
FNLP - Week 6: Syntactic Parsing

Antonio León Villares

March 2022

Contents

1 Syntax 2
1.1 The Need for Syntax . 2
1.2 Constituents . 2
1.3 Context Free Grammars . 4
1.4 Chomsky Normal Form . 6

2 Syntactic Parsing 7
2.1 The Purpose of Parsers . 7
2.2 The Issue with Structural Ambiguity . 8
2.3 Top-Down Parsing . 9
2.4 Bottom-Up Parsing . 9
2.5 The CYK Algorithm . 10

2.5.1 Worked Example: CYK . 13

3 Statistical Parsing 20
3.1 Probabilistic Context Free Grammars . 20
3.2 Issues with PCFGs . 22
3.3 Most Likely Parse: A Probabilistic Distribution Over Parse Trees . 23
3.4 Probabilistic CYK . 24

1

Week 5 involved strikes, so no lectures were released

1 Syntax

1.1 The Need for Syntax

• What is syntax?

– the way in which words are arranged together

• Why is syntax important?

– necessary to develop an accurate model of language

– BOW, N-Gram and HMMs not good enough, since they rely on a fixed-length history

– for example,
“Looking at the amazing view, he couldn’t help but gasp”

a trigram model would have to predict “gasp”, given “help but” - unlikely for this to be successful;
however, we could have easily predicted it

– long-range dependencies are important for a language model: words depend on each other, inde-
pendently of many intervening words between them:

• What is a theory of syntax?

– theory explaining which sentences are grammatical/well formed

– this need not mean that a sentence is meaningful (i.e “Colourless green ideas sleep furiously” is gram-
matical, but doesn’t make sense)

– the 2 (main) theories of syntax are:

∗ constituency structures

∗ dependency structures

1.2 Constituents

• What is a constituent?

– a group of words (potentially a single one), which may behave as a single unit

– for example, noun phrases

• How can we test if a group of words is a constituent?

1. Substitutability We can “swap” constituents of the same type to produce well-formed phrases:

Figure 1: Notice, for example “My” can’t be swapped, since “My sleep soundly” doesn’t make sense.

This more generally applies to POS categories (i.e we can swap 2 adjectives, and a phrase will still make
sense)

2

2. Preposed/Postposed Constructions A constituent can be placed at different places of a phrase, with
the phrase still making sense:

On September seventeenth, I’d like to fly from Atlanta to Denver.

I’d like to fly from Atlanta to Denver on September seventeenth.

I’d like to fly on September seventeenth from Atlanta to Denver .

However, the same thing won’t apply if for example we use the individual words:

On I’d like to fly September seventeenth from Atlanta to Denver .

3. Coordination We can coordinate constituents of the same type with conjunctions (and, or, but)

4. Clefting Only consitutents can appear in:

******* is/are who/what/where/when/why/how . . .

• What is a constituent tree?

– a tree which breaks down a sentence into its constituents

3

Figure 2: The internal nodes are phrases (i.e noun phrases like “a sandwich”), whilst the nodes immediately above
words correspond to POS tags

1.3 Context Free Grammars

• What is the structure of context free grammars?

– an example of a constituency structure: it is built from constituents

– CFGs are (formally) a 4-tuple:

1. N: set of non-terminal symbols (i.e NP to represent a noun phrase)

2. Σ: set of terminal symbols, disjoint from N (i.e words like “flight”)

3. R: set of productions of the form:

A → β, A ∈ N, β ∈ Σ

4. S: a start symbol

4

Figure 3: A possible constituent tree derived from the CFG above.

5

• What is a derivation?

– a set of strings which can be produced from a CFG

– can be represented using a parse tree

• What are treebanks?

– corpora in which sentences are annotated using a parse tree

• What types of equivalences can arise from different grammars?

– Strong equivalence: generate same set of strings and assign same phrase structure to each sentence

– Weak equivalence: generate same set of strings (but different phrase structure assignment)

• Why are these grammars called “context free”?

– the production rules are applicable independent of context

Figure 4: Here, “The dog” can be generated, without worrying about what comes after. For example, “The dog
ate a sandwich” is perfectly valid.

1.4 Chomsky Normal Form

• What format do grammars in Chomsky Normal Form take?

1. no ε productions (i.e no production rule can have the form A → ε)

2. a production can only have the following forms:

A → a

A → B C

where a is a terminal, and A,B,C are non-terminals

– in particular, grammars in CNF ensure binary branching (except at the terminal nodes)

• Why are CNFs important?

