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Based on the notes by Tom Leinster, Chapter 2

1 Group Actions
1.1 Group Actions
1.1.1 Definition: Group Action

Let G be a group and X be a set.
An action of G on X is a function:

G×X → X

(g, x) 7→ gx

satisfying:

•
∀g, h ∈ G, ∀x ∈ X (gh)x = g(hx)

•
∀x ∈ X 1Gx = x

(Definition 2.1.1)

1.1.2 Definition: The (Abstract) Symmetry Group

Let X be a set. The symmetry group Sym(X) contains all the bijec-
tions:

X → X

Sym(X) is a group under function composition, and with identity as
the identity function.
Note, when X = [1, n], this is nothing but the standard symmetry group
Sn.

1.1.3 Examples of Group Actions

• Sym(X) is built specifically to act on X:

(g, x) 7→ g(x)

• more generally, the group Aut(X) is the group of automorphisms of some object X (such as a
group!). This acts in a natural way:

(g, x) 7→ g(x)

For example, in real, finite dimensional vector spaces:

Aut(X) ∼= GL(R;n)

the group of real, n× n invertible matrices. This acts over spaces like Rn via matrix multiplication.
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• G can be the group of 48 isometries (rotations + reflections) of a cube. Then, G can act on:

– the set of 6 faces
– the set of 12 edges
– the set of 8 vertices
– the set of 4 long diagonals (diagonals which connect diammetrically opposed vertices)

• the trivial action is the action:
gx = x

1.1.4 Lemma: Actions Provide Homomorphisms to Symmetry Group

Let G be a group acting on X. Every g ∈ G gives rise to a function:

ḡ : X → X

defined by:
ḡ(x) = gx

This induces a homomorphism:

Σ : G → Sym(X)

defined by:
g 7→ ḡ

Proof. It is sufficient to show that ḡ is a bijection, but this is trivial: g−1 is clearly an inverse for ḡ. In
particular, this means that ḡ ∈ Sym(X) (since it is a bijective mapping from X to itself). The fact that Σ
is a group homomorphism is immediate:

Σ(gh)(x) = gh(x) = (gh)x = g(hx) = ḡ(h̄(x)) = Σ(g) ◦ Σ(h)(x)

1.1.5 Examples of Group Actions Giving Rise to Homomorphisms

• when Sym(X) acts on X, the function ḡ will just be g, so Σ : Sym(X) → Sym(X) will be the identity
mapping

• if X is a real vector space, Σ : Aut(X) → Sym(X) is an inclusion:

Σ(g) = g

since Aut(X) contains linear bijections, whilst Sym(X) contains all bijections

• the action of isometries on cube vertices induces the homomorphism Σ : G → S12, since there are
12 vertices, and so, Sym(X) ∼= S12 (we can label each vertex with a number from 1 to 12, and any
permutation of vertices corresponds to a permutation of the set of 12 elements)
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1.2 Faithful Actions
1.2.1 Definition: Faithful Actions

G acts on X faithfully if:

∀g, h ∈ G, ∀x ∈ X : gx = hx =⇒ g = h

That is, if 2 elements of G act on x in the same way, they must be the
same element.
(Definition 2.1.7)

1.2.2 Lemma: Equivalent Conditions for Faithful Actions

If G acts on a set X, the following are equivalent:

1. the action is faithful

2. let g ∈ G. If:
∀x ∈ X, gx = x

then g = 1G

3. the homomorphism:
Σ : G → Sym(X)

is injective

4. ker(Σ) = {1G}

Proof. • 1 ⇐⇒ 3 An action is faithful if and only if:

Σ(g) = Σ(h) =⇒ g = h

But this is precisely the definition of injectivity.

• 2 ⇐⇒ 4 The kernel is trivial if and only if the only element which acts trivially is 1G, so gx = x

only when g = 1G.

• 3 ⇐⇒ 4 A property of group homomorphisms is that they are injective if and only if they have

a trivial kernel
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1.2.3 Examples

• the action of Sym(X) on X is faithful, since Σ is the identity mapping, which is injective

• similarly, the action of Aut(X) on a vector space is faithful, since the inclusion Σ : Aut(X) → Sym(X)
is injective

• the only isometry which doesn’t change the faces/edges/vertices of a cube is the trivial action, so
ker(Σ) is trivial, and the action is faithful. However, this isn’t true for the long diagonals: Sym(X)
has 4! = 24 elements, whilst |G| = 48, so Σ : G → Sym(X) can never be injective

• the trivial action is only faithful when G is trivial, since gx = x for any g, x

1.2.4 Lemma: G Acts Faithfully When Sym(X) Has a Copy of G

This lemma tells us that when a group acts faithfully on X, it is because Sym(X) contains a “copy” of the
group!

