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1 Week 1: Symmetries and Groups

1.1 Symmetries and Graphs

• Graph: a finite set of vertices joined by edges

• Valency: the valency of a vertex is the number of edges emerging from it

• Isomorphism: a bijection between 2 graphs that preserves edges

– If Γ1, Γ2 are graphs, with vertices given by V1, V2, then an isomor-
phism f from Γ1 to Γ2 is:

f : V1 → V2

and v1, v2 ∈ V1 are connected by an edge in Γ1 if and only if
f(v1), f(v2) ∈ V2 are connected by an edge in Γ2.

• Isomorphic Graphs: graphs for which there exists an isomorphism

• Symmetry: an isomorphism from a graph to itself

1.2 Groups

• Binary Operation: ∗ is a rule on a set S, such that:

(a, b) ∈ S × S =⇒ a ∗ b ∈ S

and a ∗ b is unique.

X x, y ∈ Q, (x, y)→ xy

× x, y ∈ Q, (x = a
b , y = c

d ) → a+c
b+d

• Group: a set G is a group under operation ∗ if it satisfies the group
axioms

– Closure Under ∗: ∀g, h ∈ G, g ∗ h ∈ G
– Associativity: ∀g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k
– Identity: ∃e ∈ G : ∀g ∈ G, e ∗ g = g ∗ e = g

– Existence of Inverse: ∀g ∈ G, ∃g−1 ∈ G : g ∗ g−1 = g−1 ∗ g = e

• Order: the order of group G is the number of elements it contains, and
is denoted by |G|

• Abelian Group: a group in which all of its elements commute:

∀g, h ∈ G, g ∗ h = h ∗ g
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• Product Group: if (G, ∗G) and (H, ∗H) are groups, then we define the
product group as:

G×H = {(g, h) | g ∈ G, h ∈ H}

– (g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

– eG×H = (eG, eH)

– (g, h)−1 = (g−1, h−1)

• Order of Product Group: the order of a product group G×H is |G||H|

• Unique Element Product: if G is a group, and g, h ∈ G, then ∃k1, k2 ∈
G, which are unique, such that:

k1 ∗ g = h

g ∗ k2 = h

• Cancellation Law: if s ∗ g = t ∗ g, then s = t (if g ∗ s = g ∗ t, then s = t
also)

• Uniqueness of Inverses: inverses in groups are unique. If g ∈ G, there
is a unique h ∈ G such that gh = e, namely h = g−1

– e ∗ e = e =⇒ e = e−1

– (g−1)−1 = g

• Uniqueness of Identity: a group has only 1 identity. If g ∗ h = h, then
g = e

• Symmetries as Groups: the symmetries of a graph form a group under
composition

• The Symmetric Group: Sn is a symmetric group representing the set
of all permutations of n elements

– an edge-less graph with n nodes has symmetries given precisely by a
permutation with n elements

– |Sn| = n!

– Sn is abelian only when n = 2

• The Dihedral Group: Dn is a dihedral group representing the set of all
symmetries of a regular n-gon

– n symmetries correspond to rotations, and n symmetries correspond
reflections on an axis, so |Dn| = 2n

– Dn is not abelian
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– typically described with g = 2π
n anti-clockwise rotation, and h being

a reflection across a line

– represent as:

Dn = {e, g, g2, · · · , gn−1, h, gh, · · · , gn−1h}

– gn = h2 = e

– hgk = gn−kh

• GL(n,R): group representing the set of all n×n matrices of real numbers
under matrix multiplication
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2 Week 3: Subgroups and Lagrange’s Theorem

2.1 Subgroups

• Subgroup: a subgroup H of G is a non-empty subset of G, which is a
group itself. H ⊆ G is a subgroup if and only if:

– H 6= ∅
– h, h′ ∈ H =⇒ h ∗ h′ ∈ H
– h ∈ H =⇒ h−1 ∈ H

If G is finite, H is a subgroup if and only if:

– H 6= ∅
– h, k ∈ H =⇒ hk−1 ∈ H

• Trivial Subgroup: {eG} ≤ G

– trivially, G is a subgroup of itself, so G ≤ G

• Normal Subgroup: if H ≤ G, and:

ghg−1 ∈ H, ∀g ∈ G, ∀h ∈ H

then H is a normal subgroup, and we say H / G

• Identity in Subgroup: if H ≤ G, then eH = eG

• Inverse in Subgroup: if H ≤ G, then for any element h ∈ H, we must
also have h−1 ∈ H

2.2 Cyclic Groups

• Order of a Group Element: if G is a group, and g ∈ G, then the order
of g, o(g), is the smallest natural number n such that:

gn = eG

– if such an n doesn’t exist, o(g) =∞

• Order in Finite Group: the elements in a finite group have finite order

• 〈g〉: if g ∈ G, then 〈g〉 is a subgroup of G, given by:

