply m by some non-zero constant, and this won't change the ideal, so we may assume that m is monic.

Now we just need to show that m is unique. To this end, consider any other \tilde{m} such that:

$$ker(\theta) = \langle \tilde{m} \rangle$$

In particular this means that $\tilde{m} = cm$ for some non-zero constant c. But since m, \tilde{m} are both monic, we must have that c = 1, so $m = \tilde{m}$, as required.

2.2.3 Lemma: Equivalent Conditions for Minimal Polynomials

Let M: K be a **field extension**, let $\alpha \in M$ be **algebraic over** K, and let $m \in K[t]$ be a **monic polynomial**. Then, the following are equivalent:

- 1. m is the **minimal polynomial** of α over K
- 2. $m(\alpha) = 0_K$, and for any **annihilating polynomial** f of α over K:

$$m \mid f$$

3. $m(\alpha) = 0_K$, and for any **non-zero annihilating polynomial** f of α over K:

$$deg(m) \le deg(f)$$

That is, the **minimal polynomial** is the monic, annihilating polynomial of least degree.

4. $m(\alpha) = 0_K$ and m is **irreducible** over K

Proof.

- (1) \Longrightarrow (2): this is immediate from the definition of a minimal polynomial $(f \in \langle m \rangle \iff m \mid f)$
- $2 \implies 3$: since $m \mid f$, it is immediate that $deg(m) \leq deg(f)$
- $\textcircled{3} \Longrightarrow \textcircled{4}$: firstly, m can't be constant (unit), since m is monic, so we'd have $m=1_K$, and clearly $m(\alpha)=1_K\neq 0_K$. Thus, we must have:

$$\exists f, g \in K[t] : m(t) = f(t)g(t)$$

By (3):

$$m(\alpha) = 0_K \implies f(\alpha)g(\alpha) = 0_K$$

WLOG assume that $f(\alpha) = 0$, so f must be an annihilating polynomial. Thus, $deg(f) \ge deg(m)$ by (3). However, since f is a factor of g, we also have $deg(m) \ge deg(f)$, which implies that deg(f) = deg(m), and so, deg(g) = 0, which implies that g is a unit. Hence, m is irreducible over K.

• 4 \Longrightarrow 1: let m_{α} denote the minimal polynomial of α . Assuming 4, we know that $m(\alpha) = 0$,

and m is irreducible over K, so:

$$m_{\alpha} \mid m$$

by definition of the minimal polynomial. But since m is irreducible, and m_{α} can't be constant (a unit), it follows that m is a non-zero, constant multiple of m_{α} . Since both m, m_{α} are monic by assumption, it must be the case that $m = m_{\alpha}$.

2.2.4 Examples of Minimal Polynomials

- $t^2 2$ is the **minimal polynomial** of $\sqrt{2}$ over \mathbb{Q} . To see why, we can first note that it is clearly annihilating and monic:
 - since $\sqrt{2}$ is irrational, there is no polynomial with $deg(f) \leq 1$ which is annihilating, so by 3 $t^2 2$ must be minimal
 - recalling

```
Let K be a field and f \in K[t]. Then:

1. deg(f) \leq 0 \implies f is not irreducible

2. deg(f) = 1 \implies f is irreducible

3. deg(f) \geq 2 and f has a root \implies f is reducible

4. deg(f) \in \{2,3\} and f has no root \implies f is irreducible

(Lemma 3.3.1)
```

we can see that $t^2 - 2$ has no root in \mathbb{Q} , and is of degree 2, so it is irreducible, so by 4, $t^2 - 2$ must be minimal

- the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $t^3 2$. This can be shown by noting that it has no root in \mathbb{Q} and degree 3 (or using Eisenstein with p = 2). However, notice it isn't trivial to show that $t^3 2$ is the annihilating polynomial of least degree
- if $\omega = e^{2\pi i/p}$, ω is a root of $t^p 1$, but this isn't the minimal polynomial, as it is reducible:

$$t^{p} - 1 = (t - 1)m(t) = (t - 1)(t^{p-1} + \dots + t + 1)$$

Since $\omega - 1 \neq 0$, we must have that $m(\omega) = 0$, and m is irreducible over \mathbb{Q} (it is the pth cyclotomic polynomial), so it must be the minimal polynomial

3 Simple Extensions

3.1 Motivation

3.1.1 Extending the Rationals to Contain Roots

Suppose we want to find a field K, such that for any non-constant polynomial over \mathbb{Q} , K contains the roots of the polynomial. For \mathbb{Q} this is trivial: by the **Fundamental Theorem of Algebra**, we know that any root of a polynomial in \mathbb{Q} will lie in \mathbb{C} , so we take $K = \mathbb{C}$, and we are done!