Let G be a group acting faithfully on the set X.
G is isomorphic to the subgroup:

im(Σ) = {ḡ = Σ(g) | g ∈ G} ≤ Sym(X)

where:
Σ : G → Sym(X)

(Lemma 2.1.11)

Proof. Since G acts faithfully, Σ is injective. It is clear that any injective homomorphism φ : G → H induces
an isomorphism between G and im(φ), so:

G ∼= im(Σ)

For example, with the isometries acting on the vertices, the subgroup
im(Σ) consists of those permutations which switch the vertices around ac-
cording to the isometry.
This tells us that, for example, there are no transpositions in im(Σ), since
there is no isometry which only changes 2 vertices, and leaves the rest un-
changed.
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1.3 Fixed Sets
1.3.1 Definition: Fixed Set

Let G be a group acting on X, and consider a subset S ⊆ G.
The fixed set of S is:

Fix(S) = {x | x ∈ X, ∀s ∈ S : sx = x}

(Definition 2.1.14)

1.3.2 Lemma: Fixed Set of Conjugate Group

Let G be a group acting on X, and consider a subset S ⊆ G.
Then:

∀g ∈ G : Fix(gSg−1) = gF ix(S)

(Lemma 2.1.15)

Proof.

x ∈ Fix(gSg−1)

⇐⇒ ∀s ∈ S : gsg−1x = x

⇐⇒ ∀s ∈ S : sg−1x = g−1x

⇐⇒ g−1x ∈ Fix(S)

⇐⇒ x ∈ gF ix(S)

2 Rings

In Galois Theory, we will work with rings, which are defined a bit dif-
ferent to Honours Algebra. As such, homomorphisms and subrings
which were valid in Honours Algebra won’t be valid in this course!

Page 7



2.1 Rings in Galois Theory
2.1.1 Definition: Ring

A ring is a special set armed with 2 operations: addition and multipli-
cation

(R,+, ·)
Rings have the following properties:

1. (R,+) is an abelian group, with identity 0R

2. (R, ·) is a commutative monoid:

• multiplication is associative and commutative
• R contains an identity element 1R satisfying:

∀a ∈ R : a · 1R = 1R · a = a

3. the distributive law holds in R:

a · (b+ c) = (a · b) + (a · c)

(a+ b) · c = (a · c) + (b · c)
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2.1.2 Definition: Ring Homomorphism

A ring homomorphism is a mapping between 2 rings R,S:

φ : R → S

such that if r1, r2 ∈ R:

1.
φ(r1 + r2) = φ(r1) + φ(r2)

2.
φ(r1r2) = φ(r1)φ(r2)

3.
φ(1R) = 1S

4.
φ(0R) = 0S

5.
φ(−r) = −φ(r)

To show that φ is a ring homomorphism, it is sufficient to show that
the first 3 conditions hold.

In Honours Algebra, preserving the multiplicative identity wasn’t necessary for a homomorphism. As
such, homomorphisms such as:

φ : R → GL(R; 2)

φ(x) =

x 0

0 0


which were valid in Honours Algebra won’t work for this course!

2.1.3 Definition: Subring

A subring of a ring R is a subset S ⊆ R, such that:

1.
0R, 1R ∈ S

2. S is closed under subtraction and multiplication
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• How do subrings arise from ring homomorphisms?

– if φ : R → S is a ring homomorphism, then im(φ) is a subring of S

• How do ring homomorphisms arise from subrings?

– if S is a subring of R, the inclusion ι(s) = s is a ring homomorphism

• What are subrings analogous to in group theory?

– they are analogous to subgroups

2.1.4 Definition: Ideal

An ideal is a subset I of a ring R, satisfying:

1. I 6= ∅

2. I is closed under subtraction

3. ∀i ∈ I, ∀r ∈ R, ri, ir ∈ I

• How do ideals arise from ring homomorphisms?

– if φ : R → S is a ring homomorphism, then ker(φ) is an ideal of R

• What are ideals analogous to in group theory?

– an ideal is analogous to a normal subgroup
– however, unlike in group theory, ideals are not a special type of subring
– for instance, subrings contain 1R, but most ideals won’t

2.1.5 Exercises

1. [Exercise 2.2.6] Prove that the only subring of a ring R that is also an ideal is R itself.

Let R be a ring, and S a subring of R. In particular, this implies that 1R ∈ S. If S is also an ideal, then
for any r ∈ R, it follows that:

r · 1R = 1R · r = r ∈ S

In other words, if S is an ideal, S = R.

2. [Exercise 2.2.8] The trivial ring or zero ring is the one-element set with its only possible
ring structure (0R + 0R = 0R, 0R · 0R = 0R). Show that the only ring in which 0R = 1R is the
trivial ring.

