Galois Theory - Week 10 - Finite Fields ## Antonio León Villares ## June 2022 ## Contents | 1 | Cla | ssifying Finite Fields | 2 | |----------|-----|---|----------| | | 1.1 | Lemma: Order of Finite Fields | 2 | | | 1.2 | Finite Fields Have Prime Power Order | 2 | | | | 1.2.1 Lemma: Existence of Prime Power Order Fields | 2 | | | | | 3 | | | | 1.2.3 Theorem: Classification of Finite Fields | 4 | | 2 | Mu | ltiplicative Structure of Finite Fields | 4 | | | 2.1 | Proposition: Cyclic Subgroups from Group of Units | 4 | | | 2.2 | Example: Generalising Roots of Unity | 5 | | | 2.3 | Corolla: Extensions of Finite Fields are Simple | 5 | | | 2.4 | Corollary: Existence of Irreducible Polynomials of Given Degree | 5 | | 3 | Gal | lois Groups for Finite Fields | 6 | | | 3.1 | Lemma: Fundamental Theorem in Finite Fields | 6 | | | 3.2 | The Galois Correspondence for Finite Fields | 9 | | | | | 9 | | | | | 9 | | | | 3.2.3 Proposition: Galois Group of any Finite Field Extensions | 0 | | | | 3.2.4 Corollary: Quotients of Cyclic Groups | | | | | 3.2.5 Example: Computing Galois Correspondence | | | | | | | ## 1 Classifying Finite Fields #### 1.1 Lemma: Order of Finite Fields Let M be a **finite** field. Then: 1. char(M) = p, where p is **prime** 2. $|M| = P^n$, where $n = [M : \mathbb{F}_p] \ge 1$ $(Lemma\ 10.1.1)$ *Proof.* Claim (1) is the statement of Lemma 2.3.17. For (2), since M is finite, its prime subfield is \mathbb{F}_p (by Lemma 2.3.16). Let $1 \le n < \infty$ be such that $n = [M : \mathbb{F}_p]$. Then, M is an n-dimensional vector space over \mathbb{F}_p , so in particular it is isomorphic to \mathbb{F}_p^n , so: $$|M| = |\mathbb{F}_p^n| = |\mathbb{F}_p|^n = p^n$$ as required. #### 1.2 Finite Fields Have Prime Power Order #### 1.2.1 Lemma: Existence of Prime Power Order Fields Let p be **prime** and $n \ge 1$. Then, the **splitting field** of: $$f = t^{p^n} - t \in \mathbb{F}_n[t]$$ has order p^n . (Lemma 10.1.5) *Proof.* Let $M = SF_{\mathbb{F}_1}(f)$. We need to show that $|M| = p^n$. On the one hand, we compute: $$Df = (p^n)t^{p^n - 1} - 1 = -1$$ by using the fact that \mathbb{F}_p has characteristic p. Now, recall: Let f be a non-zero polynomial over a **field** K. The following are **equivalent**: - 1. f has a **repeated root** in $SF_K(f)$ - 2. f and Df have a **common root** in $SF_K(f)$ - 3. f and Df have a **non-constant common factor** in K[t] (Lemma 7.2.9) In particular, since f and Df have no common roots, it must be the case that f has no repeated roots in M, so all of these roots must be in M, and so, $|M| \ge p^n$. On the other hand, let θ be the Frobenius map of M, such that if $\alpha \in M$, $\theta(\alpha) = \alpha^p$. Then: $$\theta^n(\alpha) = \alpha^{p^n}$$ Now, let L be the set of roots of f in M. Then: $$\alpha \in L \iff \alpha^{p^n} = \alpha \iff \theta^n(\alpha) = \alpha$$ Hence, $$L = Fix\{\theta^n\}$$ θ is a homomorphism, so by Let M be a **field**. Denote with Aut(M) the **group** of **automorphisms** of M. Then: $$\forall S \subseteq Aut(M), \ Fix(S) \ is \ a \ subfield \ of \ M$$ We call Fix(S) the **fixed field** of S. (Lemma 7.3.1) we have that L is a subfield of M. But then, L is a subfield of M containing the roots of f, and where f splits, so by definition, L = M. Thus, every element of M must be a root of f. Since $\deg(f) = p^n$, f has at most p^n roots, so $|M| \leq p^n$. All in all, it thus follows that $|M| = p^n$, as required. 1.2.2 Lemma: Uniqueness of Prime Power Order Fields Every finite field of order \shortparallel is a splitting field of $t^q - t$ over \mathbb{F}_p . (Lemma 10.1.8) *Proof.