Now, lets try to be a bit more economical. Say we have an **irreducible**, **monic** polynomial m over \mathbb{Q} . Say that $\alpha \in \mathbb{C}$ is a root of m. We know that $\mathbb{Q}(\alpha)$ is the smallest subfield of \mathbb{C} containing α .

However, we can look at this from a different perspective. Say we want to find an extension for \mathbb{Q} containing some $\alpha \in \mathbb{C}$. By the **Universal Property**, we know that there's a homomorphism:

$$\theta: \mathbb{Q}[t] \to \mathbb{C}$$
$$\sum a_i t^i \mapsto \sum a_i \alpha^i$$

We know that the **kernel** $ker(\theta)$ is the ideal containing all the annihilating polynomials of α over \mathbb{Q} , which is generated by the **minimal polynomial**:

$$ker(\theta) = \langle m \rangle$$

Moreover, by the **First Isomorphism Theorem** we have that:

$$im(\theta) \cong \mathbb{Q}[t]/\langle m \rangle$$

We know that $\mathbb{Q}[t]/\langle m \rangle$ will be a subfield of \mathbb{C} ($im(\theta)$ is a subring, and the quotient of an integral domain by an ideal of an irreducible element is a field). Moreover, we know that $\alpha = \theta(t) \in im(\theta)$. In other words, $im(\theta)$ is a subfield of \mathbb{C} containing α !

In fact, we have that:

$$\mathbb{Q}(\alpha) \cong \mathbb{Q}[t]/\langle m \rangle$$

That is, we can start with a root or a minimal polynomial, and we arrive at the same subfield of \mathbb{C} ! To see why, as we discussed above $\mathbb{Q}(\alpha)$ must contain any polynomial in α , $f(\alpha)$. But any such polynomial must be in $\mathbb{Q}[t]$, so $f(\alpha) \in im(\theta)$.

3.1.2 Extending Arbitrary Fields to Contain Roots

Unfortunately, we don't always get to work with nice fields like \mathbb{Q} and \mathbb{C} . However, it is easy to adapt what we've done above to an abstract field K.

Generally, given a field K and an irreducible polynomial $m \in K[t]$, we can adjoin a root α of m to K by considering:

$$K[t]/\langle m \rangle$$

where α will be the equivalence class of t in $K[t]/\langle m \rangle$.

More concretely, we know that $K[t]/\langle m \rangle$ is a field, and we have a homomorphism:

$$K \to K[t]/\langle m \rangle$$

which can be constructed by chaining homomorphisms:

$$K \stackrel{\phi}{\to} K[t] \stackrel{\pi}{\to} K[t]/\langle m \rangle$$

 $(\phi \text{ is the inclusion } a \mapsto a, \text{ and } \pi \text{ is the canonical homomorphism}). In particular, this means that we have a$ **field extension** $<math>K[t]/\langle m \rangle : K$, given by the homomorphism $\phi \circ \pi$. If we call $\pi(t) = \alpha$, then:

$$\pi\left(\sum a_i t^i\right) = \sum a_i \alpha^i$$

Below, we formalise our discussion above for K, involving how α is a root of m, and how this extension is actually **economical**: it is as small as can be.

3.1.3 Example

Example from this video

Consider the field $F = \mathbb{Z}_2$ and the polynomial $m = t^3 + t + 1$ (you can see that this is irreducible, since it has degree 3 and no roots in F). What field is the field $F[t]/\langle m \rangle$?

From Honours Algebra, we can intuitively think of it as the set of equivalence classes, such that 2 elements are equal if subtracting one from the other leads to a polynomial with a factor of m. This immediately allows us to discard polynomials of degree 3 or more, since we can always write such polynomials as p = mq + r, which reduces to r over $F[t]/\langle m \rangle$, and $deg(r) \leq 2$. Hence, we immediately get:

$$F[t]/\left< m \right> = \{0,1,t,1+t,t^2,1+t^2,t+t^2,1+t+t^2\}$$

Notice, this extends our base field F, and contains a root t, such that m(t) = 0.

