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Based on the notes by Tom Leinster, Chapter 1

1 Conjugates Over Fields

1.1 Definition: Complex Numbers Conjugate Over Reals

21, 29 € C are conjugate over R if:
VpeR[t] : p(z1) =0 <= p(z2)=0
(Definition 1.1.1)

e What is the intuitive notion behind this definition of conjugacy?

— if z1, 20 are conjugate over R, we can think of them as indistinguishable from the point of
view of the reals

— that is, any (sensical) property satisfied by z; will be satisfied by zo over the reals (this behaviour
is encoded in the fact that they are roots of the exact same polynomial)

— for instance, i = v/—1 and —i are conjugates. Some examples:
*
pi) =i +1=0

— 52
pz)=2"+1 = {p(_i (2 1=0

p(i) =it —3i% —16i% — 3i — 17
=1+3i+16—3i — 17
=0

pz) =2 =32° —162° = 3: — 17 = p(—i) = (—i)* — 3(—i)® — 16(—1)? — 3(—i) — 17

=1-3i+16+3i — 17
=0

1.2 Lemma: Equivalence Betweeen Conjugacy and Complex Conjugates

Conjugacy over the reals is closely related to complex conjugacy.

Let z1,z9 € C. Then:
21, z9 are conjugate over R <= 2z = zo 0r 20 = 7

(Lemma 1.1.2)
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Proof.

@ Conjugacy Implies Complex Conjugacy or Equality

Let z1 = x + dy. Notice, 27 is a root of the polynomial:

By conjugacy:

p(z1) =0
< p(z2)=0
= (-2 =y

— zp=xtwy

so indeed z9 = 27 or z9 = Z7.

@ Complex Conjugacy or Equality Implies Conjugacy

It is clear that z; is conjugate to itself, so we just have to show that z; is conjugate to z7.

Complex conjugation is a ring homomorphism, so it preserves addition and multiplication:

wy + w2 = Wy + Wy W1We = W1 W2

Now, consider any polynomial p € R[t]. Then:

n
p(t) =Y ayt®
k=1

So:

- n n o n 7]@ B

p(t) =Y arth = apth = > axt’ =p(7)

k=1 k=1 k=1

where we have used the fact that:

aeER — a=a

Hence:

p(z1) =0 <= p(z1)=0 < p(z1)=0

so indeed z; and Zz7 are conjugate over R.
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There is an alternative proof in the notes, which directly shows that if p is
a polynomial such that p(z1) = 0, then p(Z1) = 0 too. With the converse
argument we complete the proof.

To do this, we let z; = x + iy and consider m(t) = (t — x)% + y2, which is
such that:

m(z1) = m(z)

Then, from Honours Algebra, we know that there exist polynomials q, r

such that:
p(t) = m(t)q(t) + r(t)
r will be such that deg(r) < 2, so in particular, r(z1) # 0 (unlessT = 0;

otherwise az; +0b is never 0, as a,b are reals). Hence, if we want p(z1) =0,
it must be the case that p(t) = m(t)q(t). But then, p(z1) = 0 too!

1.3 Definition: Complex Numbers Conjugate Over Rationals

Conjugacy over the rationals is a lot more interesting than over the reals, and it leads to the richness of
Galois Theory! One reason for this is that over the rationals, more than 2 numbers can be conjugate.

21, 25 € C are conjugate over Q if:

Vpe Qi : p(z1) =0 <= p(z2) =0

1.3.1 Example: Square Roots as Conjugates Over Rationals

The rationals allow for more interesting conjugates to arise. For instance, define:
Q(V2) ={a+bvV2 | a,beQ}

In a similar vein to the work above, if we define a rational conjugate:

a+bvV2=a—-b/2
we show that w is conjugate to w and @ over Q. It is straightforward to see that:
« Q(V/2) is closed under addition and multiplication

e rational conjugation is a ring homomorphism:
—

w1 + we = Wy + Wa WiwWe = WiWs

e ifaeQ,thena=a

Hence, for any polynomial p € QJt]:

Hence, if w € Q(¥):



so w is conjugate to w.

If we want to show this for a specific pair of numbers, an argument based

on polynomial factorisation might be more suitable.
The above tells us that /2 and —/2 are conjugate over Q. This can be
directly shown by the fact that if p(v/2) = 0, we can write:

p(t) = (t* = 2)q(t) +r(t)

where deg(r) < 2. Clearly, 7(v/2) = 0 only when r is the 0 polynomial
(since r is at most linear, and has rational coefficients), so any rational
polynomial with \/2 as a root is of the form:

p(t) = (t* = 2)q(t)

But then, clearly p(—\/§) = 0 aswell. Reversing the roles of\/§ and —/2
then confirms that /2 are conjugate.

