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Based on the notes by Tom Leinster, Chapter 3

1 Polynomials as Rings
1.1 Definition: Polynomials Over Rings

Let R be a ring. A polynomial over R is an infinite sequence:

(a0, a1, . . .)

of elements of R, such that {i | ai 6= 0} is finite.

The set of polynomials over R forms a ring R[t], defined by:

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b1, a1 + b1, . . .)

(a0, a1, . . .) · (b0, b1, . . .) = (c0, c1, . . .), ck =
∑

i,j : i+j=k

aibj

with additive identity:
(0R, 0R, . . .)

and multiplicative identity:

(1R, 0R, . . .)

Of course, we typically define elements in R[t] as:

a0 + a1t+ a2t
2 + . . .

(Definition 3.1.1)

• How can polynomials over multiple variables be defined?

– since R[t] is a ring, we can define some polynomial over R[t] itself
– for example, if S = R[t], the polynomial ring S[u] is nothing but:

S[u] = (R[t])[u] = R[t, u]

• How do polynomials over R lead to endomorphisms?

– let f = (a0, a1, . . .) ∈ R[t]
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– then, f gives rise to an endomorphism:

R → R

r 7→ a0 + a1r + a2r
2 + . . .

– this sum of elements in R is defined, since it involves finitely many elements

• Are these endomorphisms unique to a polynomial?

– this depends on the ring over which we operate
– for example, in Z2, we have that:

02 = 0 12 = 1

– hence, the polynomials f(t) = t, g(t) = t2 ∈ Z2, whilst different, induce the same endomorphism:

• How are polynomials related to free groups?

– recall, a free group is a group for which we are only given some elements, and the structure of the
group arises naturally from using these elements (i.e its the group containing all these elements,
their inverses, and any possible logical combination of these)

– turns out, free rings are nothing but polynomial rings: if we have some elements s, u, t, a free
ring will include any possible combination of these elements:

∗ s+ ut3s−4− u2s8

∗ ut+ t3 + su−1

∗ . . .

1.1.1 Exercises

1. [Exercise 3.1.4] Show that whenever R is a finite non-trivial ring, it is possible to find distinct
polynomials over R that induce the same function R → R.

Notice, if R is finite, the number of functions of the form R → R will be finite. However, the poossible
polynomials will be infinite (we can always add as many finite terms as we want). Thus, by the pigeonhole
principle, we must have that at least 2 polynomials correspond to the same function.

1.2 Proposition: The Universal Property of the Polynomial Ring

Let R,B be rings. Consider any homomorphism:

φ : R → B

and any b ∈ B.
Then, there exists a unique homomorphism:

θ : R[t] → B

such that:

∀a ∈ R, θ(a) = φ(a)

θ(t) = b

(Proposition 3.1.6)
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One way to think about this is the following: I can pick out any homomorphism φ I want, and pick any
b ∈ B I want. Once I have these, they will define a unique homomorphism. This uniqueness arises by the
fact that:

• θ uniquely maps the polynomial coefficients (since this is defined by our choice φ)

• θ uniquely maps the indeterminate t (since this is defined by our choice b)

Proof. We first show that there is at most one such θ. Indeed, let θ be any homomorphism θ : R[t] → B,
such that:

∀a ∈ R, θ(a) = φ(a) θ(t) = b

Then, for any polynomial over R:

θ

(∑
i

ait
i

)
=
∑
i

θ(ai)θ(t)
i

=
∑
i

φ(ai)b
i

This θ is uniquely determined (by the values of φ(ai)bi), so there is at most one such θ.

Now we show that there is at least one such θ. Consider a function θ : R[t] → B, defined by:

θ

(∑
i

ait
i

)
=
∑
i

φ(ai)b
i

Clearly:
θ(a) = φ(a) θ(t) = b

It remains to show that this is a homomorphism (which is tedious, and we already did a lot in Honours
Algebra)
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The Universal Property allows us to find many interesting homomomorphisms for polynomials.