3.2 Lemma: Formalising the Motivation

Let K be a **field**. Then:

1. Let $m \in K[t]$ be **monic** and **irreducible**. Let:

$$\pi(t) = \alpha \in K[t]/\langle m \rangle$$

be the image of t under the canonical homomorphism:

$$\pi: K[t] \to K[t]/\langle m \rangle$$

Then, α has a **minimal polynomial** m over K, and $K[t]/\langle m \rangle$ is **generated** by α over K ($K[t]/\langle m \rangle = K(\alpha)$).

2. The element t of the field K(t) is **transcendental** over K, and K(t) is **generated** by t over K.

(Lemma~4.3.1)

Proof.

(1)

Write:

$$M = K[t]/\langle m \rangle$$

We have that:

$$\pi\left(\sum a_i t^i\right) = \sum a_i \alpha^i$$

which implies that $ker(\pi) = \langle m \rangle$ contains the set of annihilating polynomials of α over K. By definition, m must be the minimal polynomial of α over K.

Now, any subfield L of M which contains K and α must contain every polynomial in α over K $(1 + \alpha^2, 2 + 3\alpha^3, \ldots)$, so L = M. In other words, $M = K(\alpha)$.

(2)

We already showed above that t is transcendental in K(t). Let L be a subfield of K(t) which contains both K and t. If $f, g \in K[t]$ are in L, then by properties of fields $f/g \in L$, so L = M, and M = K(t).

3.3 Morphisms Over Fields

3.3.1 Definition: Homomorphisms Over Fields

Let K be a field, and let:

$$\iota_1:K\to M_1$$

$$\iota_2:K\to M_2$$

define extensions of K.

A homomorphism:

$$\varphi: M_1 \to M_2$$

is said to be an **homomorphism over** K if the following commutes:

(Here $M = M_1$ and $M' = M_2$) Explicitly, we must have:

$$\forall a \in K, \ \varphi(\iota_1(a)) = \iota_2(a)$$

If ι_1, ι_2 are just inclusions, we can shorten notation, and just require:

$$\forall a \in K, \ \varphi(a) = a$$

(Definition 4.3.3)

• Is complex conjugation a homomorphism over \mathbb{R} ?

- yes, since clearly it defines a homomorphism, and:

$$\forall a \in \mathbb{R}, \ \bar{a} = a$$

3.3.2 Lemma: Homomorphisms Over Fields are Determined by Value on Subsets

Let M_1, M_2 be extensions of a field K, and let:

$$\varphi, \psi: M_1 \to M_2$$

be homomorphisms over K.

Let Y be a subset of M_1 , such that $M_1 = K(Y)$. Then:

$$\forall a \in Y, \ \varphi(a) = \psi(a) \implies \varphi = \psi$$

In other words, knowing the behaviour of φ , ψ on Y is sufficient to understand φ , ψ on all of M_1 . (Lemma 4.3.6)

Proof. Recall the **equalizer**:

Let X, Y be sets, and let S be a subset of all functions of the form $X \to Y$.

The equalizer of S is:

$$Eq(S) = \{x \mid x \in X, \forall f, g \in S : f(x) = g(x)\}$$

That is, the **equalizer** is the set of all $x \in X$ which are equal under all functions in S.

(Definition 2.3.7)

alongside the fact that:

Let K, L be **fields**, and let S be a subset of all **homomorphisms** of the form $K \to L$.

Then, the **equalizer** Eq(S) is a **subfield** of K. (Lemma 2.3.8)

Now, since φ, ψ are homomorphisms over K, we have that:

$$\forall a \in K, \ \varphi(a) = a = \psi(a)$$

Moreover, by assumption:

$$\forall a \in Y, \ \varphi(a) = \psi(a)$$

Hence, it follows that $K \cup Y$ is a subset of $Eq\{\varphi, \psi\}$. But then, $Eq\{\varphi, \psi\}$ is a subfield of M_1 , which contains $K \cup Y$, so it must be the case that:

$$Eq\{\varphi,\psi\} = K(Y)$$

but by assumption $K(Y) = M_1$, so:

$$Eq\{\varphi,\psi\} = M \implies \varphi = \psi$$

as required.