1.4 Definition: Complex Number Tuples Conjugate Over Rationals

Let:
zz(zlw'wzk)eck w:(wla"'awk>€(ck

where k € N.
2z and w are conjugate over Q if:

Vp € Qlty,...,tk] : p(21,...,2k) =0 <= pwy,...,wg) =0

1.5 Lemma: Complex Conjugate Tuples are Conjugate

The k-tuples:
(z1, -+, 2K) (Z1,---,2k)

are conjugate over Q.
(Ezample 1.1.11)

Proof. Working as above, we know that:
p(z1,...,2k) = p(Z1, .., Zk)

SO:

p(z1,...,2) =0 <= p(z21,...,2k) =0 <= p(z1,...,2K) =0
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1.6 Examples of Conjugates
1.6.1 ¢ and —i

The tuples (i, —i) and (—4,4) are conjugate (this is the lemma above, but we now show it explicitly). Indeed,
any polynomial over 2 variables is of the form:

pltr t2) = artits
r,s

Hence:

1.6.2 Roots of Unity

The fifth roots of unity are the 5 complex roots of the polynomial:

One can show that these are arranged as a pentagon:

w4

27mi

where w = e”5 . 1 isn’t conjugate to any of the other 4 roots (since 1 is a root of p(t) =t — 1, but the
others aren’t). However, w, w?, w3, w?* are all mutually conjugate. It is easy to see that w is conjugate to w?:

w4:

gl

and similarly w? and w?® are conjugate. It is less obvious to show the remaining conjugacies, however.

27i

More generally, if p is prime and we define w = e’ » , the set of roots of unity {w"},ep p—1) are all
conjugate to each other.
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Tuple conjugacy is a bit more nuanced. For example:

(w7w27w37w4) (w4’w3)w27w)

are conjugate (we have just taken the complex conjugate of the first tuple). Similarly:
(w,w?, w?,w?) (w?, w*,w,w?®)
are conjugate. Intuitively, the idea is that we square each of the elements of the first tuple:

W w?

w? = Wt
ws»—>w6:w

wt s wd =w?

All in all, we have a cycle (hint: this is critical in defining a Galois group!), which means that these tuples
will be “indistinguishable” when viewed from Q. Another way to see this is that if we take corresponding
elements in the tuples, and multiply them, we obtain equivalent products. It is easier to see:

and w,w> appear in the same position in the tuples.

However, the following tuples are not conjugate:
(w7w27w37w4) (w27w7w37w4)
since for example if we have:
p(t1,ta, s, ta) =ty — t]

then:
p(w,wQ,w?’,w‘l) =0

but:
p(w? ww v =w—wt=w-T#£0
1.7 Exercises

1. [Ezercise 1.1.6] Let z € Q. Show that z is not conjugate to w € C, for any w # z.

The polynomial p(t) = ¢ — z has z as a root, but since w # z, p(w) # 0. Hence, z can’t be conjugate to
w.

2. [Ezercise 1.1.10] Suppose that (z1,...,2;) and (wy,...,w;) are conjugate. Show that z; and w;
are conjugate. Give a counterexample to show that the converse isn’t true: that is, if each
zi,w; are conjugate, the corresponding set of k-tuples aren’t conjugate.

Since we have p(z1,...,2,) =0 <= p(wi,...,wg) = 0, we can define a new polynomial ¢, which
keeps all values except t; constant. Then clearly:

q(z) =0 <= q(w;) =0

The converse of this is false, as we saw above: w,w?,w?,w?* are all conjugate, but putting them all in a

tuple won’t make the tuple conjugate. For instance:

(w’w27w37w4) (w27w7w3’w4)
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2 The Galois Group

2.1 Definition: Galois Group of a Polynomial

One of the fundamental insights of Galois theory is that every polynomial has a symmetry group.

Let f € Q[t]. Let:

Ap,...,0L

be the k distinct roots of f in C. The Galois group of f is:
Gal(f) ={0| 0 € Sk, (a1,..., o) and (asq), - - -, Q@) are conjugate}

Moreover, Gal(f) is a subgroup of Sy.
(Definition 1.2.1)

« What roots would be considered when defining the Galois group of f(t) = t°(t — 1)°?
— whilst this has 14 roots, it only has 2 distinct roots, so:
{on, 0} ={0,1}

e Doesn’t the definition of Galois group depend on the ordering of the roots? If so, can’t
the same polynomial have different Galois groups?
— different ordering will indeed mean that there will be different permutations in Gal(f)

— however, it can be shown that the different Galois groups of f are conjugate, in the group
theoretic sense; that is, if Hy, Ho are 2 Galois groups for f, Jda € Sk, such that:

aHya ' = H,

in particular, this means that the different Galois groups are isomorphic, and so, algebraically
indistinguishable

thus, Gal(f) is a well-defined group, independent of ordering

2.2 Examples for Galois Group Intuition
2.2.1 Polynomials with Only Rational Roots
e let f be a polynomial over Q, and assume it has k£ rational roots:

A1y ...,0L

e over Q, no rational is conjugate to other rationals: a rational ¢ is the unique root to the polynomial
p(t)=t—q
o if 0 € Gal(f), then:
(Oél,...70[]€) (ad(1)7"'7ao(k))
are conjugate, so in particular «; is conjugate to aq(;)
e this is only possible if a; = a, ()

o hence, Gal(f) = {¢}, the trivial subgroup of Si

Page 8



2.2.2 Quadratic Polynomials

let f be a quadratic over Q
if the 2 roots of f are rational, then Gal(f) = {¢}

if the 2 roots are complex conjugate, say we have z1, 2o = Z;. We know that (21, z2) is conjugate to its

complex conjugate:
(517 2’72) = (Z27 Zl)

which is precisely the non-trivial transposition of Sy. Hence, Gal(f) = Ss.

the last case occurs when the 2 roots are real, in which case it can be shown that again Gal(f) = S,

2.2.3 Cubic Polynomial

consider a cubic f with only one rational root

the rational root can be “distinguished” (i.e isn’t conjugate) to the remaining 2 complex conjugate

roots
hence, any o € Gal(f) must leave the rational root fixed

the complex conjugate roots are conjugate over QQ, so the transposition which switches them will be
part of the Galois group (in fact, this will be the only non-trivial element of Gal(f))

1+0i R

This reasoning might make more intuitive sense when looking at the roots in the complex plane:
the only symmetry which preserves the conjugacy relation is precisely the reflection corresponding to
complex conjugation.

2.2.4 Galois Group of a Quartic with Roots of Unity

e consider:

fO) =t +3+2+t+1

notice, we can write:
—1=(—-1)f(t)

so the roots of f are precisely the 5th roots of unity (except for t = 1)
the elements of Gal(f) will be the permutations o € Sy, such that:

(W’WQ7 w37w4) (wo(l)’ WU(Q)’wO'(3)7wU(4))

are conjugate
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« we already saw that transpositions won’t be part of the Galois group. For example, (1 2) € Gal(f),
since:
(w7w27w3’w4) (w27w7w3’w4)
aren’t conjugate (use the polynomial p(t1,t2,t3,ts) = t2 —t3) )
e in fact, Gal(f) =((1243)) 2 Cy

o recall, (1 2 4 3) is precisely the permutation we obtained when squaring each of the roots, and which
gave us that:
(w, w?, w?,w?) (w?, wt, w,w?)

are conjugate

2.2.5 GGalois Group of a General Cubic
o if f(t) = t3 + bt? + ct + d has no rational roots, then:

Gal(f) = As, V—=27d? + 18bcd — 4¢3 — 4b3d + b2c2 € Q
] Ss, otherwise

e recall, As is the alternating group: the subgroup of S3 containing only the even permutations

2.3 Exercises

1. [Exercise 1.2.2] Show that Gal(f) is a subgroup of Sj.

3 Radicals and Solvable Polynomials

3.1 Definition: Radical Complex Number

A complex number is radical if it can be obtained from the rationals
by using:

o the standard arithmetic operations

o kth roots

3.2 Definition: Polynomials Solvable by Radicals

A polynomial is solvable by radicals if all of its complex roots are
radical.

3.2.1 Example: Radicals and Roots of Polynomials

e all quadratics over QQ are solvable by radicals: we have the quadratic formula:

—b+Vb% — dac
2a

e similarly, there are cubic and quartic formulae

Page 10



e some quintics are solvable by radicals: for example:
(t —123)° + 456

has roots 123 + /—456

3.3 Theorem: Solvable Galois Groups

Let f € Q[t]. Then:
f is solvable by radicals <= Gal(f) is a solvable group
(Theorem 1.3.5)

3.3.1 Group Theory Recap: Solvable Groups

Subnormal series are a generalisation of composition series.
In particular, a subnormal series of G is a chain of subsequent nor-
mal subgroups:

{e} =Gp<G1<...9Gs =G

A group G is solvable, provided that it has a subnormal series:
{e} =Go<G1<...<Gs=G

such that each factor:
Giy1/Gi

1s abelian.

Let G be a group, and let N <G. Then, G is solvable if and only if:
e N is solvable

o G/N is solvable

If G is solvable and H < G, then H is solvable.
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e Why do we have formulae for quadratics, cubics and quartics?

recall, if deg(f) = n, Gal(f) is isomorphic to a subgroup of S,

— now, Sy is solvable: it has a subnormal series with abelian factors:
{e}<aVy<aAyg<Sy

where V} is the Klein-4 group (the group of 4 elements in which each element is its own inverse;
it is abelian, since it has order 22, and 2 is prime). Using Lagrange’s Theorem, we can see that
the quotients have prime order, and so are cyclic, and therefore abelian

— for S3 and Sy, As, A5 are normal, abelian subgroups, which gives the subnormal series
— moreover, any subgroup of Ss, S3,S, will be solvable

— hence, it follows that quadratics, cubics and quartics are solvable by radicals!
¢ Can there be a quintic formula?

— Sp isn’t solvable: the only (non-trivial) subgroup of S5 is As, and Ajs is simple, and non-abelian
— hence, S5 doesn’t have a subnormal series of abelian factors

— if we find a polynomial which has S5 as its Galois Group, then the polynomial won’t be solvable
by radicals, and thus, there can’t exist a quintic formula

— we will see that f(t) =t> — 6t + 3 is one such quintic
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