Let R be the trivial ring, and let S be some other ring with 0S = 1S . Let s ∈ S be some non-zero
element in S. Then:

s · 1S = s & s · 0s = 0S =⇒ s = 0S

In particular, if 0S = 1S , then S can only have one element, namely 0S .
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2.1.6 Definition: Integral Domain

An integral domain is a ring R, such that:

1. 0R 6= 1R

2.
∀r1, r2 ∈ R : r1r2 = 0R =⇒ r1 = 0R or r2 = 0R

• What is the cancellation law?

– in integral domains, the cancellation law applies:

r1s = r2s =⇒ r1 = r2 or s = 0

– in an arbitrary ring, this need not be the case. For instance, in Z6:

1 · 2 = 2 = 4 · 2

but 1 6= 4

2.1.7 Definition: Quotient/Factor Rings

Let R be a ring, and I an ideal. A quotient or factor ring, is the
ring R/I.
R/I is the set of cosets of the form:

r + I = {r + i | i ∈ I}

We define addition and multiplication in the quotient ring via:

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) (r2 + I) = (r1r2) + I
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Tom Leinster gives a nice way of visualising quotient rings.
We can think of a ring as a loaf of bread. The cosets r + I partition
the loaf into slices, with each element of r + I being a crumb. A quo-
tient ring allows us to work with slices, instead of having to focus on the
crumbs to operate.
For example, consider the ring Z. Define I as the ideal containing the
multiples of 10 of the integers. The quotient ring R/I corresponds
to Z10: the integers modulo 10. Our loaf (the integers) can be partitioned
into 10 slices, each corresponding to a remainder. The crumbs would be
our integers. For instance, 19 and 129 are both crumbs corresponding to
the slice with remainder 9.

2.2 Lemma: Intersection of Subrings is Subring

Let R be a ring, and S be any set of subrings in R. Then, the inter-
section: ⋂

S∈S

S

is also a subring of R.
(Lemma 2.2.3)

Proof. Let T =
⋂

S∈S S. Now:

1. since each S are subrings, they each contain 0R, 1R, so by definition of intersection:

0R, 1R ∈ T

2. let r1, r2 ∈ T . In particular, this means that r1, r2 can be found in each subring S. Since S is a subring,
r1 − r2 ∈ S for each S ∈ S, so:

r1 − r2 ∈ T

A similar argument shows that:
r1, r2 ∈ T =⇒ r1r2 ∈ T
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2.3 Lemma: Unique Homomorphism Between Integers and Rings

For any ring R, there is exactly one homomorphism:

χ : Z → R

We can define χ via:

χ(n) =


0R, n = 0

χ(n− 1) + 1R, n > 0

−χ(−n), n < 0

Alternatively, we can write:

χ(n) = n · 1R =
n∑

i=1

1R

Proof. We first show that this is indeed a ring homomorphism:

1.
χ(1) = χ(0) + 1R = 0R + 1R = 1R

2. let n,m ∈ Z:

χ(n+m) =

n+m∑
i=1

1R =

n∑
i=1

1R +

m∑
i=1

1R = χ(n) + χ(m)

3. let n,m ∈ Z:

χ(nm) =

nm∑
i=1

1R =

n∑
i=1

1R
 m∑

j=1

1R

 =

(
n∑

i=1

1R

)(
m∑
i=1

1R

)
= χ(n)χ(m)

Now, we show that it is unique. Assume that there exists some other homomorphism φ : Z → R.
Certainly:

φ(0) = 0R = χ(0)

We can induct on n to show that ϕ(n) = χ(n) for n ≥ 0. Indeed, if ϕ, χ are homomorphisms, they preserve
the identity, which gives the base case. Then:

φ(n+ 1) = φ(n) + 1R = χ(n) + 1R = χ(n+ 1)

Then, when n < 0:
φ(n) = −φ(−n) = −χ(−n) = χ(n)

Thus, ∀n ∈ Z, it follows that φ = χ, so χ is the unique homomorphism Z → R.
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2.4 Theorem: Universal Property of Factor Rings

Let I be an ideal of the ring R. Define the canonical homomor-
phism:

πI : R → R/I

Then:

1. πI is surjective, and:
ker(πI) = I

2. If:
φ : R → S

is a ring homomorphism, and:

φ(I) = {0S}

(so that I ⊆ ker(φ)), then there exists a unique ring
homomorphism

φ̄ : R/I → S

such that:
φ = φ̄ ◦ πI

Diagrammatically, we have:

2.5 Generating Ideals
2.5.1 Definition: The Ideal Generated by a Subset

Let Y be a subset of a ring R.
The set 〈Y 〉 is the ideal generated by Y , and it is the smallest ideal of
R containing Y , in the sense that any other ideal I containing Y is such
that 〈Y 〉 ⊆ I.
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• What is the top-down definition of an ideal generated by Y ?

– any intersection of ideals will again be an ideal
– 〈Y 〉 can be characterised as the intersection of all ideals of R containing Y

• What is the bottom-up definition of an ideal generated by Y ?

– alternatively, if Y = {r1, . . . , rn} is some finite subset of R, we can define:

〈Y 〉 =

{
n∑

i=1

airi | ai ∈ R

}
– this defines an ideal (see Section 8.2 of my Honours Algebra Notes)
– for any other ideal J containing Y , we know that ri ∈ J . By closure of ideals, also airi ∈ J . By

closure under addition, also
∑n

i=1 airi ∈ J . Hence, 〈Y 〉 ⊆ J , as required

2.5.2 Definition: The Principal Ideal

A principal ideal is an ideal 〈r〉 generated by a single element:.

2.5.3 Definition: Principal Ideal Domains

A principal ideal domain is an integral domain, such that each
ideal is a principal ideal.

• Is Z a principal ideal domain?

– it is clearly an integral domain, since only multiplying by 0 gives 0 back
– intuitively, any ideal of Z must be composed of integers which are all multiples; otherwise, it

would fail properties like ri, ir ∈ I or closure under subtraction/multiplication
– in particular, this means that each ideal of Z must be generated by the smallest number con-

tained in the ideal, such that I = 〈n〉, so any ideal must be a principal ideal

2.5.4 Definition: Division in Rings

Let R be a ring, and r, s ∈ R. We say that r divides s if:

∃a ∈ R : s = ar

in which case we write r | s.

Alternatively, s ∈ 〈r〉 or 〈s〉 ⊆ 〈r〉.
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2.5.5 Exercises

1. [Exercise 2.2.15] Let r, s be elements of an integral domain. Show that for some unit u:

r | s | r ⇐⇒ 〈r〉 = 〈s〉 ⇐⇒ s = ur

r |s if and only if s ∈ 〈r〉, so 〈s〉 ⊆ 〈r〉. Similarly, s |r if and only if r ∈ 〈s〉, so 〈r〉 ⊆ 〈s〉. Thus:

r | s | r ⇐⇒ 〈r〉 = 〈s〉

In particular, this is true if and only if ∃u ∈ R such that:

s = ur

But also ∃w ∈ R such that:
r = ws

so overall:
s = uws

Since we operate over an integral domain, and s 6= 0R, by the cancellation law:

uw = 1

so u must be a unit.

2.6 Units in Rings
2.6.1 Definition: Units

Let R be a ring. An element u ∈ R is a unit if it has a multiplicative
inverse.

Alternatively, u is a unit if:
〈u〉 = R

• Why is the second condition equivalent to the first?

– notice, if u has an inverse, then any element r ∈ R can be generated via:

r = (ru−1)u

– since ru−1 ∈ 〈u〉, it thus follows that r ∈ 〈u〉 for any r
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2.6.2 Lemma: Units Form a Group

Let R be a ring. The set R×, containing all units of R, is a group un-
der multiplication.

Proof. We check the group axioms. Let a, b ∈ R×

1. Closure: consider ab. Since R is a ring, it is closed under multiplication, so ab ∈ R. This is a unit
in R if and only if it has an inverse in R. Indeed, since a, b are units, then ∃a−1, b−1 ∈ R. Moreover,
b−1a−1 ∈ R too. But then:

(b−1a−1)(ab) = b−1b = 1R

(ab)(b−1a−1) = aa−1 = 1R

So in particular, b−1a−1 ∈ R is the inverse of ab ∈ R, so ab ∈ R×. Hence, R× is closed under
multiplication.

2. Associativity: multiplication in a ring R is associative; R× ⊆ R, so multiplication is associative in
R× too.

3. Identity: since 1R is always its own inverse, it follows that 1R ∈ R×, and 1R is the identity of R×.

4. Existence of Inverse: trivially, if a ∈ R×, its inverse a−1 must also be in R×

2.6.3 Definition: Coprimes in Rings

Let R be a ring. r, s ∈ R are coprime if for some a ∈ R:

a | r and a | s =⇒ a is a unit

In other words, 2 ring elements are coprime if the only element which
divides both is a unit.

2.6.4 Proposition: Bezout’s Identity

Let R be a principal ideal domain, and let r, s ∈ R. Then:

r, s coprime ⇐⇒ ∃a, b ∈ R : ar + bs = 1R

(Proposition 2.2.16)
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Proof. • ( =⇒ ): assume that r, s are coprime. Since R is a principal ideal domain, the ideal generated
by r, s must be principal, so:

∃u ∈ R : 〈r, s〉 = 〈u〉
Thus, it follows that r, s ∈ 〈u〉, so:

u | r u | s
Since r, s are coprime, it must be the case that u is a unit, and so, 〈u〉 = R. But then, we must have
that 1R ∈ 〈u〉. Going back to the definition of 〈r, s〉, we must then have that:

1R ∈ 〈r, s〉 = {ar + bs | a, b ∈ R}

as required.

• ( ⇐= ): suppose that ar + bs = 1R. If u ∈ R is such that:

u | r u | s

then:
u | (ar + bs) =⇒ u | 1R

But this is only possible if ∃a ∈ R such that:

ua = 1R

In other words, u has an inverse a = u−1, and so, u is a unit. Thus, r, s must be coprime.

3 Fields
3.1 Fields in Galois Theory
3.1.1 Definition: Field

A field is a commutative ring R, such that:

• 0R 6= 1R

• every non-zero r ∈ R is a unit
In particular, every field is an integral domain.

• Are all integral domains fields?

– no. For example, Z is an integral domain, but not a field
– however, in Honours Algebra, we showed at all finite integral domains are fields (see Section

5.5 of my Honour Algebra notes)

• How many ideals does a field have?

– a field K only has trivial ideals: {0K},K
– if I were some non-trivial ideal, then u ∈ I is a unit, so 〈u〉 = K

– but I will be generated by u, so I = K
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3.1.2 Definition: Rational Expressions

A rational expression over a field K is a ratio of 2 polynomials
over K:

f(t)

g(t)
, f(t), g(t) 6= 0 ∈ K[t]

Two rational expressions f1
g1
, f2
g2

are equal if:

f1g2 = f2g2

over the field K[t].

The set of rational expressions over K is denoted by K(t) (and this is
a field).
(Example 2.3.2)

3.1.3 Definition: Subfields

A subfield of a field K is a subring of K which is also a field.

3.2 Field Homomorphisms
3.2.1 Lemma: Field Homomorphisms are Injective

Every field homomorphism is injective.

Proof. Let φ : K → L be a field homomorphism. By properties of rings, ker(φ) is an ideal of K, so:

ker(φ) = {0K} or ker(φ) = K

Now, it is impossible that ker(φ) = K, since this implies that φ(1K) = 0L, but by definition of a ring
homomorphism we must have that φ(1K) = 1L. This would imply that 0L = 1L, which contradicts the fact
that L is a field. Hence, the only possibility is ker(φ) = {0K}, so φ is injective.
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3.2.2 Lemma: Images and Preimages of Homomorphisms are Subfields

Consider the field homomorphism:

φ : K → L

1. For any subfield A of K, the image φ(A) is a subfield of L

2. For any subfield B of L, the preimage φ−1(B) is a subfield of K
(Lemma 2.3.6)

Proof. We prove the first part, since the second part follows a similar argument.

We begin by showing that the image φ(A) is a subring of L. Since φ is a ring homomorphism:

φ(0A) = φ(0K) = 0L φ(1A) = φ(1K) = 1L

so 0L, 1L ∈ φ(A). Moreover, if a, b ∈ A by closure of the ring a− b ∈ A and ab ∈ A so:

φ(a)− φ(b) = φ(a− b) ∈ φ(A)

φ(a)φ(b) = φ(ab) ∈ φ(A)

Hence, φ(A) is a subring. To show that it is a subfield, we already know that 0L 6= 1L, so it is sufficient to
show that every element in φ(A) is a unit. Indeed, since A is a subfield, if a 6= 0A ∈ A, then a−1 ∈ A. Since
fields are groups under multiplication, and group homomorphisms preserve inverses:

φ(a−1) = φ(a)−1

and so any φ(a) ∈ φ(A) is a unit, so φ(A) is a field.

3.3 The Equalizer
We now look at the equalizer: a way of generating fields from homomorphisms between any 2 fields.

3.3.1 Definition: The Equalizer

Let X,Y be sets, and let S be a subset of all functions of the form X →
Y .
The equalizer of S is:

Eq(S) = {x | x ∈ X, ∀f, g ∈ S : f(x) = g(x)}

That is, the equalizer is the set of all x ∈ X which are equal under all
functions in S.
(Definition 2.3.7)
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3.3.2 Lemma: Equalizers are Subfields

Let K,L be fields, and let S be a subset of all homomorphisms of the
form K → L.
Then, the equalizer Eq(S) is a subfield of K.
(Lemma 2.3.8)

For example, consider K = L = C, and S = {idC, κ}, where κ denotes complex conjugation. Then:

Eq(S) = {z | z̄ = z} = R

and R is a subfield of C.

Proof. By definition of ring homomorphisms, we know that 0K , 1K ∈ Eq(S).

Now, let a, b ∈ Eq(S). That is, for all φ, θ ∈ S:

φ(a) = θ(a) φ(b) = θ(b)

Then:
φ(a)− φ(b) = θ(a)− θ(b) =⇒ φ(a− b) = θ(a− b)

so a− b ∈ Eq(S). Similarly:
φ(a)φ(b) = θ(a)θ(b) =⇒ φ(ab) = θ(ab)

so ab ∈ Eq(S).

Finally, since K is a field, any a ∈ K has an inverse a−1 ∈ K. Moreover, φ(K), θ(K) are subfields of L,
so it follows that φ(a)−1, θ(a)−1 exist. Hence, and using the cancellation property:

φ(a)φ(a)−1 = θ(a)θ(a)−1 =⇒ φ(a−1) = θ(a−1)

Thus, Eq(S) is a subfield of K as required.

Page 21



3.4 The Characteristic of a Ring
3.4.1 Definition: The Characteristic

Let R be a ring. We define the characteristic of R, char(R), as the
smallest n ∈ N, such that:

n · 1R = 0R

If no such n exists, then char(R) = 0.

An alternative way of viewing char(R) arises by considering the unique
homomorphism:

χ : Z → R

Since Z is a principal ideal domain, the kernel ker(χ) will be a principal
ideal, so:

∃n ≥ 0 : ker(χ) = 〈n〉
and char(R) = n.

3.4.2 Examples of Characteristics

• Q,R,C all have characteristic 0

• the characteristic of Zp (integers modulo p) is p

• if K is a field, then:
char(K) = char(K(t))

where recall, K(t) is the field of rational expressions

3.4.3 Lemma: Characteristic of Integral Domains

In fact, turns out that we have already seen all the possible characteristics in the above example (at least for
integral domains).

Let K be an integral domain, then:

• char(K) = 0

• or char(K) = p (p is prime)

In particular, if R is a field, then char(R) = 0 or char(R) = p.
(Lemma 2.3.11)
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Proof. Let R be an integral domain, and define:

n = char(R)

If n = 0, we are done, so assume that n > 0.

R is an integral domain, so 0R 6= 1R, and so, n 6= 1. Now, since n is a positive integer:

∃k,m > 0 : km = n

Then:
χ(k)χ(m) = χ(km) = χ(n) = 0R

by definition of the characteristic and χ. R is an integral domain, so:

χ(k) = 0R or χ(m) = 0R

Without loss of generality, we may assume that χ(k) = 0R. But then, again by the definition of the
characteristic, ker(χ) = 〈n〉, so:

k ∈ 〈n〉 =⇒ n | k

Thus, since k | n and n | k, it follows that k = n. Since this holds for any possible factorisation of n, it must
be the case that n is prime, as required.

3.4.4 Lemma: Homomorphisms Between Fields of Same Characteristic

Let:
φ : K → L

be a field homomorphism. Then:

char(K) = char(L)

(Lemma 2.3.12)

Proof. Let χK , χL be the unique homomorphisms:

χK : Z → K χL : Z → L

Now, if we have some homomorphism φ : K → L, it follows by the uniqueness that:

χL = φ ◦ χK

Moreover, since φ is a field homomorphism, it is injective, so:

ker(φ) = {0K}

so ker(φ ◦ χK) contains all the elements of Z, for which χK evaluates to 0K ; in other words:

ker(φ ◦ χK) = ker(χK)
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But since χL = φ ◦ χK , it follows that:

ker(χL) = ker(φ ◦ χK) = ker(χK)

which is equivalent to:
char(K) = char(L)

An alternative is that we must have:

χL(n) = n · 1L = φ(n · 1K)

The injectivity of φ implies that:
n · 1L = 0L ⇐⇒ n · 1K = 0K

so again char(K) = char(L).

3.5 Prime Subfields
3.5.1 Definition: The Prime Subfield

The prime subfield of some field K is the smallest subfield of K (in
the sense that any othe subfield of K contains it).

This can be defined more concretely:

• [top-down view]: the prime subfield of K is the intersection of
all subfields of K (similarly to how intersections of subrings are
subrings, intersections of subfields are subfields)

• [bottom-up view]: the prime subfield of K is defined by the set:{
m · 1K
n · 1K

| m,n ∈ Z : n · 1K 6= 0K

}

Proof. For completeness, we show that the bottom-up view indeed defines the smallest subfield, call it S.

Firstly, it is a subfield. We first show it is a subring:

• 0K ∈ S (just set m = 0, n 6= 0

• 1K ∈ S (just set m = n 6= 0)
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• let a, b ∈ S, such that:
∃ma, na,mb, nb : a =

ma · 1K
na · 1K

b =
mb · 1K
nb · 1K

In particular, we also know that there exists za, zb such that we can write:

(za · 1K)(na · 1K) = ma · 1K ⇐⇒ (zana) · 1K = ma · 1K

(zb · 1K)(nb · 1K) = mb · 1K ⇐⇒ (zbnb) · 1K = mb · 1K
using the fact that χ is a homomorphism. Furthermore:

(zananb) · 1K = (manb) · 1K (zbnanb) · 1K = (mbna) · 1K

so:

((nanb) · 1K)((za − zb) · 1K) = (manb −mbna) · 1K =⇒ a− b =
(manb −mbna) · 1K

(nanb) · 1K
∈ S

• similar work shows that ab ∈ S aswell

Moreover, each element in S will be a unit. In particular:

a =
m · 1K
n · 1K

and define:
b =

n · 1K
m · 1K

Then:
ab((nm) · 1K) = ((nm) · 1K) ⇐⇒ ab = 1K

so b is the inverse of a, and a ∈ S.

Moreover, S will be the smallest subfield, for if we have some other subfield L, then:

1K ∈ L =⇒ m · 1K ∈ L

But then for some n · 1K 6= 0K , certainly we have that by closure of the subfield:

(m · 1K)(z · 1K) = n · 1K =⇒ m · 1K
n · 1K

= z · 1K ∈ L

3.5.2 Examples of Prime Subfields

• the prime subfield of Q is Q itself:

– from the top-down perspective, since Q has no proper subfields (except itself), the intersection of
all it subfields is itself

– from the bottom-up view, the prime subfield is precisely the definition of the rationals (since
1Q = 1)

• in fact, the prime subfield of R,C are also Q (proving this with the top-down view is harder than
with the bottom-up view)

• the prime subfield of Zp is again Zp itself
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3.5.3 Lemma: Only 2 Prime Subfields

In fact, the example above showcases all possible prime subfields.

Let K be a field:

• if char(K) = 0, then the prime subfield of K is (isomorphic to) Q

• if char(K) = p, then the prime subfield of K is (isomorphic to) Zp

(Lemma 2.3.16)

Proof. Begin by assuming that char(K) = 0. Then, for any n > 0, n · 1K 6= 0. Using the fact that χ is a
homomorphism, one can see that the mapping:

φ : Q → K

defined by:
φ :

m

n
→ m · 1K

n · 1K
is well-defined. Since φ is a field homomorphism, it is injective, so it defines an isomorphism:

im(φ) ∼= Q

Now, Q has no proper subfields, so im(φ) can’t have any subfields. Moreover, im(φ) is a subfield of K.
Since it doesn’t have any proper subfield, in particular it must be the smallest subfield of K, and thus, its
prime subfield.

Alternatively, assume that char(K) = p > 0, where p is prime. Then, the unique mapping χ has:

ker(χ) = 〈p〉

by definition of the charcteristic. But then, recalling the first isomorphism theorem, we have that:

Z/ 〈p〉 ∼= im(χ) =⇒ Zp
∼= im(χ)

Again, Zp has no proper subfields, so im(χ) doesn’t either. The fact that im(χ) is a subfield of K then
implies that it must be the prime subfield.

3.5.4 Lemma: Finite Fields Have Positive Characteristic

Every finite field has positive characteristic.
(Lemma 2.3.17)
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Notice however that this need not mean that infinite fields have 0 characteristic. For example, the field
of rational expressions over Zp, Zp(t), is an infinite field of positive characteristic.

Proof. A field of characteristic 0 must have a subfield isomorphic to Q, which is infinite.

3.6 Rings of Prime Characteristic
3.6.1 Lemma: Prime Divisibility

Let p be prime. Then:

∀i ∈ (0, p) : p

∣∣∣∣∣∣
p

i


(Lemma 2.3.19)

Proof. From definition: p

i

 =
p!

(p− i)!i!
=⇒ p! = i!(p− i)!

p

i


Now, the LHS is clearly divisble by p. However, on the RHS neither i! nor (p − i)! are. This means that p

must divide

p

i

 as required.

3.6.2 Proposition: The Frobenius Map

Let p be a prime, and R a ring of characteristic p. Then:

1. The Frobenius map:

θ : R → R

θ(r) = rp

is a homomorphism.

2. If R is a field, then θ is injective.

3. If R is a finite field, then θ is an automorphism of R.
(Proposition 2.3.20)
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Proof.

1 Frobenius Map is Homomorphism

•
θ(0R) = 0pR = 0R

•
θ(1R) = 1pR = 1R

•

θ(r + s) = (r + s)p =

p∑
i=0

p

i

 risp−i

But since

p

i

 is divisible by p, and char(R) = p, then:

∀i ∈ (0, p),

p

i

 risp−i = 0R

Thus:
θ(r + s) = (r + s)p = rp + sp = θ(r) + θ(s)

•
θ(rs) = (rs)p = rpsp = θ(r)θ(s)

Hence, as required θ is a ring homomorphism.

2 Injectivity
Any field homomorphism is injective.

3 Automorphism
If R is a finite field, θ is an injective homomorphism to a finite field, so in particular it must be an

isomorphism.