3.3.3 Proposition: Universal Properties of $K[t]/\langle m \rangle$ and K(t)

Let K be a **field**. Then:

- 1. Let:
 - $m \in K[t]$ be monic and irreducible
 - L: K be an **extension** of K
 - $\beta \in L$ have **minimal polynomial** m

If we write $\alpha = \pi(t)$ (where π is the **canonical homomorphism** $\pi : K[t] \to K[t]/\langle m \rangle$), then there is **exactly one** homomorphism:

$$\varphi: K[t]/\langle m \rangle \to L$$

over K, such that $\varphi(\alpha) = \beta$.

- 2. Let:
 - L: K be an **extension** of K
 - $\beta \in L$ be transcendental

Then, there is **exactly one** homomorphism:

$$\varphi: K(t) \to L$$

over K, such that $\varphi(t) = \beta$

(Propostion 4.3.7)

The first universal property can be described with a diagram:

Page 16

Notice, L is drawn higher than $K[t]/\langle m \rangle$ to convey that L may be bigger. This says that if m is a **monic**, **irreducible** polynomial over K, the **extension** $K[t]/\langle m \rangle$ contains a root of m, and said root generates the extension. In fact, we will show that this is the **only** such extension (up to isomorphism).

For instance, if:

- $K = \mathbb{Q}$
- $m(t) = t^2 2$
- $L = \mathbb{C}$
- $\beta = -\sqrt{2} \in \mathbb{C}$

Then the universal property says that there exists a unique homomomorphism:

$$\varphi: \mathbb{Q}[t]/\langle t^2 - 2 \rangle \to \mathbb{C}$$

which maps the equivalence class of t (namely $\pi(t)$) to $-\sqrt{2}$.

Proof.

1

We begin by showing that there is at least one homomorphism:

$$\varphi: K[t]/\langle m \rangle \to L$$

over K, such that $\varphi(a) = \beta$.

To this end, by the Universal property of Rings, there is exactly one homomorphism:

$$\theta: K[t] \to L$$

such that:

- $\forall a \in K, \ \theta(a) = a$
- $\theta(t) = \beta$

Then:

$$\theta(m(t)) = m(\beta) = 0 \implies \langle m \rangle \subseteq ker(\theta)$$

But now, recall the Universal Property of Factor/Quotient Rings:

Let I be an ideal of the ring R. Define the canonical homomorphism:

$$\pi_I: R \to R/I$$

Then:

1. π_I is **surjective**, and:

$$ker(\pi_I) = I$$

2. If:

$$\varphi:R\to S$$

is a **ring homomorphism**, and:

$$\varphi(I) = \{0_S\}$$

(so that $I \subseteq ker(\varphi)$), then there exists a **unique ring** homomorphism

$$\bar{\varphi}: R/I \to S$$

such that:

$$\varphi = \bar{\varphi} \circ \pi_I$$

Diagrammatically, we have:

Here, identifying R = K[t], $I = \langle m \rangle$, S = L, it follows that there exists a unique homomorphism $\varphi : K[t]/\langle m \rangle \to L$ such that:

Moreover, φ will be a homomorphism over K:

$$\forall a \in K, \ \varphi(a) = \varphi(\pi(a)) = \theta(a) = a$$

and also:

$$\varphi(\alpha) = \varphi(\pi(t)) = \theta(t) = \beta$$

so we must have $\varphi(\alpha) = \beta$. Thus, we have demonstrated existence.

Next, we show that there is at most one homomorphism $K[t]/\langle m \rangle \to L$ over K such that $\alpha \mapsto \beta$. Assume that φ_1, φ_2 are 2 such homomorphism. Then:

$$\varphi_1(\alpha) = \varphi_2(\alpha)$$

and by Lemma 4.3.1:

Let K be a **field**. Then:

1. Let $m \in K[t]$ be **monic** and **irreducible**. Let:

$$\pi(t) = \alpha \in K[t]/\langle m \rangle$$

be the image of t under the canonical homomorphism:

$$\pi: K[t] \to K[t]/\langle m \rangle$$

Then, α has a **minimal polynomial** m over K, and $K[t]/\langle m \rangle$ is **generated** by α over K $(K[t]/\langle m \rangle = K(\alpha))$.