2 Polynomials and Homomorphisms
2.1 Definition: The Induced Homomorphism

Let:
φ : R → S

be a ring homomorphism. The induced homomorphism is the
unique homomorphism:

φ∗ : R[t] → S[t]

such that:
∀a ∈ R, φ∗(a) = φ(a) φ∗(t) = t

By the universal property, it follows immediately that this is unique; it
is also intuitively defined:

φ∗

(∑
i

ait

)
=
∑
i

φ(ai)t
i

(Definition 3.1.7)
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2.2 Definition: The Evaluation Homomorphism

Let R be a ring, and let r ∈ R. We can evaluate polynomials R[t] at r
through a unique homomorphism:

evr : R[t] → R

such that:
∀a ∈ R, evr(a) = a evr(t) = r

By the universal property, it follows immediately that this is unique; it
is also intuitively defined:

evr

(∑
i

ait

)
=
∑
i

air
i
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2.3 Definition: The Substitution Isomorphism

Let R be a ring, and let c ∈ R. There is a unique homomorphism

θ : R[t] → R[u]

, such that:
∀a ∈ R, θ(a) = a θ(t) = u+ c

By the universal property, it follows immediately that this is unique; it
is also intuitively defined:

θ

(∑
i

ait

)
=
∑
i

ai(u+ c)i

Notice, this homomorphism is nothing but a change of variables. In
particular, it is an isomorphism, since it is invertible:

θ−1 : R[u] → R[t]

such that:
∀a ∈ R, θ−1(a) = a θ−1(u) = t− c

In particular, these isomorphisms preserve structure: what is true for
polynomials f(t) will be true for polynomials g(u) = f(t−c); in particular:

f(t) is irreducible ⇐⇒ f(t− c) is irreducible

2.3.1 Exercises

1. [Exercise 3.1.8] What happens to this if instead we substitute t = u2 + c?
We would no longer have a bijective mapping, since we’d only map to polynomials with even powers in
R[u].
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3 Polynomial Properties
3.1 Definition: Degree of a Polynomial

Consider some non-zero polynomial:

f(t) =
∑
i

ait
i

The degree of f , deg(f), is the largest n ≥ 0, such that an 6= 0.
By convention:

deg(0) = −∞
where −∞ is a formal symbol defined by the following properties ∀n ∈ Z:

−∞ < n (−∞) + n = −∞ (−∞) + (−∞) = −∞

(Definition 3.1.9)

3.2 Lemma: Polynomials Over Integral Domains

Let R be an integral domain. Then:

1.
∀f, g ∈ R[t], deg(fg) = deg(f) + deg(g)

2. R[t] is an integral domain
(Lemma 3.1.11)

In fact, applying induction it can be seen that the ring R[t1, . . . , tn] of polynomials over R with n variables
will also be an integral domain.

Proof.

1

For the first claim, since R is an integral domain, it has no zero-divisors (2 non-zero elements whose
product is zero), then the leading coefficient of PQ is the product of the leading coefficients of P and Q.
From this it is easy to see that we will indeed have deg(PQ) = deg(P ) + deg(Q). Moreover, it is clear that
PQ 6= 0 if and only if P 6= 0 ∧Q 6= 0 (since no possible multiplication of coefficients can be 0).

2
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For the second claim, we note that if R has no zero-divisors, R[t] doesn’t either. An integral domain is
a ring with no zero-divisors, so if R is an integral domain, so is R[t].

3.2.1 Exercises

1. [Exercise 3.1.13] Let p be a prime, and consider the field Zp(t) of rational expression of Zp[t].
Show that t has no pth root in Zp(t).

Assume that t has a pth root in Zp(t). In particular, this means that there exist f, g ∈ Zp[t] such that:(
f

g

)p

= t =⇒ fp = tgp

Considering degree:
deg(fp) = deg(tgp) =⇒ p deg(f) = 1 + p deg(g)

But this is impossible: p divides the LHS, but won’t divide the RHS. Hence, t can’t have a root in Zp(t).

3.3 Lemma: Polynomials Over Fields and Irreducibility

Let K be a field. Then:

1. the units in K[t] are the non-zero constants (namely, the
non-zero elements of K/polynomials of degree 0)

2. f ∈ K[t] is irreducible if and only if:

• f is non-constant
• f can’t be expressed as a product of 2 non-constant

polynomials
(Lemma 3.1.14)

Proof.

1

It is clear that if a ∈ K, then the polynomial of degree 0 f(t) = a is a unit (since K is a field). Now,
assume that f is a unit in K[t], such that deg(f) ≥ 1. Let g be the inverse. Since K is a field, it is an
integral domain, and so:

deg(fg) = deg(1K) = 0 =⇒ deg(f) + deg(g) = 0

Since the degree is a non-negative integer, this can only be the case if deg(f) = deg(g) = 0. Hence, all the
units of K[t] are the non-zero constants.

2
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Recall the definition of an irreducible ring element:

Let R be a ring. r ∈ R is irreducible if:

• r 6= 0R

• r is not a unit

•
∀a, b ∈ R : ab = r =⇒ a or b is a unit

Translated to polynomial parlance, a polynomial f ∈ K[t] is irreducible if and only if:

• f 6= 0K

• f is not a non-zero, constant polynomial

•
∀g, h ∈ K[t] : gh = f =⇒ g or h are non-zero, constant polynomials

Hence, the result follows from the definition of irreducibility.