* We begin by showing that if |M| = q, then: $$\forall \alpha \in M, \alpha^q = \alpha$$ This is essentially Fermat's Little Theorem adapted outside of the modulo p world. The multiplicative group M^{\times} has order q-1, so by Lagrange's Theorem: $$\forall \alpha \in M^{\times}, \alpha^{q-1} = 1_M$$ so in particular, if $0_M \neq \alpha \in M$: $$\alpha^q = \alpha$$ If $\alpha = 0_M$, the equation holds. Now, let |M| = q. By lemma 10.1.1 above, we must have that: $$\exists p,n\geq 1: q=p^n \wedge char(M)=p$$ where p is prime. Thus, M has \mathbb{F}_p as a prime subfield. By what we have just shown above, every element of M must be a root of: $$f(t) = t^q - t = t^{p^n} - t$$ Thus, M is generated by the set of roots of f (since M is the set of roots of f). Moreover, since f has $|M| = p^n = \deg(f)$ distinct roots in M, clearly f must split in M. Thus, M is a splitting field of f. #### 1.2.3 Theorem: Classification of Finite Fields - 1. Every **finite** field has order p^n , for some **prime** p and integer $n \ge 1$. - 2. For each prime p and integer $n \ge 1$, there is a **unique** field of order p^n (up to ismorphism). It has **characteristic** p, and it is the **splitting field** of $t^{p^n} t$ over \mathbb{F}_p . (Theorem 10.1.9) *Proof.* This follows immediately from all of the results above, alongside the uniqueness of splitting fields. \Box ## 2 Multiplicative Structure of Finite Fields #### 2.1 Proposition: Cyclic Subgroups from Group of Units Let K be a **field**. Then, every **finite subgroup** of K^{\times} is cyclic. In particular, if K is **finite**, then K^{\times} is cyclic. (Proposition 10.2.1) *Proof.* This is a result from the Group Theory course (Theorem 5.1.13, Corollary 5.1.14; see my notes), requiring the use of group exponents/Fundamental Theorem of Finite Abelian Groups. #### 2.2 Example: Generalising Roots of Unity - when working over fields like \mathbb{C} , we know that the nth root of unity is $\omega = e^{2\pi i/n}$ - ω is useful, in the sense that any other root of t^n-1 is just a power of ω - if we want to generalise this to an arbitrary field K, define: $$U_n(K) = \{ \alpha \in K \mid \alpha^n = 1_K \}$$ Then, $U_n(K)$ is a multiplicative subgroup of K, so in particular it is a multiplicative subgroup of K^{\times} , so $U_n(K)$ must be cyclic - we can define ω to be the **generator** of $U_n(K)$, and then if $\alpha \in U_n(K)$, then $\exists k : \omega^k = \alpha$, so the *n*th roots of unity in K will be powers of ω - however, unlike with the standard case, $U_n(K)$ need not have n elements; that is, $o(\omega) \leq n$ - for example, if char(K) = p, then $U_p(K) = \{1_K\}$. #### 2.3 Corolla: Extensions of Finite Fields are Simple Every extension of a finite field over another field is simple. (Corollary 10.2.5) *Proof.* Let M:K be an extension with M finite. The group M^{\times} is cyclic, so: $$\exists \alpha \in M^{\times} : M^{\times} = \langle a \rangle$$ Hence, $M = K(\alpha)$, since $0_K \in K \implies 0_K \in M$. #### 2.4 Corollary: Existence of Irreducible Polynomials of Given Degree Let p be **prime**, and $n \ge 1$ an integer. Then, there exists an **irreducible** polynomial over \mathbb{F}_p of degree n. (Corollary 10.2.8) This is quite non-trivial. For example, it shows that there are irreducible polynomials of degree 23, 100 and 32897402813 over \mathbb{F}_{31} . *Proof.