2. The element t of the field K(t) is **transcendental** over K, and K(t) is **generated** by t over K.

(Lemma~4.3.1)

 α generates $K[t]/\langle m \rangle$ over K so by:

Let M_1, M_2 be extensions of a field K, and let:

$$\varphi, \psi: M_1 \to M_2$$

be homomorphisms over K.

Let Y be a subset of M_1 , such that $M_1 = K(Y)$. Then:

$$\forall a \in Y, \ \varphi(a) = \psi(a) \implies \varphi = \psi$$

In other words, knowing the behaviour of φ , ψ on Y is sufficient to understand φ , ψ on all of M_1 . (Lemma 4.3.6)

with $Y = \{\alpha\}$, we must have that $\varphi_1 = \varphi_2$, as required.

(2)

We begin by showing that there is at least one homomorphism $\varphi: K(t) \to L$ over K such that $\varphi(t) = \beta$. Recall, every element of K(t) is given by f/g, with $f,g \in K[t]$ and $g \neq 0$. Since by assumption β is transcendental over K, we have that $g(\beta) \neq 0$, so $f(\beta)/g(\beta) \in L$ is well-defined. In particular:

$$\varphi: K(t) \to L$$

defined by:

$$\frac{f(t)}{g(t)} \mapsto \frac{f(\beta)}{g(\beta)}$$

is a well-defined homomorphism. Moreover, it is clearly a homomorphism over K:

$$\forall a \in K, \ \varphi(a) = a \qquad \varphi(t) = \beta$$

proving the "at most" one case is similar to part $\widehat{\ }$ 1. Consider 2 homomorphism $\varphi_1, \varphi_2 : K(t) \to L$ over K satisfying:

$$\varphi_1(t) = \beta = \varphi_2(t)$$

Since t generates K(t) (again by 4.3.1), it follows (again by 4.3.6) that $\varphi_1 = \varphi_2$ on all K(t).

3.3.4 Definition: Isomorphisms Over Fields

Let M_1, M_2 be extensions of a field K. Then, a **homomophism**:

$$\varphi: M_1 \to M_2$$

is an **isomorphism over** K, if:

- ullet it is a **homomorphism over** K
- it is an isomorphism of fields

If such a φ exists, then M_1, M_2 are **isomorphic over** K.

It is important to remark that even if M_1, M_2 are **isomorphic**, this need not mean that they are **isomorphic over** K.

3.3.5 Corollary to the Universal Property

Let K be a **field**.

- 1. Let:
 - $m \in K[t]$ be **monic** and **irreducible**
 - L: K be an **extension** of K
 - $\beta \in L$ have **minimal polynomial** m **and** $L = K(\beta)$

If $\alpha = \pi(t)$ (where π is the **canonical homomorphism** $K[t] \to K[t]/\langle m \rangle$), then there is **exactly one isomorphism**:

$$\varphi: K[t]/\langle m \rangle \to L$$

over K, such that $\varphi(\alpha) = \beta$.

- 2. Let:
 - L: K be an **extension** of K
 - $\beta \in L$ be **transcendental** with $L = K(\beta)$

Then, there is **exactly one isomorphism**:

$$\varphi:K(t)\to L$$

over K, such that $\varphi(t) = \beta$.

Notice, this differs from the **Universal Property** in the sense that $L = K(\beta)$. (Corollary 4.3.11)

Proof.

(1)

The Universal Property tells us that there is a unique homomorphism:

$$\varphi: K[t]/\langle m \rangle \to L$$

over K, such that $\varphi(\alpha) = \beta$. We just need to show that this is an isomorphim under the assumption that $L = K(\beta)$.

Homomorphism of fileds are automatically injective, so it is sufficient to show that φ is surjective. We know that $im(\varphi)$ is a subfield of L. Moreover:

• $K \in im(\varphi)$ (φ is a homomorphism over K, so $\forall a \in K$, $\varphi(a) = a$)

• $\beta \in L \text{ (since } \varphi(\alpha) = \beta)$

But then, since $im(\varphi)$ is a subfield containing K and β , it must be $K(\beta)$. But by assumption, $L = K(\beta)$, so $L = im(\varphi)$, so φ is surjective.