〈g〉 = {e, g, g2, · · · , go(g)−1}

• Cyclic Group: G is cyclic if:

∃g ∈ G : 〈g〉 = G
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– g is a generator of G

– always abelian

– a group G is cyclic if and only if it contains an element of order
|G|. For example, Z6 is cyclic, as 5 has order 6 (5→ 5, 10→ 4, 15→
3, 20→ 2, 25→ 1, 30→ 0 = e)

– Z+
n is cyclic, as 1 is always a generator

• Cyclic Subgroups: H ≤ G is cyclic if ∃h ∈ H : 〈h〉 = H

– the rotations of Dn form a cyclic subgroup, although Dn itself is not
cyclic

• Subgroups of Cyclic Groups: any subgroup of a cyclic group is cyclic.

– For example 〈2〉 = {0, 2, 4, 6} is a subgroup of Z8

• Product of Cyclic Groups: if G is a cyclic group of order m, and H
is a cyclic group of order n, then G × H is cyclic if and only if m is
coprime to n

2.3 Cosets

• Left Coset: if H ≤ G, the left coset of H in G, is the subset of G given
by gH:

gH = {gh | ∀h ∈ H}

– a Right Coset is given by Hg

– a group G is abelian if and only if gH = Hg

– ∀g ∈ G, g ∈ gH,Hg

• Sets of Cosets: G/H denotes the set of all left cosets; G\H denotes the
set of all right cosets

• Cosets From Elements of the Same Group: applying an element of
a group to the whole group leads to the left/right cosets being equal to
the group:

∀h ∈ H, hH = Hh = H

• Equivalences Across Coset Properties: if g1, g2 ∈ G, the following
are equivalent:

g1H = g2H

∃h ∈ H : g2 = g1h

g2 ∈ g1H ∴ g−11 g2 ∈ H

• Cosets as Equivalence Relations: if g1, g2 ∈ G, and we define the
relation g1 ∼ g2 as g1H = g2H. Then ∼ defines an equivalence relation
on G.
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– this means that cosets can be used to partition a group (cosets cor-
respond to equivalence classes)

• Order of Cosets: if H ≤ G and H is finite, then |gH| = |H|

2.4 Lagrange’s Theorem

• Lagrange’s Theorem: if G is a finite group, and H ≤ G, then H divides
G

• Order of Group Elements Divide Order of Group: if g ∈ G, by
Lagrange’s Theorem, o(g) divides |G|

• Order of Group Leads to Identity: if g ∈ G, then by Lagrange’s
Theorem:

g|G| = e

• Index of a Subgroup: the number of distinct left cosets of H in G,
given that H ≤ G. By Lagrange’s Theorem:

|G/H| = |G|
|H|

– this also applies for right cosets, so the number of distinct left cosets
is the same as the number of distinct right cosets

• Groups of Prime Order: if the order of a group G is prime, then G is
cyclic (and so, abelian)

• Abelian Groups Given Order: if a group G is such that |G| < 6, then
G is abelian

• Fermat’s Little Theorem: if p is prime, then:

ap−1 ≡ a mod p

• Abelian Groups From Inverses: a group G is abelian if all of its
elements are their own inverse:

– then g2 = e, so we must have gh = (gh)−1 = h−1g−1 = hg. Hence,
abelian.
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3 Week 5: Going Between Groups

3.1 Morphisms

• Group Homomorphisms: if G and H are groups, then a map φ : G→
H is a group homomorphism if:

φ(x ∗G y) = φ(x) ∗H φ(y), ∀x, y ∈ G

• Group Isomorphism: a group homomorphism which is a bijection

• Isomorphic Groups: 2 groups are isomorphic, if there exists an isomor-
phism between the groups

– we denote isomorphic groups using G ∼= H

– isomorphic groups are algebraically indistinguishable, as the ismor-
phism allows us to match up group elements perfectly

– all cyclic groups of order n are isomorphic (thus can refer to the cyclic
group). Thus, all groups of prime order p are isomorphic.

– D3
∼= S3

– isomorphisms are equivalence relations

• Group and Graph Isomorphisms: if 2 graphs are isomorphic, then
their symmetric groups are also isomorphic

• Inverse Isomorphism: the inverse of an isomorphism is also an isomor-
phism

• Group Automorphism: a group isomorphism from a group to itself
(φ : G→ G)

• Identity Under Homomorphism: homomorphisms preserve identities:

φ(eG) = eH

• Powers of Homomorphisms: φ(gn) = φ(g)n

• Inverses of Homomorphisms: φ(g−1) = (φ(g))−1

• Order of Group Elements Under Injective Homomorphisms: if a
homomorphism is injective, then the order of g is the same as the order of
φ(g)

• Homomorphisms on Subgroups: if G′ ≤ G, then φ(G′) ≤ H
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3.2 Image and Kernel

• Image of a Group Homomorphism: the image of a group homomor-
phism φ is all the elements that φ can map to:

im(φ) = {h = φ(g) | g ∈ G} ⊆ H

– the image of a homormorphism is a subgroup of H (im(φ) ≤ H)

• Kernel of a Group Homomorphism: the kernel of a group homomor-
phism φ is the set of all elements that map to eH under φ:

ker(φ) = {g | φ(g) = eH , g ∈ G}

– the kernel of a homomorphism is a normal subgroup of G (ker(φ)/G)

• Injective Homomorphisms and their Kernel: a group homomor-
phism φ is injective if and only if ker(φ) = {eG}

• Injective Homomorphisms and Isomorphic Groups: if a group ho-
momorphism φ is injective, then φ defines an isomorphism G ∼= im(φ)

3.3 Products of Groups and Isomorphisms

• Decomposing Group into Product of Subgroups: if H,K ≤ G, then
φ : H ×K → G defines a group isomorphism if and only if :

– H ∩K = {e}
∗ then, we have that φ is bijective and |HK| = |H||K|, where
HK = {hk | h ∈ H, k ∈ K}

– hk = kh, ∀h ∈ H, ∀k ∈ K
∗ alongisde the condition H ∩K = {e}, this shows that HK ≤ G,

and furthermore φ defines an isomorphism such that H ×K ∼=
HK

– G = HK

∗ then, from the above point, since H ×K ∼= HK and HK = G,
then we have shown that φ is an isomorphism such that H×K ∼=
G

• Properties of Isomorphic Groups: if G ∼= H, then:

– |G| = |H|
– G is abelian if and only if H is abelian

– G is cyclic if and only if H is cyclic

– G and H have the same number of elements of each order

• Order of Product of Groups: the order of an element (g, h) ∈ G×H
is given by:

o((g, h)) = lcm(o(g), o(h))
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4 Week 4: Groups Acting

4.1 Group Actions

• Left Action: if G is a group and X is a non-empty set, then the map:

G×X → X

defined by:
(g, x)→ g · x

is a left action of G on X. We mean that applying any element of G to
any element in X produces an element in X (so G can be thought as a
symmetry group of G, although this isn’t true in practice). It has the
following properties:

– e · x = x

– g1 · (g2 · x) = (g1g2) · x

We can think of Dn acting on a set {1, 2, · · · , n} which represents the
vertices of a regular n-gon. Alternatively, Dn also acts on {T,B}, the top
and bottom faces of the n-gon.

• Right Action: defined similarly by the map:

(g, x)→ xg−1

• Trivial Group Action: for any group G and non-empty set X, we can
define a trivial (left or right) action:

(g, x)→ x

• Group Acting on Itself : there are 3 ways in which a group can act on
itself. Let G be a group, and X = G, which g ∈ G and h ∈ X. Then:

– Left Action: (g, h)→ gh

– Right Action: (g, h)→ hg−1

– Conjugate Action: (g, h)→ ghg−1

• Kernel of an Action: the kernel N can be thought of as the set of all
trivial actions given by a group G acting on a set X:

N = {g | g · x = x, ∀x ∈ X, g ∈ G}

– the kernel of an action is a subgroup of the acting group (N ≤ G).
In fact, it is a normal subgroup, so N / G

• Faithful Action: an action such that the only element of G which fixes
everything in X is the identity e. Thus, an action is faithful if:

N = {e}
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– a group acting on itself is always faithful, as e is the only element of
the group for which g · x = gx = x

– D3 is faithful when acting on the vertices of a triangle, but not faithful
if it acts on the faces

– the group of rotational symmetries acting on the faces of a platonic
solid is faithful

4.2 Orbits and Stabilisers

• Stabilizer of Set Element x: let G be a group acting on X, with x ∈ X.
Define the Stabilizer of x by:

StabG(x) = {g | g · x = x, g ∈ G} ⊆ G

– think of stabilizer as the elements of G that fix x (i.e all the g that
lead to a trivial action for a particular x)

– StabG(x) ≤ G
– the kernel of the action is composed by all trivial actions, which is

precisely given by:

N =
⋂
x∈X

StabG(x)

• Orbit of Set Element x: let G be a group acting on X, with x ∈ X.
Define the Orbit of x by:

OrbG(x) = {g · x | g ∈ G} ⊆ X

– the set of all elements that can be reached from x by applying the
actions in G

• Orbits as Equivalence Classes: we can define an equivalence relation
∼ via:

x ∼ y ⇐⇒ y = g · x, g ∈ G
Then, the orbits of G define the equivalence classes of this relation. Thus,
when G acts on X, the orbits partition X

– if H ≤ G, then if H acts on G via a left action (h, g) → hg, the
orbits of the action are precisely the right cosets of H in G. Notice
that, cosets partition G, and these cosets are precisely the orbits of
H, which indeed partition G.

• Transitive Action: an action of G on X such that ∀x, y ∈ X, ∃g ∈ G
such that y = g · x.

– this means that we can define all of X as a single orbit under G

– Dn acts transitively on the vertices of an n-gon, as we can always
find a rotation gt which maps a vertex x1 to a vertex x2

– Sn acts transitively
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4.3 The Orbit-Stabiliser Theorem

• Orbit-Stabilizer Theorem: let G be a finite group acting on a set X,
and let x ∈ X. Then:

|OrbG(x)| × |StabG(x)| = |G|

4.4 Cauchy’s Theorem

• Cauchy’s Theorem: let G be a group and p be prime. If p divides |G|,
then G contains an element of order p

5 Week 9: Pólya Counting and Conjugacy

5.1 Pólya Counting

• Fixed Point Set: if G is a group acting on X, and g ∈ G, the fixed point
set is the set fo all elements in X that are fixed under an action g:

Fix(g) = {x | x ∈ X, g · x = x}

– we can redefine the kernel of an action in terms of the fixed point set:

N = {g | g · x = x, ∀x ∈ X, g ∈ G} = {g | Fix(g) = X, g ∈ G}

• Pólya Counting: if G is a finite group acting on a finite set X, then:

# of orbits in X =
1

|G|
∑
g∈G
|Fix(g)|

– we can use PC to find the number of distinct colourings that can be
applied to a graph. If G is the group of symmetries of the graph,
consider the set X of all possible colourings of the graph (if there are
n nodes and k colours, there are kn total colourings). Then, if G acts
on X, the orbits of X correspond to all the unique colourings (each
orbit represents all colourings that can be reached via symmetry from
one of the colourings within the orbit). Thus, the total number of
colourings is the toal number of orbits in X, which can be found via
Pólya.

5.2 Conjugacy

• Conjugacy Classes of a Group: if G is a group which acts on itself
via a conjugacy action, then the orbits of G (under the action G) are the
conjugacy classes

– since orbits partition the set, G is partitioned by its conjugacy classes
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– the conjugacy class of some element h ∈ G is:

Conj(h) = OrbG(h) = {k | ghg−1 = k, g ∈ G}

• Abelian Groups From 1-Element Conjugacy Classes: ifG is abelian,
then each h ∈ G defines its own conjugacy class, as ∀g ∈ G:

g · h = ghg−1 = hgg−1 = h

• Conjugate Elements: h, k ∈ G are conjugate if they are in the same
conjugacy class:

∃g, g′ ∈ G : ghg−1 = k ⇐⇒ g′kg′−1 = h

in this case with g = g−1. Notice that ghg−1 = k =⇒ k ∈ Conj(h) and
g′kg′−1 = h =⇒ h ∈ Conj(k)

• Conjugates Look The Same: we can define an automorphism:

φG : G→ G, φG(h) = ghg−1

– for example, in D4, {g, g3} form a conjugacy class and they each
correspond to 90º rotations

– conjugate elements have the same order

– |H| = gHg−1

– if conjugates form a subgroup of G, then they are a normal subgroup

• The Class Equation: we can define the order of a group in terms of its
conjugacy classes:

|G| =
∑
i

|Conj(i)|

– Conj(i) is an orbit of G, so in particular |Conj(i)| divides |G| by
OST

• Identity as a Conjugacy Class: the identity always forms its own
conjugacy class, {e}

5.3 Centres and Centralizers of a Group

• Centre of a Group: a set containing all elements of a group G which
commute with any other element:

C(G) = {g | g ∈ G, gh = hg, ∀h ∈ G}

– the centre of a group is actually the kernel of the conjugation action:

N = {g | g · h = h, ∀h ∈ G, g ∈ G}
= {g | ghg−1 = h, ∀h ∈ G, g ∈ G}
= {g | gh = hg, ∀h ∈ G, g ∈ G}

14



– since the kernel of a group action is a normal subgroup of the acting
group, C(G) / G

– C(G) = G if and only if G is abelian

– C(Sn) = {e}

• Central Element: any element g ∈ G such that g ∈ C(G)

• Centralizer of a Group: the stabiliser of an element g ∈ G when G acts
on itself via a conjugate action

C(g) = {h | h · g = hgh−1 = g, h ∈ G} = {h | hg = gh, h ∈ G}

– in other words, the centralizer is the set of all elements h ∈ G which
commute with a particular element g ∈ G

– C(G) is the set of all elements which commute with every other ele-
ment, so it follows that:

C(G) =
⋂
g∈G

C(g)

– since C(g) = StabG(g), C(g) ≤ G
– morever the center is a subgroup of any centralizer (C(G) ≤ C(g))

• Order of Group In Terms of Centralizer and Conjugacy Class:
from OST

|Conj(g)||C(g)| = |G|

– under conjugate action, C(g) is just the stabilizer of g

– under conjugate action, Conj(g) represents the conjugacy class of g,
which are the orbits of g in G

• Centre as a Union of 1-Element Conjugacy Classes: the centre of a
group C(G) can be viewed as the union of all 1-element conjugacy classes:

{g} = Conj(g) ⇐⇒ g ∈ C(G)

– if g is conjugate to itself only, then it must commute with all other
elements of G (hgh−1 = g ⇐⇒ gh = hg,∀h ∈ G), so by definition
it must be part of C(G)

• Prime Powers as Order of a Group: if |G| = pk for some prime p,
then it must be the case that |C(G)| ≥ p

• Abelian Groups from Order of Group: if a group has order p2, for
prime p, then the group is abelian
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5.4 Permutations as Cycles

• Length of a Cycle: a permutation given by
(
a1 a2 · · · ar

)
has cycle

length r

• Disjoint Cycles: cycles which share no element

– disjoint cycles commute

– any element of Sn can be written as a product of disjoint cycles

• Cycle Type: specifies the structure of a product of cycles, using the
notation nk to represent that an n-cycle occurs k times.

–
(
1 2 3

) (
1 2 3

) (
1 2

)
has cycle shape 2, 32

• Number of Elements of a Cycle Type: the number of elements of
cycle type 1m1 , 2m2 , · · · , nmn is given by:

n!

m1!m2! · · ·mn!1m12m2 · · ·nmn

• Applying Conjugate Action to Disjoint Cycles: consider a permu-
tation given as a product of disjoint cycles:

σ =
(
a1 · · · ar

) (
b1 · · · bs

)
· · ·

Then, ∀τ ∈ Sn,

τστ−1 =
(
τ(a1) · · · τ(ar)

) (
τ(b1) · · · τ(bs)

)
· · ·

• Conjugate Permutations: 2 permutations are conjugate if and only
if they have the same cycle type
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6 Analysis

6.1 Real Numbers and Sequences

• Maximum Element of a Set: for a set S, if ∃s′ ∈ S : s ≤ s′, ∀s ∈ S,
s′ is the maximum of S

• Minimum Element of a Set: for a set S, if ∃s′ ∈ S : s ≥ s′, ∀s ∈ S, s′

is the minimum of S

• Closed Interval: an interval containing all elements between the end-
points, and including the endpoints (except possibly infinities):

[a, b] = {x | a ≤ x ≤ b, x ∈ R}

• Open Interval: an interval containing all elements between the end-
points, and excluding the endpoints:

(a, b) = {x | a < x < b, x ∈ R}

• Upper Bound of a Set: if E is a set, and ∃M ∈ R : ∀a ∈ E, a ≤M , M
is an upper bound of E, and E is bounded above.

• Supremum of a Set: the smallest of the upper bounds to a set, denote
sup E for a set E

• Upper Bound of a Set: if E is a set, and ∃m ∈ R : ∀a ∈ E, a ≥ m, m
is a lower bound of E, and E is bounded below

• Infimum of a Set: the largest of the lower bounds to a set, denote inf E
for a set E

• Bounded Set: set which is bounded above and below

• Completeness Axiom: if E ⊂ R is non-empty and bounded above, then
sup E exists and it is a real number

– Corollary : every non-empty, bounded below set has a real inf E

• Approximation Property of Suprema: if a set E has a supremum,
∀ε > 0, ∃a ∈ E : sup E − ε < a ≤ sup E

• Supremum in Subset of Natural Numbers: the supremum of a subset
of natural numbers is contained within the set

• Archimidean Principle: if a, b ∈ R+, ∃n ∈ N : b < na

• Sequence of Real Numbers: a function f : N → R. The nth term of
the sequence is defined by xn = f(n)
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• Convergent Sequence: a sequence (xn)n∈N converges to L ∈ R if:

∀ε > 0, ∃N ∈ N : ∀n ≥ N

|xn − L| < ε

and we say:
lim
n→∞

xn = L

• Absolute Value of Limits: if limn→∞ xn exists, then so does limn→∞ |xn|
and limn→∞ |xn| = | limn→∞ xn|

• Limit to 0: limn→∞ xn → 0 ⇐⇒ limn→∞ |xn| → 0

• Product of Convergent and Bounded Sequence: if xn → 0 and yn
is bounded, then xnyn → 0

• Limit to Supremum: if a set E has a finite supremum sup E, then there
exists a sequence of terms in E, namely xn, such that xn → sup E

• Bounded Sequence and Convergence: if a sequence converges, then
it is bounded

• Divergent Sequence to Infinity: xn diverges to +∞ if:

∀M ∈ R, ∃N ∈ N : ∀n ≥ N, xn > M

• Divergent Sequence to Negative Infinity: xn diverges to +∞ if:

∀m ∈ R, ∃N ∈ N : ∀n ≥ N, xn < m

• Monotonic Sequence: a sequence which is either increasing or decreas-
ing

• Monotonic Convergence Theorem: if a sequence is monotone and
bounded, it is convergent, and it converges to the supremum/infimum of
the set of elements

– a monotone, unbounded sequence diverges to +/−∞

• Subsequence: if (sn)n∈N is a sequence, (ank
)k∈N defines a subsequence,

where n1 < n2 < · · · is an increasing sequence.

• Convergence of Subsequence: a subsequence of a convergent sequence
is convergent, and converges to the same limit

• Bolzano-Weierstrass Theorem: any bounded sequence has a conver-
gent subsequence

– there exists a subsequence of (xn) which converges to t ∈ R if and
only if there are infinitely many n ∈ N such that |xn−t| < ε, ∀ε > 0

• Relationship Between Unbounded Sequence and Diverging Sub-
sequence: a sequence is unbounded if and only if it contains a diverging
subsequence
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6.2 Infinite Series of Real Numbers

• Infinite Series: if an is a sequence, an infinite series is:

∞∑
k=1

ak

• Partial Sum: Sn =
∑n
k=1 ak

• Convergence of Infinite Series: an infinite series converges if and
only if its sequence of partial sums converges. Then, the limit of the
sequence is defined as the value of the inifinite series.

– a series diverges if its sequence of partial sums diverges

• Geometric Series: a series of the form:

∞∑
k=0

ark

The partial sum is:

Sn = a
1− rn

1− r
The series converges if |r| < 1, and ti converges to:

lim
n→∞

Sn =
a

1− r

• Harmonic Series:
∑∞
k=1

1
k

– the Harmonic Series diverges

• Convergence of Series and Sequence: if
∑∞
n=1 an converges, then

an → 0

• Divergence Test: if an��→0, then
∑∞
n=1 an diverges

• Sum of Convergent Sum: if
∑∞
n=1 an = A and

∑∞
n=1 bn = B, then:

∞∑
n=1

an + bn = A+B

• Telescoping Series:
∑∞
n=1(an − an+1 = a1 − limn→∞ an

• Convergence of Series with Positive Terms: if an ≥ 0,
∑∞
n=1 an

converges if and only if the sequence of partial sums is bounded:

∞∑
n=1

an = S ⇐⇒ ∃M > 0 : |
n∑
k=1

ak| ≤M
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• Comparison Test: if 0 ≤ an ≤ bn for some n ≥ N ∈ N,

∞∑
n=1

an diverges =⇒
∞∑
n=1

bn diverges

∞∑
n=1

bn converges =⇒
∞∑
n=1

an converges

• p-series Test:
∑∞
n=1

1
np converges if and only if p > 1. If p < 1, the

series diverges.

• Limit Comparison Test: if limn→∞
an
bn

= L > 0,
∑
an converges if

and only if
∑
bn converges.

– L = 0 and
∑
bn converges =⇒

∑
an converges

– L = 0 and
∑
bn diverges =⇒

∑
an diverges

• Cauchy’s Condensation Test: if an is a decreasing sequence of non-
negative terms,

∑
an converges if and only if

∑
2na2n converges

• Root Test: let n
√
an → L.

– 0 ≤ L < 1 =⇒
∑
an converges

– diverges if L > 1

• Ratio Test: let an+1

an
→ L.

– 0 ≤ L < 1 =⇒
∑
an converges

– diverges if L > 1

• Cauchy’s Criterion:
∑
an converges if and only if ∀ε > 0, ∃N :

∀m,n,m ≥ n ≥ N and ∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ < ε

• Alternating Series Test: if an is a decreasing sequence of non-negative
real numbers, and an → 0, then:∑

(−1)nan

converges

• Absolute Convergence:
∑
an converges absolutely if and only if

∑
|an|

converges. If a series converges absolutely, it converges

• Conditional Convergence: a series
∑
an converges conditionally if it

converges, but
∑
|an| diverges
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6.3 Continuity

• Continuity at a Point: let f be a function defined by f : dom(f)→ R,
and let a ∈ dom(f). f is continuous at a, if, for any sequence xn whose
terms all lie in dom(f), and xn → a, then f(xn)→ f(a).

• Continuity on an Interval: let S ⊆ dom(f). If f is continuous ∀a ∈ S,
then f is continuous n the interval S

• Continuous Function: a function that is continuous on dom(f)

• Polynomials are Continuous

• Continuity Transformations: if f and g are continuous functions on a
common domain, then f + g and fg are continuous on that domain

• Continuity of Compositions: if f is continuous at a, and g is continuous
at f(a), then g ◦ f is continuous at a

• ε− δ Definition of Continuity: let f : dom(f) → R. Then, f is
continuous at a ∈ dom(f) if and only if :

∀ε > 0, ∃δ > 0

such that whenever x ∈ dom(f) and |x− a| < δ, then:

|f(x)− f(a)| < ε

• Bounded Functions: let f : E → R. Then, f is bounded on E if
∀x ∈ E, |f(x)| ≤M ∈ R

– continuous functions on closed, bounded intervals are always bounded

• Extreme Value Theorem: let I ⊆ R be a closed and bounded interval.
Let f : I → R be a continuous function on I. Then, f is bounded on I.
Moreover, let:

m = inf{f(x) | x ∈ I}

M = sup{f(x) | x ∈ I}

Then, ∃xm, xM ∈ I such that:

f(xm) = m

f(xM ) = M

– a continuous function on a closed, bounded interval is not only bounded,
but it also achieves its maximum and minimum within the interval

21



• Intermediate Value Theorem: let I be a non-degenerate interval, and
let f : I → R be a continuous function on I. If a, b ∈ I, a < b, then on
the interval (a, b) f attains all values between f(a) and f(b). That is, if
y0 is between f(a) and f(b) (non-inclusive), then there exists x0 ∈ (a, b),
such that:

f(x0) = y0

• Bolzano’s Theorem: if f is continuous on the closed, bounded interval
[a, b], and f(a)f(b) < 0, then ∃c ∈ (a, b) such that f(c) = 0

– this is a corollary of the IVT. It says that if a function every goes
from being positive to negative (or viceversa), then it must be 0 at
some point in between

• Image of a Function as an Interval: let f : [a, b]→ R be continuous.
Then, the image of f is a closed, bounded interval (possibly degenerate
i.e a point)

• Image of a Function as an Interval Leads to Continuity: let f :
[a, b]→ R be a strictly increasing function. If the image of f is an interval,
then f is continuous on [a, b]

• Continuous Inverse of a Function: let f : [a, b]→ R be a continuous,
strictly increasing function. Then, f−1 : [f(a), f(b)]→ R is a continuous,
strictly increasing function

6.4 Limits of Functions

• Limits at a Point Not In An Interval: let f : dom(f) → R, and
a ∈ R. Then:

lim
x→adom(f)

f(x) = L ∈ R

if for every sequence xn (with all terms being in dom(f)\{a}) with xn → a,
we have limn→∞ f(xn) = L

– this definition says that a function need not be defined at a for a
limit to exist.

• Two-Sided Limit: let a ∈ R, and let f be defined on an interval I, with
a ∈ I. Then, define:

lim
x→a

f(x)

as limx→aI\{a} f(x)

• Right-Handed Limit: let a ∈ R, and let f be defined on an interval I,
with a ∈ I. Then, define:

lim
x→a+

f(x)

as limx→aI∩(a,∞) f(x)
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• Left-Handed Limit: let a ∈ R, and let f be defined on an interval I,
with a ∈ I. Then, define:

lim
x→a−

f(x)

as limx→aI∩(−∞,a) f(x)

• Limit to Positive Infinity: let f be defined on an open interval (b,∞).
Then, define:

lim
x→∞

f(x)

as limx→∞I f(x)

• Limit to Negative Infinity: let f be defined on an open interval
(−∞, b). Then, define:

lim
x→−∞

f(x)

as limx→∞I f(x)

• Unique Limits: since limits are unique, our choice, the interval that we
choose to select the sequence xn doesn’t matter

• ε− δ Definition of the Right-Hand Limit: let a ∈ R, and define an
open interval I, with a as a left end point. Then, limx→a+ f(x) = L if:

∀ε > 0, ∃δ > 0

such that, if x ∈ I:

a < x < a+ δ =⇒ |f(x)− L| < ε

• ε− δ Definition of the Limit: let f be defined on D, and let c ∈ D.
Then, limx→a f(x) = L ∈ R if:

∀ε > 0, ∃δ > 0

such that ∀x ∈ D if 0 < |x− c| < δ, then:

|f(x)− L| < δ

• Two-Sided Limit in Terms of One-Sided Limits: limx→a f(x) =
L ⇐⇒ limx→a− f(x) = L = limx→a+ f(x)

• Continuity and Limits: f is continuous at a if and only if :

lim
x→a

f(x) = f(a)
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6.5 Differentiability

• Differentiability at a Point: let f : I → R be a function, and let I be
an open interval. If x0 ∈ I, then f is differentiable at x0 if the following
limit is defined:

lim
x→x0

f(x)− f(x0)

x− x0
Alternatively, if the following limit is defined:

lim
h→0

f(x0 + h)− f(x0)

h

– we denote the value of the limit with f ′(x0), the derivative of f at x0

• Right-Hand Derivative: f ′(x+0 ) = limx→x+
0

f(x)−f(x0)
x−x0

, f : [x0, b)→ R

• Left-Hand Derivative: f ′(x−0 ) = limx→x−0
f(x)−f(x0)

x−x0
, f : (a, x0]→ R

• Derivative as One-Sided Limits: f is differentiable at x0 if f ′(x+0 ) =
f ′(x−0 )

• Continuity and Differentiability: if f is differentiable at x0, for x0 ∈ I,
where I is an open interval, then f is continuous at x0

• Differentiability on an Interval: a function f : I → R is differentiable
on an interval I if it is differentiable ∀x ∈ I

– ∀a ∈ I, f ′(a) exists

– alternatively, differentiable on an interval if f ′I(x0) = limx→xI
0

f(x)−f(x0)
x−x0

– if x0 is not an endpoint, f ′I(x0) = f ′(a)

• Differentiability at an Endpoint: at an endpoint, the differnetiability
of a function is defined in terms of one sided limits. That is, if I = [a, b],
then, f is differentiable at a if:

lim
h→0+

f(a+ h)− f(a)

h

and differentiable at b if:

lim
h→0−

f(b+ h)− f(b)

h

• Continuous Differentiability: f is continuously differentiable on an in-
terval if it is differentiable, and the derivative is continuous on the interval

• Rolle’s Theorem: let a, b ∈ R, and a < b. If f is:

1. continuous on [a, b]
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2. differentiable on (a, b)

3. f(a) = f(b)

then ∃c ∈ (a, b) : f ′(c) = 0.

• Mean Value Theorem: let a, b ∈ R and a < b.

1. if f is continuous on [a, b], and differentiable on (a, b), then ∃c ∈ (a, b),
such that:

f ′(c) =
f(b)− f(a)

b− a

2. if f, g are continuous on [a, b] and differentiable on (a, b), then ∃c ∈
(a, b) such that:

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a))

• Fermat’s Theorem: let I be an open interval, with c ∈ I and f : I → R.
Let f bedifferentiable at c. If f has a local minimum/maximum at c, then
f ′(c) = 0

– c is a critical point of f

– c must not be an end point (hence the requirement of open interval

• Increasing Function: if f is a function, and it is differentiable on an
interval (a, b), and ∀x ∈ I, f ′(x) > 0, then f is an increasing function on
[a, b]

– the converse is not necessarily true. x3 is strictly increasing on [−1, 1],
but f ′(0) = 0

• Decreasing Function: if f is a function, and it is differentiable on an
interval (a, b), and ∀x ∈ I, f ′(x) < 0, then f is an increasing function on
[a, b]

• Monotone Function: a function that is increasing or decreasing on an
interval

• Continuity and Monotonicity: let f be injective and continuous on
an interval I. Then, f is strictly monotone on I, and the inverse function
f−1 is continuous and strictly monotone on f(I)

• Inverse Function Theorem: let f be injective and continuous on an
open interval I. If a ∈ f(I), and f ′ exists at f−1(a), and is non-zero, then
f−1 is differentiable at a, and:

(f−1)′(a) =
1

f ‘(f−1(a)
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• L’Hôpital’s Rule: let a ∈ R, and let I be an interval that either contains
a, or has it as an endpoint. Let f, g be differentiable on I\{a}, and
g(x), g′(x) 6= 0, ∀x ∈ I\{a}. If:

lim
x→a

f(x)

g(x)

leads to an indeterminate form, then, if limx→a
f ′(x)
g′(x) exists (and is in R),

then:

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)

• Intermediate Value Theorem For Derivatives (Darboux: let f
be a differentiable function on an open interval I. Then, for a, b ∈ I,
f ′(a) 6= f ′(b),

∀γ : f ′(a) < γ < f ′(b), ∃c ∈ I : f ′(c) = γ

• Taylor Polynomial: let n ∈ R, and a, b ∈ R with a < b. If f : (a, b)→ R
is a function n times differentiable at x0 ∈ (a, b), then the Taylor Polyno-
mial of degree n of f at x0 is:

P f,x0
n = f(x0) +

n∑
k=1

f (k)(x0)

k!
(x− x0)k

• Taylor’s Formula: let n ∈ R, and a, b ∈ R with a < b. If f : (a, b)→ R is
a function n+ 1 times differentiable on (a, b) (fn+1 exists), then ∀x, x0 ∈
(a, b), there is a c between x and x0 (dependent on n, x, x0), such that:

f(x) = P f,x0
n +

f (n+1)(c)

n+ 1!
(x− x0)n+1

• Second Derivative Test: if f : I → R is twice continuously differen-
tiable in an open interval I, and x0 is a critical point of f :

– f ′′(x0) > 0 means that there is a local minimum at x0

– f ′′(x0 < 0 means that there is a local maximum at x0
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