* The prime subfield of \mathbb{F}_{p^n} is \mathbb{F}_p . Then, by the above corollary, $\mathbb{F}_{p^n} : \mathbb{F}_p$ must be a simple extension, say $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$. Then, the minimal polynomial of α over \mathbb{F}_p is irreducible, and has degree: $$[\mathbb{F}_p(\alpha):\mathbb{F}_p]=[\mathbb{F}_{p^n}:\mathbb{F}_p]=n$$ ## 3 Galois Groups for Finite Fields #### 3.1 Lemma: Fundamental Theorem in Finite Fields Let M: K be a **field extension**. - 1. If K is **finite**, then M : K is **separable**. - 2. If M is also **finite**, then M : K is **finite** and **normal**. $(Lemma\ 10.3.2)$ Proof. (1) Let $f \in K[t]$ be irreducible, where p = char(K) > 0. Suppose for contradiction that f is inseparable. By Let K be a **field**. Then: - 1. If char(K) = 0, then every **irreducible** polynomial over K is **separable**. - 2. If char(K) = p > 0, then for an **irreducible** polynomial $f \in K[t]$: $$f \text{ is } inseparable \iff f(t) = \sum_{i=0}^{r} b_i t^{ip}$$ where $b_0, \ldots, b_r \in K$. (Corollary 7.2.11) it follows that: $$f(t) = \sum_{i} b_i t^{pi}, \qquad b_i \in K$$ Moreover, by Let p be a **prime**: - 1. In a **field** of **characteristic** p, every element has **at most one** pth root - 2. In a finite field of characteristic p, every element has exactly one pth root (Corollary 2.3.22) each b_i has exactly one root; that is: $$\forall b_i, \exists c_i \in K : b_i = c_i^p$$ Hence, we can write: $$f(t) = \sum_{i} c_i^p t^{pi} = \sum_{i} (c_i t^i)^p$$ But then, using the fact that the Frobenius Map $a \mapsto a^p$ is a homomorphism: $$f(t) = \left(\sum_{i} (it^{i})^{p}\right)$$ so f can't be irreducible. Hence, we have a contradiction, and f must be separable. Hence, every irreducible polynomial in M:K is separable, so it is a separable extension. (2) Now, that M is finite and chat(M) = p > 0. By Theorem 10.1.9 above, M is a splitting field over \mathbb{F}_p . In particular, by - 1. Let: - M:S:K be a **field extension** • $$0_K \neq f \in K[t]$$ • $Y \subseteq M$ Let S be the **splitting field** of f over K. Then, S(Y) is the **splitting field** of f over K(Y): $$S = SF_K(f) \implies S(Y) = SF_{K(Y)}(f)$$ 2. Let: • $$0_K \neq f \in K[t]$$ • L be a subfield of $SF_K(f)$ containing K, such that: $$SF_K(f):L:K$$ Then, $SF_K(f)$ is the **splitting field** of f over L: $$SF_K(f) = SF_L(f)$$ (Lemma 6.2.14) M is also a splitting field over K. Hence, by Let M: K be a **field extension**. Then, for some non-zero $f \in K[t]$: $$M = SF_K(f) \iff M : K \text{ is finite and normal}$$ (Theorem 7.1.5) M: K is finite and normal. #### 3.2 The Galois Correspondence for Finite Fields #### 3.2.1 Proposition: Galois Group is Cyclic Let p be a prime and $n \geq 1$. Then, $Gal(\mathbb{F}_{p^n} : \mathbb{F}_p)$ is **cyclic** of order n, and is generated by the **Frobenius automorphisms** of \mathbb{F}_{p^n} . (Proposition 10.3.3) *Proof.* Let θ be the Frobenius automorphism of \mathbb{F}_{p^n} , such that if $\alpha \in \mathbb{F}_{p^n}$, then $\theta(\alpha) = \alpha^p$. Now, from the proof of Lemma 10.1.8 above, if M is a finite field of order q, then $\forall \alpha \in M, \alpha^q = \alpha$. In particular, if $\alpha \in \mathbb{F}_p$, then $\theta(\alpha) = \alpha$, so θ is an automorphism of \mathbb{F}_{p^n} over \mathbb{F}_p , so $\theta \in Gal(\mathbb{F}_{p^n} : \mathbb{F}_p)$. Moreover, $$\forall \alpha \in \mathbb{F}_{p^n}, \alpha^{p^n} = \alpha \implies \theta^n(\alpha) = \alpha$$ Now, assume $\exists m \in \mathbb{Z}$ such that $\theta^m = \text{id}$. Then, $\alpha^{p^m} = \alpha$ for any $\alpha \in \mathbb{F}_{p^n}$. Thus, any $\alpha \in \mathbb{F}_{p^n}$ satisfies the polynomial $t^{p^m} - t$. Hence, the number of roots of $t^{p^m} - t$ in \mathbb{F}_{p^n} is at least p^n ; since it has degree