(2)

Again, this involves showing that $\varphi: K(t) \to L$ is surjective, which it is by following identical reasoning as above for $\widehat{(1)}$.

3.3.6 Examples

• let m be a **monic**, **irreducible** polynomial over \mathbb{Q} , with complex root $\beta \in \mathbb{C}$. We know that the subfield $\mathbb{Q}(\beta)$ of \mathbb{C} is an extension of \mathbb{Q} , generated by β . By the Corollary of the Universal Property, it follows that we have an isomorphism:

$$\mathbb{Q}[t]/\langle m\rangle \cong \mathbb{Q}(\beta)$$

over \mathbb{Q} .

• if β is a transcendental complex number, by the Corollay of the Universal Property, the field $\mathbb{Q}(t)$ is isomorphic to $\mathbb{Q}(\beta) \subseteq \mathbb{C}$.

3.4 Simple Field Extensions

3.4.1 Definition: Simple Field Extension

A field extension M: K is simple if:

$$\exists \alpha \in M : M = K(\alpha)$$

(Definition 4.3.13)

3.4.2 Examples

• the field extension:

$$\mathbb{O}(\sqrt{2},\sqrt{3}):\mathbb{O}$$

is simple, since:

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

To see why, notice that $(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$. Thus:

$$\sqrt{2} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \frac{(\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3}))}{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

$$\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \frac{(\sqrt{2} + \sqrt{3})^3 - 11(\sqrt{2} + \sqrt{3})}{-2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

so:

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$$

• K(t): K is simple

3.4.3 Theorem: Classification of Simple Extensions

Let K be a field.

1. Let $m \in K[t]$ be a **monic**, **irreducible** polynomial. Then:

$$\exists M: K, \ \exists \alpha \in M: \ M = K(\alpha)$$

where α is **algebraic**, and has a **minimal polynomial** m over K. Moreover, if (M_1, α_1) and (M_2, α_2) are 2 such pairs, there is **exactly one isomorphism**:

$$\varphi: M_1 \to M_2$$

over K, such that $\varphi(\alpha_1) = \alpha_2$.

2. There exists an **extension** M: K and a **transcendental** $\alpha \in M$, such that:

$$M = K(\alpha)$$

Moreover, if (M_1, α_1) and (M_2, α_2) are 2 such pairs, there is **exactly** one isomorphism:

$$\varphi: M_1 \to M_2$$

over K, such that $\varphi(\alpha_1) = \alpha_2$.

(Theorem 4.3.16)

This theorem simply states that by adjoining a root α of some monic, irreducible polynomial m to **any** field K, we obtain an extension $K(\alpha)$: K. Similarly, we can obtain an extension by adjoining a transcendental.

Proof.

1

We can easily construct an extension $M = K[t]/\langle m \rangle$, and pick $\alpha = \pi(t)$. Again by Lemma 4.3.1, we have that $M = K(\alpha)$. Moreover, by the Corollary to the Universal Property, we get the unique homomorphism φ , with $\beta = \alpha_1$, and $\alpha = \alpha_2$.

(2)

This part follows similarly, but by using the second parts of Lemma 4.3.1 and the Corollary of the Universal Property.

3.4.4 Examples

• if K is a field without a square root of 2 (i.e for any $\alpha \in K$, we never have $\alpha^2 = 2 \in K$), then $t^2 - 2$ is irreducible over K (and clearly monic). Hence, by the classification of simple extensions, we can adjoin to K a root of $t^2 - 2$ to give an extension $K(\sqrt{2}) : K$

This might not seem "revolutionary", since we have seen this done when $K = \mathbb{Q}$, where $\mathbb{Q}(\sqrt{2})$ is regarded as a subfield of \mathbb{C} . What makes it remarkable is that it works for **any** field with this property. For example, in \mathbb{Z}_3 , 2 has no square root, so $\mathbb{Z}_3(\sqrt{2})$ defines an extension of \mathbb{Z}_3 . To construct it, we consider:

$$\mathbb{Z}_3[t]/\left\langle t^2 - 2 \right\rangle = \{0,\}$$