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1 Evaluating Parsers

1.1 Evaluation Means for Parsing

• What is intrinsic evaluation?

– compare parse results with some form of gold label:

∗ Automatic: using human provided gold standards (good to keep track of state of the art)

∗ Manual: human evaluate parse

• What is extrinsic evaluation?

– use parsed syntactic representation in a downstream application

– for example, compare performance of different parsers in a semantic analyser

• What aspects of a parse are taken into account during evaluation?

– exact match: % of trees predicted correctly

– bracket score: measure constituents in common between parse and gold label (most common)

– crossing brackets: % of overlapping phrase boundaries (i.e the % of constituents with gold label
((AB)C) but parse (A(BC)))

– dependency metrics: % of correctly identified heads in the dependency structure of the con-
stituent tree (more on this later)

1.2 Bracket Scores

• What is bracketing notation?

– a way of representing a parse tree

• What exactly does bracket score measure?

– recall, CYK constructs a parse tree by considering whether a span of a sentence span(min,max) has a
given non-terminal C

– in this regard, a tree can be thought of as a collection of brackets:

[min,max,C]
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– bracket score compares the brackets predicted by a parser, versus the gold label brackets

• How are brackets scores computed?

– precision:

P =
# of brackets agreed on by parser and annotation

# of brackets predicted by parser

– recall:

P =
# of brackets agreed on by parser and annotation

# of brackets in the annotation

– F1 Score:
2× P ×R

P +R

• Why is bracket score more useful than accuracy/exact match?

– exact match can’t distinguish between parses in which all constituents were wrong, and parses with only
1 wrong constituent

– it is more useful and fine-grained to consider constituents, particularly when parsing long sentences,
where the probability of a mistake is greater

• What issues might be associated with using constituents to evaluate parsing?

– different parsers produce different trees =⇒ need to convert to parse format of gold labels

2 Improving Vanilla PCFGs for Parsing

2.1 Recapping Weaknesses of PCFGs

• What are the key issues of PCFGs?

– strong independence assumption: doesn’t account for context/structural dependencies, so certain
nuances (i.e distribution of NPs across subjects or objects in a sentence varies) are not considered

– no lexical preferences: certain words are more likely to be grouped together (i.e certain prepositions
with certain verbs)

• How do Vanilla PCFGs perform for parsing?
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Figure 1: F1 Scores for parsers trained on different grammars. We can see that vanilla PCFGs (directly from
treebank rules) are the worst parsers, with around 0.72 F1 score.

2.2 Improving PCFGs: Vertical Markovisation

• What is Vertical Markovisation?

– in HMMs: Markov Assumption =⇒ current tag depends on fixed history

– Vertical Markovisation: non-terminal depends on previous non-terminals (beyond parents)

Figure 2: With second order markovisation, a non-terminal is derived based on its parent and grandparent.

• How does Vertical Markovisation help?

4



Figure 3: We can consider disambiguiting these 2 sentences. In Penn Treebank, close attachment is more common,
but looking at these trees, they use the exact same non-terminal derivations, so the probability of both parses is
exactly the same.

Figure 4: Introducing Vertical Markovisation changes this: now there are different rules involved, and close attach-
ment could be preferred.

• How do PCFGs constructed with Vertical Markovisation improve on Vanilla PCFGs?

Figure 5: Generally, increasing the Markov Order Improves performance; however, this increases the number of
symbols, which increases parse time (linearly for CYK).
However, clever tricks can be used, to only use certain histories (above represented with 2v and 3v), which reduce
the number of symbols, whilst obtaining the benefits of markovisation.

2.3 Improving PCFGs: Better Binarisation

• How can binarisation be streamlined to improved PCFGs?

– binarisation: process of converting PCFG to CNF
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Figure 6: Binarisation can be thought as providing a horizontal history (as opposed to a vertical history like
in markovisation.)

– we can be more selective about the horizontal history used

Figure 7: Instead of considering all previous derivations, just include the derivation which lead to the parent. For
example, in “publishing group”, we only note that @NP− > NNP split into V BG (for “publishing”), instead of
all the previous derivations (such as producing DT or NNP ).