p^m , it must then be the case that $p^n \leq p^m \iff n \leq m$. Hence, θ must have order n. But now, by the Fundamental Theorem of Galois Theory: $$|Gal(\mathbb{F}_{p^n}:\mathbb{F}_p)| = [\mathbb{F}_{p^n}:\mathbb{F}_p] = n$$ Hence, $Gal(\mathbb{F}_{p^n} : \mathbb{F}_p)$ is a group of order n, and θ has order n, so it must be a cyclic group generated by θ , as required. #### 3.2.2 Proposition: Subfields of Galois Group Let p be a **prime** and $n \geq 1$. Then, \mathbb{F}_{p^n} has a **unique** subfield of order p^m , for each **divisor** m of n, and no others. In particular, this subfield is: $$\left\{\alpha \in \mathbb{F}_{p^n} \mid \alpha^{p^m} = \alpha\right\}$$ (Proposition 10.3.6) *Proof.* Let $G = Gal(\mathbb{F}_{p^n} : \mathbb{F}_p)$. By the Fundamental Theorem of Galois Theory, the intermediate fields of $\mathbb{F}_{p^n} : \mathbb{F}_p$ are in a one-to-one correspondence with the subgroups H fo G. Since G is cyclic generated by the Frobenius automorphism, any such H is of the form: $$H = \left\langle \theta^{n/k} \right\rangle$$ where $k \mid n$ (any subgroup must have order dividing n, and any subgroup must be cyclic and thus generated by some power of θ). Then, the intermediate fields are precisely the fixed fields Fix(H). Thus: $$\operatorname{Fix}\left\langle \theta^{n/k}\right\rangle = \left\{\alpha \in \mathbb{F}_{p^n} \ \middle| \ \alpha^{p^{n/k}} = \alpha \right\}$$ Then, by the Tower Law alongsid ethe fundamental Theorem gives that: $$|Fix\left\langle \theta^{n/k}\right\rangle| = [Fix\left\langle \theta^{n/k}\right\rangle : \mathbb{F}_p] = \frac{[\mathbb{F}_{p^n} : \mathbb{F}_p]}{[\mathbb{F}_{p^n} : Fix\left\langle \theta^{n/k}\right\rangle]} = \frac{n}{|\left\langle \theta^{n/k}\right\rangle|} = \frac{n}{k}$$ so in particular, $|Fix\langle\theta^{n/k}\rangle| = \frac{n}{k}$. Calling $m = \frac{n}{k}$, it follows that m is a divisor of n, as required. #### 3.2.3 Proposition: Galois Group of any Finite Field Extensions The above propositions have worried about Galois Groups of field extensions where the base field was \mathbb{F}_p . We now generalise to arbitrary fields. Let M: K be a **field extension** with M **finite**. Then, Gal(M:K) is **cyclic** and has order [M:K]. (Proposition 10.3.8) *Proof.* Since M is finite, it is isomorphic to \mathbb{F}_{p^n} , for some prime p and integer $n \geq 1$. By Proposition 10.3.6 above, M has exactly one subfield isomorphic to \mathbb{F}_{p^m} . Without ambiguity, we must have that K is isomorphic to one such \mathbb{F}_{p^m} . Since $\mathbb{F}_{p^m} = Fix \langle \theta^m \rangle$ and $\langle \theta^m \rangle \cong C_{n/m}$, by the Fundamental Theorem of Galois Theory: $$Gal(\mathbb{F}_{p^n}: Fix \, \langle \theta^m \rangle) = \langle \theta^m \rangle \ \, \Longrightarrow \ \, Gal(\mathbb{F}_{p^n}: \mathbb{F}_{p^m}) \cong \mathbb{C}_{n/m}$$ That n/m = [M:K] follows by the Tower Law. ### 3.2.4 Corollary: Quotients of Cyclic Groups Let m|n. Then: $$\frac{C_n}{C_{n/m}} \cong C_m$$ *Proof.* In the Galois Correspondence of \mathbb{F}_{p^n} : \mathbb{F}_p , all extensions and subgroups involed are normal (since cyclic groups are abelian). Hence, we have that: $$\frac{Gal(\mathbb{F}_{p^n}:\mathbb{F}_p)}{Gal(\mathbb{F}_{p^n}:\mathbb{F}_{p^m})}\cong Gal(\mathbb{F}_{p^m}:\mathbb{F}_p)$$ But this is equivalent to: $$\frac{C_n}{C_{n/m}} \cong C_m$$ as required. Alternatively, substituting k = n/m: $$\frac{C_n}{C_k} \cong C_{n/k}$$ #### 3.2.5 Example: Computing Galois Correspondence The Galois Correspondence for $\mathbb{F}_{p^{12}}:\mathbb{F}_p$ for **any** prime p is given by: