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Based on the notes by Tom Leinster, Chapter 10

1 Classifying Finite Fields
1.1 Lemma: Order of Finite Fields

Let M be a finite field. Then:

1. char(M) = p, where p is prime

2. |M | = P n, where n = [M : Fp] ≥ 1

(Lemma 10.1.1)

Proof. Claim 1 is the statement of Lemma 2.3.17. For 2 , since M is finite, its prime subfield is Fp (by

Lemma 2.3.16). Let 1 ≤ n < ∞ be such that n = [M : Fp]. Then, M is an n-dimensional vector space over
Fp, so in particular it is isomorphic to Fn

p , so:

|M | = |Fn
p | = |Fp|n = pn

as required.

1.2 Finite Fields Have Prime Power Order
1.2.1 Lemma: Existence of Prime Power Order Fields

Let p be prime and n ≥ 1. Then, the splitting field of:

f = tp
n − t ∈ Fp[t]

has order pn.
(Lemma 10.1.5)

Proof. Let M = SFFp(f). We need to show that |M | = pn.

On the one hand, we compute:
Df = (pn)tp

n−1 − 1 = −1

by using the fact that Fp has characteristic p. Now, recall:
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Let f be a non-zero polynomial over a field K. The following are equiv-
alent:

1. f has a repeated root in SFK(f)

2. f and Df have a common root in SFK(f)

3. f and Df have a non-constant common factor in K[t]

(Lemma 7.2.9)

In particular, since f and Df have no common roots, it must be the case that f has no repeated roots
in M , so all of these roots must be in M , and so, |M | ≥ pn.

On the other hand, let θ be the Frobenius map of M , such that if α ∈ M , θ(α) = αp. Then:

θn(α) = αpn

Now, let L be the set of roots of f in M . Then:

α ∈ L ⇐⇒ αpn

= α ⇐⇒ θn(α) = α

Hence,
L = Fix{θn}

θ is a homomorphism, so by

Let M be a field. Denote with Aut(M) the group of automorphisms
of M . Then:

∀S ⊆ Aut(M), F ix(S) is a subfield of M

We call Fix(S) the fixed field of S.
(Lemma 7.3.1)

we have that L is a subfield of M . But then, L is a subfield of M containing the roots of f , and where
f splits, so by definition, L = M . Thus, every element of M must be a root of f . Since deg(f) = pn, f has
at most pn roots, so |M | ≤ pn.

All in all, it thus follows that |M | = pn, as required.

1.2.2 Lemma: Uniqueness of Prime Power Order Fields

Every finite field of order q is a splitting field of tq − t over Fp.
(Lemma 10.1.8)
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Proof. We begin by showing that if |M | = q, then:

∀α ∈ M,αq = α

This is essentially Fermat’s Little Theorem adapted outside of the modulo p world. The multiplicative group
M× has order q − 1, so by Lagrange’s Theorem:

∀α ∈ M×, αq−1 = 1M

so in particular, if 0M 6= α ∈ M :
αq = α

If α = 0M , the equation holds.

Now, let |M | = q. By lemma 10.1.1 above, we must have that:

∃p, n ≥ 1 : q = pn ∧ char(M) = p

where p is prime. Thus, M has Fp as a prime subfield. By what we have just shown above, every element
of M must be a root of:

f(t) = tq − t = tp
n

− t

Thus, M is generated by the set of roots of f (since M is the set of roots of f). Moreover, since f has
|M | = pn = deg(f) distinct roots in M , clearly f must split in M . Thus, M is a splitting field of f .

1.2.3 Theorem: Classification of Finite Fields

1. Every finite field has order pn, for some prime p and integer n ≥ 1.

2. For each prime p and integer n ≥ 1, there is a unique field of order
pn (up to ismorphism). It has characteristic p, and it is the
splitting field of tpn − t over Fp.

(Theorem 10.1.9)

Proof. This follows immediately from all of the results above, alongside the uniqueness of splitting fields.

2 Multiplicative Structure of Finite Fields
2.1 Proposition: Cyclic Subgroups from Group of Units

Let K be a field. Then, every finite subgroup of K× is cyclic. In par-
ticular, if K is finite, then K× is cyclic.
(Proposition 10.2.1)
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Proof. This is a result from the Group Theory course (Theorem 5.1.13, Corollary 5.1.14; see my notes),
requiring the use of group exponents/Fundamental Theorem of Finite Abelian Groups.

2.2 Example: Generalising Roots of Unity
• when working over fields like C, we know that the nth root of unity is ω = e2πi/n

• ω is useful, in the sense that any other root of tn − 1 is just a power of ω

• if we want to generalise this to an arbitrary field K, define:

Un(K) = {α ∈ K | αn = 1K}

Then, Un(K) is a multiplicative subgroup of K, so in particular it is a multiplicative subgroup of K×,
so Un(K) must be cyclic

• we can define ω to be the generator of Un(K), and then if α ∈ Un(K), then ∃k : ωk = α, so the nth
roots of unity in K will be powers of ω

• however, unlike with the standard case, Un(K) need not have n elements; that is, o(ω) ≤ n

• for example, if char(K) = p, then Up(K) = {1K}.

2.3 Corolla: Extensions of Finite Fields are Simple

Every extension of a finite field over another field is simple.
(Corollary 10.2.5)

Proof. Let M : K be an extension with M finite. The group M× is cyclic, so:

∃α ∈ M× : M× = 〈a〉

Hence, M = K(α), since 0K ∈ K =⇒ 0K ∈ M .

2.4 Corollary: Existence of Irreducible Polynomials of Given Degree

Let p be prime, and n ≥ 1 an integer. Then, there exists an irreducible
polynomial over Fp of degree n.
(Corollary 10.2.8)
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This is quite non-trivial. For example, it shows that there are irreducible polynomials of degree 23, 100
and 32897402813 over F31.

Proof. The prime subfield of Fpn is Fp. Then, by the above corollary, Fpn : Fp must be a simple extension,
say Fpn = Fp(α). Then, the minimal polynomial of α over Fp is irreducible, and has degree:

[Fp(α) : Fp] = [Fpn : Fp] = n

3 Galois Groups for Finite Fields
3.1 Lemma: Fundamental Theorem in Finite Fields

Let M : K be a field extension.

1. If K is finite, then M : K is separable.

2. If M is also finite, then M : K is finite and normal.
(Lemma 10.3.2)

Proof. 1

Let f ∈ K[t] be irreducible, where p = char(K) > 0. Suppose for contradiction that f is inseparable. By

Let K be a field. Then:

1. If char(K) = 0, then every irreducible polynomial over K is
separable.

2. If char(K) = p > 0, then for an irreducible polynomial f ∈ K[t]:

f is inseparable ⇐⇒ f(t) =
r∑

i=0

bit
ip

where b0, . . . , br ∈ K.
(Corollary 7.2.11)

it follows that:
f(t) =

∑
i

bit
pi, bi ∈ K
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Moreover, by

Let p be a prime:

1. In a field of characteristic p, every element has at most one pth
root

2. In a finite field of characteristic p, every element has exactly
one pth root

(Corollary 2.3.22)

each bi has exactly one root; that is:

∀bi, ∃ci ∈ K : bi = cpi

Hence, we can write:
f(t) =

∑
i

cpi t
pi =

∑
i

(cit
i)p

But then, using the fact that the Frobenius Map a 7→ ap is a homomorphism:

f(t) =

(∑
i

(it
i

)p

so f can’t be irreducible. Hence, we have a contradiction, and f must be separable. Hence, every irreducible
polynomial in M : K is separable, so it is a separable extension.

2

Now, that M is finite and chat(M) = p > 0. By Theorem 10.1.9 above, M is a splitting field over Fp. In
particular, by
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1. Let:

• M : S : K be a field extension
•

0K 6= f ∈ K[t]

• Y ⊆ M

Let S be the splitting field of f over K. Then, S(Y ) is the
splitting field of f over K(Y ):

S = SFK(f) =⇒ S(Y ) = SFK(Y )(f)

2. Let:

•
0K 6= f ∈ K[t]

• L be a subfield of SFK(f) containing K, such that:

SFK(f) : L : K

Then, SFK(f) is the splitting field of f over L:

SFK(f) = SFL(f)

(Lemma 6.2.14)

M is also a splitting field over K. Hence, by

Let M : K be a field extension. Then, for some non-zero f ∈ K[t]:

M = SFK(f) ⇐⇒ M : K is finite and normal

(Theorem 7.1.5)

M : K is finite and normal.
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3.2 The Galois Correspondence for Finite Fields
3.2.1 Proposition: Galois Group is Cyclic

Let p be a prime and n ≥ 1. Then, Gal(Fpn : Fp) is cyclic of order n, and
is generated by the Frobenius automorphisms of Fpn.
(Proposition 10.3.3)

Proof. Let θ be the Frobenius automorphism of Fpn , such that if α ∈ Fpn , then θ(α) = αp. Now, from the
proof of Lemma 10.1.8 above, if M is a finite field of order q, then ∀α ∈ M,αq = α. In particular, if α ∈ Fp,
then θ(α) = α, so θ is an automorphism of Fpn over Fp, so θ ∈ Gal(Fpn : Fp). Moreover,

∀α ∈ Fpn , αpn

= α =⇒ θn(α) = α

Now, assume ∃m ∈ Z such that θm = id. Then, αpm

= α for any α ∈ Fpn . Thus, any α ∈ Fpn satisfies the
polynomial tpm − t. Hence, the number of roots of tpm − t in Fpn is at least pn; since it has degree pm, it
must then be the case that pn ≤ pm ⇐⇒ n ≤ m. Hence, θ must have order n.

But now, by the Fundamental Theorem of Galois Theory:

|Gal(Fpn : Fp)| = [Fpn : Fp] = n

Hence, Gal(Fpn : Fp) is a group of order n, and θ has order n, so it must be a cyclic group generated by θ,
as required.

3.2.2 Proposition: Subfields of Galois Group

Let p be a prime and n ≥ 1. Then, Fpn has a unique subfield of order
pm, for each divisor m of n, and no others. In particular, this subfield is:{

α ∈ Fpn
∣∣ αpm = α

}
(Proposition 10.3.6)

Notice, this requires that m|n, not that m ≤ n. For instance, F8 has no subfield isomorphic to F4, since
8 = 23 and 4 = 22, but 2 6 |3.
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Proof. Let G = Gal(Fpn : Fp). By the Fundamental Theorem of Galois Theory, the intermediate fields of
Fpn : Fp are in a one-to-one correspondence with the subgroups H fo G. Since G is cyclic generated by the
Frobenius automorphism, any such H is of the form:

H =
〈
θn/k

〉
where k | n (any subgroup must have order dividing n, and any subgroup must be cyclic and thus generated
by some power of θ). Then, the intermediate fields are precisely the fixed fields Fix(H). Thus:

Fix
〈
θn/k

〉
=
{
α ∈ Fpn

∣∣∣ αpn/k

= α
}

Then, by the Tower Law alongsid ethe fundamental Theorem gives that:

|Fix
〈
θn/k

〉
| = [Fix

〈
θn/k

〉
: Fp] =

[Fpn : Fp]

[Fpn : Fix
〈
θn/k

〉
]
=

n

|
〈
θn/k

〉
|
=

n

k

so in particular, |Fix
〈
θn/k

〉
| = n

k . Calling m = n
k , it follows that m is a divisor of n, as required.

3.2.3 Proposition: Galois Group of any Finite Field Extensions

The above propositions have worried about Galois Groups of field extensions where the base field was Fp. We
now generalise to arbitrary fields.

Let M : K be a field extension with M finite. Then, Gal(M : K) is
cyclic and has order [M : K].
(Proposition 10.3.8)

Proof. Since M is finite, it is isomorphic to Fpn , for some prime p and integer n ≥ 1. By Proposition
10.3.6 above, M has exactly one subfield isomorphic to Fpm . Without ambiguity, we must have that K is
isomorphic to one such Fpm .

Since Fpm = Fix 〈θm〉 and 〈θm〉 ∼= Cn/m, by the Fundamental Theorem of Galois Theory:

Gal(Fpn : Fix 〈θm〉) = 〈θm〉 =⇒ Gal(Fpn : Fpm) ∼= Cn/m

That n/m = [M : K] follows by the Tower Law.

3.2.4 Corollary: Quotients of Cyclic Groups

Let m|n. Then:
Cn

Cn/m

∼= Cm
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Proof. In the Galois Correspondence of Fpn : Fp, all extensions and subgroups involed are normal (since
cyclic groups are abelian). Hence, we have that:

Gal(Fpn : Fp)

Gal(Fpn : Fpm)
∼= Gal(Fpm : Fp)

But this is equivalent to:

Cn

Cn/m

∼= Cm

as required. Alternatively, substituting k = n/m:

Cn

Ck

∼= Cn/k

3.2.5 Example: Computing Galois Correspondence

The Galois Correspondence for Fp12 : Fp for any prime p is given by:
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