This follows by the fact that every injection from a finite set to itself is bijective (the mapping is between
2 finite sets of the same order, and injectivity implies that each element in the set is mapped to another
(unique) element of the set, so in particular, every element of the set must be mapped to, and so, the mapping
is also surjective)

3.6.3 Example: The Frobenius Map for Zp

Consider the ring Zp. Recall, for a group G of finite order n, Lagrange’s Theorem states that for any element
g ∈ G, we must have gn = 1G.

Applying this over the multiplicative group Z×
p = Zp \ {0G} implies that:

∀a ∈ Z×
p ap−1 = 1G

In particular, this means that if θ is the Frobenius Map:
θ(a) = ap = ap−1a = a

In other words, the Frobenius automorphism is the identity, and every element of Zp is its own pth root!
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3.6.4 Corollary: pth Roots in Fields of Characteristic p

Let p be a prime:

1. In a field of characteristic p, every element has at most one pth
root

2. In a finite field of characteristic p, every element has exactly
one pth root

(Corollary 2.3.22)

Proof.

1
This is equivalent to saying that the Frobenius map is injective (each a is mapped to a unique ap, so each

ap has at most one pth root a).

2
This is equivalent to saying that the Frobenius map is bijective (which is true for finite fields).

3.6.5 Examples: pth Roots

• if R is a field of characteristic 2, then each element has at most one square root

• over the field C, there are p different pth roots of unity; however, in a field K of characteristic p, there
will only be one such root (namely 1K)

• it can be shown (next chapter) that t ∈ Zp(t) is an example of an element without any pth root (over
fields of characteristic p there is at most one pth root - this is a situation in which there are no roots!)

3.7 Irreducible Ring Elements
3.7.1 Definition: Irreducible Element

Let R be a ring. r ∈ R is irreducible if:

• r 6= 0R

• r is not a unit

•
∀a, b ∈ R : ab = r =⇒ a or b is a unit
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• Are 0R or the units of R reducible or irreducible?

– neither
– this is similar to how 0, 1 are neither primes nor composite over the integers

• How many irreducible elements are there in a field?

– none, since all the elements of a field are either units or 0

3.7.2 Proposition: Irreducible Ring Elements in Principal Ideal Domains

Let R be a principal ideal domain, and r ∈ R, r 6= 0R. Then:

r is irreducible ⇐⇒ R/ 〈r〉 is a field

(Proposition 2.3.26)

Proof. Denote with π the canonical homomorphism:

π : R → R/ 〈r〉

• ( =⇒ ): assume that r is irreducible. We seek to show that F = R/ 〈r〉 is a field:

1. 0F corresponds to all the elements in 〈r〉. Since r is not a unit, in particular 1R 6∈ 〈r〉, so:

π(1R) = 1F 6= 0F

2. Now we just need to show that every element in F is a unit. Let s 6∈ 〈r〉 (r is not a unit, so such
an s exists). Then, we must have that r 6 | s. Moreover, since r is irreducible, it is only divisible
by a unit, so anything that divides r and s will be a unit. In particular, this implies that r and s
will be coprime, so by Bezout’s:

∃a, b ∈ R : ar + bs = 1R

Thus:
π(a)π(r) + π(b)π(s) = 1F =⇒ π(b)π(s) = 1F ⇐⇒ π(s)−1 = π(b)

using the fact that π(r) = 0, and properties of ring homomorphisms. Thus, it follows that π(s)
will be a unit, so any non-zero element of F is a unit, so F is a field.

• ( ⇐= ): now assume that F = R/ 〈r〉 is a field. We seek to show that r is irreducible:

1. We can show that r can’t be a unit. Since F is a field, 0F 6= 1F , so:

π(1R) = 1F 6= 0F =⇒ 1R 6∈ ker(π) = 〈r〉

Thus, r 6 | 1R, so r won’t be a unit (it doesn’t have an inverse)
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2. Next, we show that if r = ab for some a, b ∈ R, then a or b is a unit. Notice:

0F = π(r) = π(a)π(b)

Since we operate over an integral domain, WLOG we may assume that π(a) = 0F , which implies
that a ∈ ker(π) = 〈r〉. Thus a = rz for some z ∈ R, so:

r = ab = rzb

Since r 6= 0R, and R is an integral domain, the Cancellation Law implies that zb = 1R, so b is a
unit, as required.

3.7.3 Example: Building New Fields

The proposition above allows us to construct new fields from irreducible elements (provided we have a
principal ideal domain). For example, Zp = Z/ 〈p〉 are fields, precisely because Z is a principal ideal
domain, and the primes are irreducible in the integers (since a prime p only factorises as ±1 · ∓p, and ±1
are the units of Z).
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