3.4 Polynomial Factorisation
3.4.1 Proposition: Polynomial Remainders

Let K be a field, and f, g ∈ K[t], with g 6= 0K.
Then, there is a unique pair of polynomials q, r ∈ K[t], such that:

f = qg + r deg(r) < deg(g)

(Proposition 3.2.1)

Proof. Pick q to minimise deg(f − gq). This is always possible, since the degree of any polynomial is always
non-negative.

Assume that after this:
deg(f − gq) ≥ deg(g)

That is, we have:

f − gq =

r∑
i=0

ait
i

and r ≥ d = deg(g).

Now consider:
f − (q + art

r−d)g = f − gq − art
r + . . .
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As we can see deg(f − (q + art
r−d)g) = deg(f − gq)− 1. This contradicts the fact that our choice of q leads

to deg(f − gq) ≥ deg(g), meaning that we must have deg(f − gq) < deg(g).

Thus, we have found q and r = f − gq, with deg(r) < deg(g) such that:

r = f − gq =⇒ f = gq + r

as required.

We now show that these choices are indeed unique. Suppose that q′, r′ also satisfy the conclusions (so
f = q′g + r′ and deg(r′) < deg(g). Then:

0 = f − f = (q − q′)g + (r − r′)

Notice:

• (q − q′)g will have degree greater than (or equal to) g

• r − r′ has degree less than Q

But the polynomial should have degree 0. This is only possible if q − q′ = 0 =⇒ q = q′ (since r could
have degree 0).

But then notice that:
r = f − gq = f − q′g = r′

Thus, the choice of q, r is unique.

3.4.2 Proposition: Polynomials Over Fields are Principal Ideal Domains

Let K be a field. Then K[t] is a principal ideal domain.
(Proposition 3.2.2)

Proof. Since K is a field, it is an integral domain, so K[t] is an integral domain.

Now, let I be an ideal of K[t]. If I = {0K}, then clearly I = 〈0K〉.

Otherwise, define d to be the smallest degree of all polynomials in I:

d = min{deg(f) | 0K 6= f ∈ I}

and let g ∈ I, such that deg(g) = d.

We claim that I = 〈g〉. To do this, it is sufficient to show that:

∀f ∈ I, g | f

To this end, we know that ∃!q, r ∈ K[t] such that:

f = gq + r
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and deg(r) < deg(g) = d. Notice, since q ∈ K[t], by properties of ideal gq ∈ I. Again, by properties of ideal:

r = f − gq ∈ I

But then, since g was chosen to have minimal degree, and deg(r) < d, it must be the case that r = 0
(otherwise, we would’ve picked r as our element of minmal degree). Hence, as required:

f = qg =⇒ g | f

• Since K[t] is a principal ideal domain when K is a field, and K[t1, . . . , tn] is an integral
domain, is it also a principal ideal domain?

– no, for n > 1 polynomials in n variables over a field need not be principal ideal domains
– for example, the ideal:

〈t1, t2〉 = {t1f(t1, t2) + t2g(t1, t2) | f(t1, t2), g(t1, t2) ∈ Q[t1, t2]}

is not principal
– this can be seen by contradiction. Assume ∃h(t1, t2) ∈ Q[t1, t2], such that:

〈t1, t2〉 = 〈h〉

In particular, this implies that:

h | t1 =⇒ ∃a(t1, t2) : ha = t1

so either deg(h) = 0 =⇒ h = c ∈ Q or deg(h) = 1 =⇒ h = ct1. But then, by similar logic:

h | t2 =⇒ h = d or h = dt2

Both of these together imply that h must be a non-zero constant polynomial. But then, h would be
a unit, and in particular, 〈h〉 = Q[t1, t2], which is a contradiction, as 〈t1, t2〉 is an ideal containing
polynomials with a constant term of 0.

• If K is a principal ideal domain, is K[t] a principal ideal domain?

– no, we require K to be a field
– for example, Z is a principal ideal domain (not a field), but the ideal:

〈2, t〉 = {2f(t) + tg(t) | f(t), g(t) ∈ Z[t]}

is not a principal ideal (we can see this using a similar procedure to the one above)
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At the end of last week’s work, we saw that irreducible ring elements allowed us to create fields. We
revisit this now, so that we can use polynomials to generate fields! To do this, we’ll need to develop theory,
which:

1. allows us to factorise polynomials into irreducible factors

2. llows us to determine when some polynomial is irreducible

4 Generating Fields from Polynomials
4.1 Corollary: Fields from Irreducible Polynomials

Let K be a field, and let:

0K 6= f ∈ K[t]

Then:
f is irreducible ⇐⇒ K[t]/ 〈f〉 is a field

(Corollary 3.2.5)

Proof. This follows from last week’s conclusion:

Let R be a principal ideal domain, and r ∈ R, r 6= 0R. Then:

r is irreducible ⇐⇒ R/ 〈r〉 is a field

alongside the fact that since K is a field, K[t] is a principal ideal domain.

4.2 Factorising Polynomials with Irreducibles
4.2.1 Lemma: Non-Constant Polynomials are Divisible by Irreducible Polynomials

Let K be a field, and let f(t) ∈ K[t] be a non-constant polynomial.
Then, f(t) is divisible by some irreducible in K[t].
(Lemma 3.2.6)
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Proof. Let f ∈ K[t], and pick g to be some non-constant polynomial, such that g is the polynomial of
smallest degree satisfying g | f . g must be irreducible. To this end, let g1, g2 ∈ K[t] be such that g = g1g2.
Then:

g | f =⇒ g1 | f g2 | f

Since we operate over an integral domain:

deg(g) = deg(g1) + deg(g2)

Thus, the fact that g had minimal degree implies that:

deg(gi) = 0 or deg(gi) = deg(g)

Thus, at least one of the gi must have degree 0; in other words, it must be a unit. Hence, since g is not a
unit (since it is non-constant) or zero, it must be that g is irreducible, as required.

4.2.2 Lemma: Irreducibility and Division of a Product

Let K be a field, and let f, g, h ∈ K[t]. Suppose that f is irreducible,
and f | gh. Then:

f | g or f | h
(Lemma 3.2.7)

Proof. Assume that f 6 | g. f is irreducible, so it is only divisible by units; hence, f, g must be coprime (the
only common divisor they have is a unit). Since K[t] is a principal ideal domain, Bezout’s Lemma applies:

∃p, q ∈ K[t] : pf + qg = 1K

Multiplying both sides by h:
pfh+ qgh = h

Notice:

• f | pfh

• f | gh =⇒ f | qgh

Thus, the RHS is divisible by f , so we must have that f | h, as required.

4.2.3 Theorem: Polynomials Over Fields Factorise Uniquely

We now show a really important results: that we can uniquely factorise polynomials over a field. This isn’t
always true for rings, so this is rather neat!
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Recall, a polynomial is monic if its leading coefficient is 1K.

Let K be a field, and:
0K 6= f ∈ K[t]

Then:
f = af1f2 . . . fn

where:

• n ≥ 0

• a ∈ K

• f1, . . . , fn ∈ K[t] are monic irreducible polynomials

Moreover, n, a are uniquely determined by f , and the factors f1, . . . , fn
are unique up to reordering.
If n = 0, the product f1 . . . fn should be interpreted as 1K.
(Theorem 3.2.8)

Proof. We prove this in 2 steps: firstly, we show that such a factorisation exists; then, we prove that it is
unique.

We induct on deg(f).

1 Base Case: deg(f) = 0

If deg(f) = 0, then f is a constant polynomial f = a ∈ K, which is as in the theorem (with n = 0)

2 Inductive Hypothesis: deg(f) ∈ [0, k]

Now, assume that for all polynomials with deg(f) ∈ [0, k] the claim holds.

3 Inductive Step: deg(f) = k + 1

Now, consider a polynomial f ∈ K[t] with deg(f) = k + 1. By the Lemma above, we can find an
irreducible polynomial g, such that g | f (WLOG we may assume that g is monic, and otherwise we just
divide by a constant). In particular, f/g will be a non-zero polynomial, with deg(f/g) ∈ [0, k], so by the
inductive hypothesis:

f/g = ah1 . . . hm

where a ∈ K and h1, . . . , hm are irreducible. Hence:

f = ah1 . . . hmg

as required.
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Now, we prove uniqueness, again by induction on deg(f).

1 Base Case: deg(f) = 0

If deg(f) = 0, then f is a constant polynomial f = a ∈ K, which is the only possible factorisation.

2 Inductive Hypothesis: deg(f) ∈ [0, k]

Now, assume that for all polynomials with deg(f) ∈ [0, k] the claim holds.