• How do PCFGs constructed with Streamlined Binarisation improve on Vanilla PCFGs?
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Figure 8: We can see that there is a sweet spot, whereby decreasing the horizontal order produces a better model.
For free, we also get a reduction in the number of symbols, so as opposed to vertical markovisation, we get improved
parsing time!

• Can verticlal and horizontal histories be used together?
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Figure 9: Applying both optimisation, we can attain up to 0.78 F1, compared with Vanilla performance of 0.72.

2.4 Improving PCFGs: Splitting

• What is splitting?
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– currently, the non-terminals are very coarse

– can augment labels:

∗ in Penn: IN for both prepositions and subordinating conjunctions (“if”) =⇒ use non-terminal for
each (+0.2 F1 → 0.8)

∗ split determiners (demonstrative [“those”] vs other [“the”, “a”])

∗ split adverbials (phrasal or not [“quickly”, “very”])

∗ NP as subject or object

– overall, these small changes boost performance: 0.863 F1

2.5 Advanced Improvements

• What further improvements can be added?

1. Splits via Expectation Maximisation: use EM to automatically learn non-terminals splits =⇒
0.9 F1

2. Neural Networks: in CYK, probability of label C depends on children derivation:

P (C → C1 C2)

Use NN to incorporate additional data:

NNθ(C,C1, C2,min,max,mid)

=⇒ 0.96 F1

3 Dependency Parsing

Above we focused on how to add context to constituent-based parsing. Here we discuss how lexical considerations
can be applied: both to improve PCFGs, and to apply a completely new way of parsing - dependency parsing.

3.1 Adding Lexical Consideration to PCFGs

• What is a lexical head?

– the word in a phrase which the most important (grammatically)

– it is essential in transmitting the core meaning of a phrase

– for example, in noun phrases, the head is the noun; in verb phrases, the head is the verb

• What are the types of lexical heads?

– content heads (content words) vs functional heads (prepositions)

– for example, in the PP “birds with fish”:

∗ content head: fish

∗ functional head: with

• What is lexicalisation?

– augment non-terminals by using their lexical head
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• Why is lexicalisation useful?

– with Vanilla PCFGs, we can replace a terminal with another one witht he same POS tag

– this won’t affect the produced parse, which isn’t always right:

– lexicalisation avoids this, since non-terminals depend on words

• How can we evaluate lexicalisation?

– Pros:

∗ more specific grammar (hopefully, V P−saw → V P−saw PP−fish is less likely than V P−saw →
V P − saw PP − binoculars, since it is strange to look at things through fish)

– Cons:

∗ very sparse grammar (need to use fancy smoothing; potentially create automatic subcategories to
mitigate impact)

3.2 Purpose of Dependency Parsing

• What is dependency parsing?

– produce a parse tree outlining dependency relations between words in a phrase

– normal: meaning of words depends on other words, typically in an asymmetric and binary nature

– useful for morphologically rich languages, languages with free word order (i.e Czech)

• What are dependents?
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– parts of phrase which modify the head (sometimes called modifiers)

– include direct and indirect dependents

– for example:
“I prefer the morning flight through Denver.”

The head of the whole phrase is “flight”, and it has a direct dependency relation with words like
“prefer” (since “flight” is what is being modified by the preference) or “Denver” (since the act of flying
involves going to Denver)

• How are dependency parse trees represented?

– can be shown as a tree:

– alternatively, use arcs to show head-dependent relations:

• What are edge labels?

– in constituent parsing: use non-terminals to label nodes

– we can label the arcs of dependency parses:
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Figure 10: These are known as Universal Dependency Relations, which can be used to label the arcs.

• What is a projective dependency parse?

– an arc head → dependent is projective if there is a path from head to all words between head and
dependent

– dependency tree projective ⇐⇒ every arc is projective

Figure 11: A projective dependency tree.

Figure 12: A non-projective dependency tree: there is no path between “hearing” and “schedule”, even though
there is an arc hearing → on.

– intuitively: no arc intersects other arcs

• Why is dependency parsing useful?

– can use head-dependent relations as features
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– examples: question-answering, information extraction (for example, using chains of dependen-
cies)

3.3 From Constituency Parse to Dependency Parse

• What is a head rule?

– used to build dependency tree from constituent tree

– in a PCFG, assigns the head of a phrase to one of the RHS non-terminals in a non-unary production:

S → NP V P

V P → V P PP

PP → P NP

• How can a constituent parse tree be converted into a dependency parse tree?

– apply head rules to constituent tree

– propagate head words up the tree
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• then, to construct a full dependency tree, we can “collapse” it: remove non-terminals, and join repeated head
words:

3.4 Direct Dependency Parsing: Shift-Reduce

• What is transition-based parsing?

– processes an input sentence and predicts a sequence of parsing actions in a left-to-right manner

• What is the shift-reduce algorithm?

– efficient transition-based parser (no grammar required, O(n))

– a greedy approach to dependency parsing (optimal parse not guaranteed)
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– only produces projective trees

• How does shift-reduce operate?

Figure 13:

– uses an oracle (machine learning model, a classifier) to predict 1 or 3 parse actions

∗ LeftArc: create dependency relation s1 → s2; pop s2

∗ RightArc: create dependency relation s2 → s1; pop s1

∗ Shift: add w1 to top of stack

– restrictions to actions:

∗ LeftArc, RightArc: need at least 2 elements in stack

∗ LeftArc: can’t be applied to Root when its the second element of the stack (Root always a head;
can’t be dependent)

3.4.1 Worked Example: Shift-Reduce Dependency Parsing

Figure 14: We try to produce a dependency parse for “Kim saw Sandy” (us acting as the oracle).
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Figure 15: The stack only has the root, so only possibility is Shift.This adds “Kim” to the stack.

Figure 16: Again, can only Shift (if we applied RightArc, we’d just get that “Kim” is the head word - which it
isn’t).
Hence, “saw” is added to the stack.

Figure 17: Since “saw” is the head word, the oracle should create a dependency saw → Kim by applying LeftArc.
This then pops “Kim”.

Figure 18: As above, can only Shift, and add “Sandy” to the stack.
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Figure 19: “saw” is the head word, so apply RightArc to produce saw → Sandy, and pop “Sandy”.

Figure 20: Nothing left in the word list, and “saw” is the head word, so apply a final RightArc to produce
root → saw, and pop “saw”.
This completes the parse.

3.5 Additional Dependency Parsing Methods

• Can CYK be applied to dependency parsing?

– can be adapted:

∗ naive: O(Gn5)

∗ Eisner algorithm: O(Gn3)

• What is graph based parsing?

– construct fully connected digraph

– assign a score to each edge

– use maximum spanning tree to find dependency tree with highgest score

– O(n2)

• How do the different dependency parsers compare?

1. Conversion:

– constituent-parses lead to accurate dependency parses
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– slower than direct dependency parsing

– treebanks may only have dependency form

2. Transition:

– no optimality guarantee

– linear

– projective only (unless tweaked)

3. Graph:

– optimal

– quadratic

– not necessarily projective

• What considerations should be used when picking a parser?

– constituent or dependency

– how runtime/memory efficient is it

– can you obtain partial parses (i.e as the sentence is inputted), or do you parse sentence at once

– can you retrain the system

4 Semantics from Syntax

4.1 Formalising Meaning

• What are semantics?

– the study of meaning of words

• What is semantic parsing?

– process of producing meaning representations

– for example, when reading a menu in a restaurant, we need to understand meaning (what is food? how
is food cooked? what is the result of applying a recipe?)

– semantic parsing takes sentences, and produces a representation of its meaning

• What exactly is meaning?

– in NLP, focus on whether a computer can behave as an understanding entity

∗ can it maintain a dialogue (Turing test)

∗ can it perform effective machine translation

∗ how well does it engage in question answering

• What considerations should be made when defining a question answering agent?

– agent which answers question using natural language, given a knowledge base and English text

– needs to understand:

∗ sentential semantics: meaning derived from word combinations; understand the whos, whats
wheres, whys and whens

· understands impact of word order on meaning:

“John loves Mary.” ̸= “Mary loves John.”

If someone asks “Who loves Mary?”, this should answer “John”.

· understands inference:

“John loves Mary.” =⇒ “Someone loves Mary.”

If someone asks “Is Mary loved?”, this should answer “yes”.

19



∗ lexical semantics: meaning derived from word meaning

· if asked “Is snow white?”, system should know what “snow” means in our world, that “white”
is a colour, what “colour” is, etc ...

· understands that “John” represents a man, that the act of “love” is very dissimilar to the act of
“hate”, but similar to that of “like”

• How are syntax and semantics related?

– sentence meaning is very related to sentence syntax

∗ consider
“John loves Mary.” “Mary loves John.”

∗ syntax: different; in one, “John” is the subject; in other, “John” is the object

∗ semantics: in one, “John” is loving; in other “John” is loved

– syntactic ambiguity and semantic ambiguity are related

∗ intended meaning used to disambiguate syntactic ambiguity when annotating parse trees

∗ syntactic ambiguity often ledas to semantic ambiguity

∗ however, lack of syntactic ambiguity doesn’t mean lack of semantic ambiguity:

· word sense: “bank” (as financial institution or side of a river) can form a grammatical sentence,
whilst being meaningless semantically:

“I placed my money in a bank (of a river)”

· semantic scope: for example:

“Every man loves a woman”

is syntactically unambiguous, but semantically it has 2 meanings (every man loves the same
woman, or every man has a unique woman who they love)

· anaphoric expression: for example:

“I love this woman. She makes me happy”

we need to understand that “she” refers to the woman who is loved

4.2 First Order Logic and Semantic Representations

• What are desired properties of semantic representations?

– we focus on representations of literal meaning (as opposed to metaphorical meaning)

– any representation of meaning should satisfy:

1. Unambiguity: a sentence must be represented uniquely (i.e the different interpretations of “I
made her duck” should have different semantic representations)

2. Automated Inference: derive true conclusions from meaning representations

3. Verifiability: truth value of a sentence must be verifiable, given a world model

4. Canonical Forms: distinct sentences with the same meaning should be mapped to the same
meaning representation (i.e “John loves Mary”, “Mary is loved by John”, “John is in love with
Mary” should all have the same semantic representation)

5. Expressiveness: able to handle diverse subject matters, from any natural language

• Why is prepositional logic not apt for semantic representations?

1. Prepositions encode the meaning of a whole phrase, so no understanding of the composition of the
preposition (i.e if P = “Fred ate rice”, the variable P has no understanding of what “Fred”, “ate” or
“rice” indicate)
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2. Lack of universal/existential quantifier (can’t express simple notions, such as “everyone eats rice”,
nor derive inferential knowledge):

“Everyone eats rice” =⇒ “Someone eats rice”

3. Hard to produce canonical forms

4. Not expressive

• Why is FOL a suitable knowledge representation?

– For a recap of FOL, this link is fantastic.

– it satisfies all the requirements for producing a powerful semantic representation

• What are Davidsonian Semantics?

– an extension of FOL to include events

– particularly useful for temporal relations and tense logic

∗ the action of “eating” can be undertaken at many temporal stages (i.e “I ate”, “I’m eating”, “I will
eat”)

∗ we can represent the now using n; then we can write:

“Fred ate rice” =⇒ ∃e(eat(e, fred, rice) ∧ e ≺ n)

to say that the action of eating occurred before the current time

∗ we can apply modifiers to the event variable:

“Fred ate rice with a fork at midnight”

=⇒ ∃e(eat(e, fred, rice) ∧ e ≺ n ∧ ∃x(with(e, x) ∧ fork(x)) ∧ at(e,midnight)))

We are adding extra information to the information regarding the event, such as it happening during
midnight, and involving the use of a fork. Notice, wedge elimination means that this expression
implies “Fred ate rice”.

4.3 Lambda Calculus

• What is the Lambda Calculus?

– the basis of the best programming language: Haskell

– a model of computation, based on function abstraction and application using variable binding and
substitution

– used to represent simple addition, to produce Turing machines

– particularly useful to abstract FOL expressions, which is used in semantic analysis

• How is Lambda Calculus used in FOL?

– allow us to substitute values into free variables of FOL expressions:

λx.ϕ(a) = ϕ[x/a]

– the function λx.ϕ is an example of lambda abstraction

– the expression ϕ[x/a] is an example of beta reduction

– for example:

λy.λx.(∃e(eat(e, x, y) ∧ e ≺ n))(rice)

= λx.(∃e(eat(e, x, rice) ∧ e ≺ n))

– we can even use lambda expressions as arguments:

λP .(P (fred))(λx.(∃e(eat(e, x, rice) ∧ e ≺ n))

= λx.(∃e(eat(e, x, rice) ∧ e ≺ n))(fred)

= ∃e(eat(e, fred, rice) ∧ e ≺ n)
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4.4 Compositional Semantics: Building Semantics from Syntax

• What is compositionality?

– solid theory of meaning:

“The meaning of a complex expression is a function of the meaning of its
parts, alongside the rules used to combine them.”

– this means that semantic parsing can be built by using syntactic parsing: we just need

∗ Lexical Meanings: associate a FOL expression to each word in lexicon

∗ Composition Rules: augmenting CFGs with ways of composing the FOL expressions

• How can semantic attachment be used to augment CFGs?

– in standard CFG, we have rules:
A → α1 α2 . . . αn

– we can denote the semantic meaning of a non-terminal via:

αi.Sem

– the semantic meaning for the rule above can be described as a function of the semantic meanings
of its derived non-terminals:

A.Sem = f(α1.Sem, . . . , αn.Sem)

– in some cases, this can be summarised in the following way. Consider the production:

S → NP V P

This can have a semantic meaning:

S.Sem = V P.Sem(NP.Sem)

that is: V P.Sem is a functor, which takes as argument NP.Sem (in particular, we can think of V P.Sem
as a lambda expression, and NP.Sem as its argument)

– if we have unary rules, the semantic meanings gets “passed up”:

MassN → rice {rice.Sem = rice} =⇒ MassN.Sem = rice

• How can syntactic parsing lead to semantic parsing?

– we can construct a syntactic parse, and then apply the semantic rules of the augment CFG, as
described above:

Figure 21: Lambda calculus lends itself very well for composing FOL expressions, according to some augmented
CFG.
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Figure 22: From the syntactic tree of “Fred ate rice”, we can obtain a semantic expression, based on Lambda
Calculus.

4.4.1 Issues with Naive CFG Augmentation

Figure 23: The problem with the above grammar is it can create invalid lambda expressions (the second argument
of eat should be a variable or symbol, not a lambda expression).
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Figure 24: To solve the above, we can modify how we define the semantic meaning of S, by applying NP.Sem as
a functor (instead of as an argument, as above). For this to produce well-formed expressions, we modify how noun
phrases are defined (so now simple nouns, like “Fred”, are defined as properties).

Figure 25: The above modification still produces a problem: “every grape is eaten” requires that λz is on the
outside of the expression, but the current grammar has it as part of the implication, which is ill-formed.

Figure 26: We can modify how transitive verbs are applied semantically, which solves the issue above.
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Figure 27: All the above allows us to define a more robust grammar.

Figure 28: The derivation for “Every man ate rice” now looks like.

4.5 Ambiguity and Underspecification

• Do semantics attached grammars deal with semantic ambiguity?

– can’t deal with scope ambiguity (i.e “Every man loves a woman” is syntactically unambiguous, but
has 2 semantic interpretations)

– it could be useful to derive grammars which encode both semantic representations in a general form

• How can scope ambiguity be handled?

1. Enumerate All Interpretations: unfeasible - computations grow exponentially with scope operators
(“Every student
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2. Semantic Underspecification: build FOL formulae which underspecifies the semantic scopes of
quantifiers (since the quantifiers define how the FOL “bits” are combined together, by underspecifying
them, we don’t restrict ourselves to any one interpretation)

• How do we apply underspecification in practice?

– as an example, we can consider “Every man loves a woman”:

Figure 29: Both interpretations have similar trees; the presence of the scopes is what defines what we have at the
terminals, and thus, defines the different meanings that can be derived.

– we can label each node of the tree l1, . . . , ln

– then, provide constraints on the FOL “bits” which can appear at each label
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Figure 30: Here, we have set constraints, such that we have:

l1 : ∀x(man(x) =⇒ h3) l3 : ∃y(woman(y) ∧ h5)

If we put l1 first, then we can assign h3 = l4 [∃y(woman(y) ∧ h5)] and h5 = l3 [love(e, x, y)] to obtain “For every
man, there is a woman whom that man loves” (so ∀ outscopes ∃).
Alternatively, by putting l4 first, and assigning h5 = l1 [∀x(man(x) =⇒ h3)] and h3 = l3 [love(e, x, y)], we obtain
“There exists a woman such that every man loves that woman” (so ∃ outscopes ∀).
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