3 Inductive Step: deg(f) = k + 1

Now, consider a polynomial f ∈ K[t] with deg(f) = k + 1. Suppose it has 2 factorisations:

af1 . . . fn = f = bg1 . . . gm

such that a, b ∈ K and fi, gj are monic irreducibles. Since deg(f) > 0, it is a non-constant polynomial, and
n,m ≥ 1. Now:

fn | bg1 . . . gm =⇒ ∃j : fn | gj
WLOG we may assume that fn | gm. But since fn, gm are both irreducible, we must have that:

fn = cgm

where c 6= 0K . Furthermore, fn, gm are monic, so c = 1K , and so, fn = gm. Now, since K[t] is an integral
domain, by the cancellation law:

af1 . . . fn−1 = bg1 . . . gm−1

By the inductive hypothesis, the resulting products correspond to a polynomial with degree lower than k+1,
so it thus follows that:

• n− 1 = m− 1

• a = b

• f1, . . . , fn−1 and g1, . . . , gn−1 are the same up to reordering

as required.

4.2.4 Lemma: Linear Factors of Polynomials

Roots of polynomials allow us to find irreducible factors easily.

Let K be a field f(t) ∈ K[t], and a ∈ K. Then:

f(a) = 0K ⇐⇒ (t− a) | f(t)

(Lemma 3.2.9)
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Proof. • ( =⇒ ): Assume that f(a) = 0K . We can write:

f(t) = (t− a)q(t) + r(t), q, r ∈ K[t]

where deg(r) < deg(t− a) = 1. Thus, r(t) is a constant polynomial, and:

f(a) = 0K = (a− a)q(a) + r(a) =⇒ r(t) = r(a) = 0K

In other words:
f(t) = (t− a)q(t) =⇒ (t− a) | f(t)

• ( ⇐= ): Suppose that (t− a) | f(t). Then:

f(t) = (t− a)q(t) =⇒ f(a) = 0

4.2.5 Lemma: Linear Factorisation for Algebraically Closed Fields

Recall, a field is algebraically closed if every non-constant polyno-
mial has at least one root in the field. By the Fundamental Theorem
of Algebra, C is algebraically closed.

Let K be an algebraically closed field, and:

0K 6= f ∈ K[t]

Then:
f(t) = c(t− a1)

m1 . . . (t− ak)
mk

where:

• a1, . . . , ak are the distinct roots of f in K

• m1, . . . ,mk ≥ 1

Page 18



4.3 Finding Irreducible Polynomials
4.3.1 Lemma: Irreducibility from Degree and Roots

Let K be a field and f ∈ K[t]. Then:

1.
deg(f) ≤ 0 =⇒ f is not irreducible

2.
deg(f) = 1 =⇒ f is irreducible

3.
deg(f) ≥ 2 and f has a root =⇒ f is reducible

4.
deg(f) ∈ {2, 3} and f has no root =⇒ f is irreducible

(Lemma 3.3.1)

Proof.

1
If deg(f) = 0, then f is a non-zero constant, and so, is a unit, so it’s not irreducible. If f = 0K , then

again f can’t be irreducible.

2
Linear polynomials are non-zero and not units. If f factorises f = gh, then deg(f) = 1 = deg(g)+deg(h),

which forces one of g, h to have degree 0. Hence, one of g, h will be a unit, so f is irreducible.

3
Since f has a root, by Lemma 3.2.9, f has a linear factor. In particular, and since deg(f) ≥ 2, f can be

factorised as a product of non-constant polynomials, so f is reducible.

4
By contradiction, assume that f = gh and:

deg(g), deg(h) ≥ 1

(so that f is not irreducible). We must have:

deg(f) ∈ {2, 3} =⇒ deg(g) + deg(h) ∈ {2, 3}

WLOG, we may assume that deg(g) = 1, and also that g is monic (otherwise just divide by a constant
factor). In other words, we can write:

g(t) = t+ a
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But this is a contradiction, as it would imply that f(−a) = 0. Hence, f must be irreducible if it doesn’t
have a root and deg(f) ∈ {2, 3}.

• If a polynomial doesn’t have a root, can we immediately assume that it is irreducible?

– this is the converse of 3 above

– this isn’t true in general: for example, (t2 + 1)2 ∈ Q[t] has no root, but it is certainly reducible

4.3.2 Definition: Primitive Polynomials

A polynomial over Z is primitive, if its coefficients have no common
divisor, except for ±1.
(Definition 3.3.6)

For example:

• 15 + 6t+ 10t2 is primitive

• 15 + 6t+ 30t2 isn’t primitive (the coefficients share a factor of 3)

4.3.3 Lemma: Rational Polynomials from Primitive Integer Polynomials

Let f(t) ∈ Q[t]. Then:

∃F (t) ∈ Z[t], α ∈ Q : f = αF

where F is primitive.
(Lemma 3.3.7)

Proof. Since f is a polynomial over Q, we can write:

f(t) =
∑
i

ai
bi
ti, ai ∈ Z, bi 6= 0, bi ∈ Z

Now, let b be some common multiple of all the bis. Define:

ci =
aib

bi
∈ Z
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such that:
f(t) =

∑
i

ai
bi
ti =

1

b

∑
i

cit
i

Now, let c be the greatest common divisor of the cis. Define:

di =
ci
c
∈ Z

Then, we can define a primitive polynomial:

F (t) =
∑
i

dit
i

and:
f(t) =

1

b

∑
i

cit
i =

c

b

∑
i

dit
i =

c

b
F (t)

4.3.4 Lemma: Gauss’s Lemma

1. The product of 2 primitive polynomials over Z is primitive

2. If a non-constant polynomial over Z is irreducible over Z, it is
irreducible over Q.

(Lemma 3.3.8)

Proof.

1

Let f, g be primitive polynomials over Z, and let p be prime. We will show that no p divides all the
coefficients of fg, which will show that it is indeed primitive. Define a canonical mapping:

π : Z → Zp

which induces a homomorphism:
π∗ : Z[t] → Zp[t]

f, g are primitive, so p won’t divide all the coefficients of f, g. In other words:

π∗(f) 6= 0 π∗(g) 6= 0

(if p divided the coefficients, then the coefficients would be 0 over Zp)

But then, since Zp is an integral domain, so is Zp[t], so:

π∗(fg) = π∗(f)π∗(g) 6= 0
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Thus, p won’t divide all coefficients of fg, and this holds for all primes p, so fg will be primitive.

2

Now, let f ∈ Z[t] be a non-constant irreducible polynomial over Z. We seek to show it is also irreducible
over Q. To this end, consider:

g, h ∈ Q[t] : f = gh

We can write g, h using primitive polynomials:

∃α, β ∈ Q : g = αG h = βH

where G,H ∈ Z[t] are primitive. Since α, β ∈ Q, then there are coprime integers m,n such that:

αβ =
m

n

so that:
f = gh =⇒ nf = mGH

n divides every coefficient of nf , so it must divide every coefficient of mGH. Since m,n are coprime, n must
then divide every coefficient of GH. But since GH is primitive (it is a product of primitives) we must have
n = ±1, and f = ±mGH. f is irreducible over Z, so either G or H must be constant. But then, either g or
h must be constant, which implies that f is irreducible over Q.

4.3.5 Proposition: Irreducibility from Mod p Method

Let:
f(t) = a0 + a1t+ . . .+ ant

n ∈ Z[t]
Let π : Z → Zp be the canonical homomorphism, and π∗ : Z[t] → Zp[t] the
resulting induced homomorphism. Define notation:

π(a) = ā π∗(f) = f̄

If there exists a prime p such that:

• p 6 | an
• f̄ ∈ Zp[t] is irreducible

then f is irreducible over Q.
(Proposition 3.3.9)

Proof. Let p be a prime satisfying:

• p 6 | an
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• f̄ ∈ Zp[t] is irreducible

We first assume that f is primitive. To show that f is irreducible over Q, it is sufficient to show that it is
irreducible over Z, by Gauss’s Lemma.

By assumption, f̄ is irreducible, so:

deg(f̄) > 0 =⇒ deg(f) > 0

Now, let f = gh ∈ Z[t]. By properties of homomorphisms, we also have f̄ = ḡh̄; but since f̄ is irreducible,
WLOG we have that ḡ is a unit, and so, a constant polynomial.

Now, the leading coefficient an of f is the product of the leading coefficients of g and h, and by assumption,
p 6 | an. In particular, this also implies that p won’t divide the leading coefficient of g, and so:

deg(g) = deg(ḡ) = 0

In other words, g must be a constant polynomial, and thus, a unit g = b ∈ Z. Hence, f = gh = bh. Now,
f ∈ Z[t] and since b ∈ Z, h ∈ Z[t]. In particular, the coefficients of f must be divisible by b. But f is
primitive, so they can’t have a common divisor; this forces b = ±1, which are units in Z[t], so f must be
irreducible.

Now, consider an arbitrary polynomial f ∈ Z[t]. We can write f = cF , where F ∈ Z[t] is primitive, and c
is the greatest common factor of the coefficients of f . Then, f̄ = c̄F̄ . Moreover, Zp is a field, and since p 6 |c
(since p doesn’t divide an by assumption), c̄ must be a unit in Zp. Moreover, f̄ being irreducible implies
that F̄ is also irreducible. But by 1 , then F is irreducible over Q. Since c 6= 0, c is a unit in Q, so f = cF

must also be irreducible over Q.

4.3.6 Proposition: Eisenstein’s Criterion

Let:
f(t) = a0 + . . .+ ant

n ∈ Z[t]
where n ≥ 1.
Suppose there exists a prime p, such that:

• p 6 | an
• ∀i ∈ [0, n− 1], p | ai
• p2 6 | a0

Then. f is irreducible over Q.
(Proposition 3.3.12)

Proof. To prove this, we define the codegree of a polynomial:
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Consider a polynomial:
f(t) =

∑
i

ait
i

The codegree of f , codeg(f), is the least i, such that ai 6= 0. If f = 0,
then codeg(f) = ∞.

The codegree has the following properties:

• if f, g are polynomials over an integral domain:

codeg(fg) = codeg(f) + codeg(g)

• if f 6= 0, then:
codeg(f) ≤ deg(f)

By Gauss’s Lemma, to show that f is irreducible over Q it is sufficient that this is the case over Z.

Let g, h ∈ Z[t], such that:
f = gh

Let f̄(t) ∈ Zp[t], such that f̄ = ḡh̄, where p is a prime satisfying the conditions:

• p 6 | an

• ∀i ∈ [0, n− 1], p | ai

• p2 6 | a0

The last condition implies:
p2 6 | a0 =⇒ p2 6 | f(0) = g(0)h(0)

In particular, this means that p won’t divide both of them, so WLOG, assume that:

p 6 | g(0)

In other words, codeg(ḡ) = 0 (since ḡ must have a constant term, as the constant term doesn’t have p as a
factor). Moreover, since p 6 | an but ∀i ∈ [0, n− 1], p | ai, we will have that:

codeg(f̄) = n

But then:
n = codeg(f̄) = codeg(ḡ) + codeg(h̄) = codeg(h̄) ≤ deg(h̄) ≤ deg(h)

The last inequality follows because if an has p as a factor, it will disappear as a coefficient from h̄, so the
degree of h̄ could be smaller than that of h.

However, this means that n ≤ deg(h), and we know that:

deg(f) = n = deg(g) + deg(h) ≥ n+ deg(g)

This forces deg(g) = 0, and so, f = gh implies that f is irreducible, since g is a unit.
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4.3.7 Exercises

1. [Exercise 3.3.15] Use Eisenstein’s criterion to show that for every n ≥ 1 there is an irreducible
polynomial over Q of degree n.
If we use Gauss’s Lemma, we can restrict ourselves to polynomials over Z. We can, for any n ≥ 1, define:

f(t) = p+ tn

By Eisenstein’s Criterion with p, this polynomial will be irreducible, and this holds for any n.

4.4 Examples: Verifying Irreducibility in Polynomials
4.4.1 Using Degree and Roots

Let K be a field and f ∈ K[t]. Then:

1.
deg(f) ≤ 0 =⇒ f is not irreducible

2.
deg(f) = 1 =⇒ f is irreducible

3.
deg(f) ≥ 2 and f has a root =⇒ f is reducible

4.
deg(f) ∈ {2, 3} and f has no root =⇒ f is irreducible

• if p is prime, then:
f(t) = 1 + t+ . . .+ tp−1 ∈ Zp[t]

is reducible, since f(1) = 0 (this is 2 )

• let f(t) = t3 − 10 ∈ Q[t]. Then, deg(f) = 3, and f has no root in Q, so by 4 , f is irreducible

• over C (or any other algebraically closed field), the irreducibles are exactly the polynomials of degree
1
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4.4.2 Using the Mod p Method

Let:
f(t) = a0 + a1t+ . . .+ ant

n ∈ Z[t]
Let π : Z → Zp be the canonical homomorphism, and π∗ : Z[t] → Zp[t] the
resulting induced homomorphism. Define notation:

π(a) = ā π∗(f) = f̄

If there exists a prime p such that:

• p 6 | an
• f̄ ∈ Zp[t] is irreducible

then f is irreducible over Q.
(Proposition 3.3.9)

• consider:
f(t) = 9 + 14t− 8t3

and let p = 7. Clearly, 7 6 | − 8. Moreover, over Z7, the polynomial becomes:

f̄ = 2− t3

Recall, by the above test for irreducibility, since f̄ has degree 3, it is sufficient to show that 2− t3 has
no roots in Z7. Indeed:

– 0̄3 = 0̄

– 1̄3 = 1̄

– 2̄3 = 1̄

– 3̄3 = 1̄

– 4̄3 = −̄3
3
= −̄6 = 1̄

– 5̄3 = −̄2
3
= −̄1 = 6̄

– 6̄3 = −̄1
3
= −̄1 = 6̄

so no t ∈ Z7 satisfyies t3 − 2. Hence, by the mod p method, f(t) = 9 + 14t− 8t3 is irreducible

• if instead we’d used p = 3, we’d get that:

f̄ = −t+ t3 = t(t2 − 1)

so f̄ is reducible over Z3; however, clearly this doesn’t mean that f is reducible. The mod p method
is only useful when determining whether something is irreducible

• if we take f(t) = 6t2 + t, this is clearly reducible. If we ignore the condition p 6 | an, we’d get that
f̄ = t, which is irreducible. Hence, it’s a necessary condition!
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4.4.3 Using Eisenstein’s Criterion

Let:
f(t) = a0 + . . .+ ant

n ∈ Z[t]
where n ≥ 1.
Suppose there exists a prime p, such that:

• p 6 | an
• ∀i ∈ [0, n− 1], p | ai
• p2 6 | a0

Then. f is irreducible over Q.
(Proposition 3.3.12)

• consider:
g(t) =

2

9
t5 − 5

3
t4 + t3 +

1

3
∈ Q[t]

By Gauss’s Lemma, we know that g is irreducible over Q if and only if:

9g(t) = 2t5 − 15t4 + 9t3 + 3

is irreducible over Q; by Eisenstein’s criterion with p = 3, it is clear that this is the case:

– 3 6 | 2
– 3 | − 15

– 3 | 9
– 32 6 | 3

• let p be prime. The pth cyclotomic polynomial is:

Φp(t) = 1 + t+ . . .+ tp−1 =
tp − 1

t− 1

We can’t immediately apply Eisenstein’s Criterion: no prime can divide any of the coefficients. Instead,
we use the substitution homomorphism, which tells us that Φp(t) is irreducible if and only if Φp(t− c)
is irreducible, for any c ∈ Q. If we take c = −1:

Φp(t+ 1) =
(t+ 1)p − 1

(t+ 1)− 1

=
1

t
((t+ 1)p − 1)

=
1

t

p∑
i=1

p

i

 ti

= p+

p

2

 t+ . . .+

 p

p− 1

 tp−2 + tp−1

As we showed last week, each

p

j

 is divisible by p when j ∈ [1, p − 1]. Moreover, clearly tp−1 isn’t,

and p isn’t divisible by p2. Thus, by Eisenstein’s criterion, Φp(t) is irreducible.
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If we don’t restrict ourselves to p prime, the nth cyclotomic polynomial is
defined by:

Φn(t) =
∏
ω

(t− ω)

where each ω is an nth root of unity. Whilst not obvious:

• the coefficients of Φn are real

• not only that, they are rational

• not even that, they are integers

• the degree of Φn is φ(n). the Euler totient function (the number
of integers between 1 and n which are coprime to n)

• Φn is irreducible for all n ≥ 1

Page 28


	Polynomials as Rings
	Definition: Polynomials Over Rings
	Exercises

	Proposition: The Universal Property of the Polynomial Ring

	Polynomials and Homomorphisms
	Definition: The Induced Homomorphism
	Definition: The Evaluation Homomorphism
	Definition: The Substitution Isomorphism
	Exercises


	Polynomial Properties
	Definition: Degree of a Polynomial
	Lemma: Polynomials Over Integral Domains
	Exercises

	Lemma: Polynomials Over Fields and Irreducibility
	Polynomial Factorisation
	Proposition: Polynomial Remainders
	Proposition: Polynomials Over Fields are Principal Ideal Domains


	Generating Fields from Polynomials
	Corollary: Fields from Irreducible Polynomials
	Factorising Polynomials with Irreducibles
	Lemma: Non-Constant Polynomials are Divisible by Irreducible Polynomials
	Lemma: Irreducibility and Division of a Product
	Theorem: Polynomials Over Fields Factorise Uniquely
	Lemma: Linear Factors of Polynomials
	Lemma: Linear Factorisation for Algebraically Closed Fields

	Finding Irreducible Polynomials
	Lemma: Irreducibility from Degree and Roots
	Definition: Primitive Polynomials
	Lemma: Rational Polynomials from Primitive Integer Polynomials
	Lemma: Gauss's Lemma
	Proposition: Irreducibility from Mod p Method
	Proposition: Eisenstein's Criterion
	Exercises

	Examples: Verifying Irreducibility in Polynomials
	Using Degree and Roots
	Using the Mod p Method
	Using Eisenstein's Criterion