6

– any grammar can be converted to aweakly equivalent CNF (so same language generated, but different
syntactic tree)

– CNFs are the grammars on which the CYK Algorithm functions

• How can a grammar be converted to CNF?

– rules which produce more than 2 non-terminals can be changed:

A → B C D

gets converted to:
A → B X X → C D

– unary rules can be converted to produce terminals:

C → C1 =⇒ C → c1

– you also remove ε productions (but not relevant to this course)

Figure 5: The format of the latter representation is useful, since it allows an easy reverse conversion for post
processing.

2 Syntactic Parsing

2.1 The Purpose of Parsers

• What is syntactic parsing?

7

– the process of mapping a sequence of words to its parse tree

– getting this structure allows us to interpret meaning

• Why is parsing important?

– correct structure =⇒ correct meaning

– efficiency: impossible to search all possible structures which match a sequence of words

• What are the 2 fundamental properties of parsers?

1. Directionality: how is the parse tree built?

– top-down: from S to terminals

– bottom-up: from terminals to S

– mixed: i.e start from left corner

2. Search Strategy: how do we explore the space of possible parse trees, as to find the parse tree fitting
our word sequence?

2.2 The Issue with Structural Ambiguity

• Why is parsing hard?

– typical sentences can have immense parse trees

– most importantly is the issue of structural ambiguity: how a given sequence can have several pos-
sible parse trees

• How does structural ambiguity present itself?

1. Attachment Ambiguity Arises from the fact that constituents can be “attached” to the parse tree
at different places. For example:

“One morning I shot an elephant in my pajams”

represents PP-attachment ambiguity: we don’t know if the prepositional phrase “in my pajamas”
attaches to:

– “I”: the person who shot was wearing pajamas at the time of the shooting

– “an elephant”: the elephant which got shot was wearing the shooter’s pajamas

2. Coordination Ambiguirty Arises from the fact that conjunctions can be applied in different ways.
For example:

“old men and women

could refer to a group of old men, alongside women; or a group of both old men and old women.

• Is parsing unambiguous sentences easy?

– sentences might be unambiguous, but still hard to parse

– this is due to local ambiguity: a part of a sentence is itself ambiguous, even if the whole sentence isn’t

– for example:
“Book that flight”

is unambiguous, but “book” is (it can be a verb or a noun), so a parser would have to consider both
possible parsers, until it reaches the end of the parsing

8

2.3 Top-Down Parsing

• How does top-down parsing search the parse tree space?

– start with S nodes

– choose one of the children to continue exploring

– repeat with the node’s child, until we reach a suitable parse tree

• What is depth first search?

– go down a branch of the space as far as possible

– if we reach an impossible parse tree, backtrack

• What is breadth first search?

– expand all branches in parallel

– generally not good: the number of branches is too large, so will take a long time to find a suitable parse
tree

• What is best first search?

– define a scoring function

– score each partial parse, exploring the highest scoring option next

2.4 Bottom-Up Parsing

• What is bottom-up parsing?

– begin with words in the sequence

– try to build a parse tree which fits the word sequence structure

– successful parse if S is reached

9

• How do top-down and bottom-up parsing compare?

– top-down never explores parse trees which can’t be grammatical

– however, bottom-up explores parse trees which will always lead to parsing the sequence

2.5 The CYK Algorithm

• What is the CYK algorithm?

– efficient (dynamic programming) bottom-up parser for CFGs

– it applies to:

∗ the recognition problem (is a sentence derived by a CFG?)

∗ the parsing problem (what is the derivation tree of the sentence?)

10

– it relies on grammars being in CNF form

– My IADS notes on CYK and CNF conversion

• What problems does CYK solve?

– large search space: instead of exploring the whole search space (potentially recomputing the same
parse trees), it stores partial parses

– ambiguity: stores all possible parses, so reduces the ambiguity problem

• What is the recursive idea in CYK?

– the parse of a string depends on the parse of its component substrings

– for example, to parse “Book the flight through Houston”, we need to consider whether we can parse
“Book” and “the flight through Houston”

– as a base case, we will be parsing individual words (i.e using POS tags)

• What table structure does CYK employ?

– consider a string with n words; we store results in an n× n table (rows from 0 to n− 1, columns from 1
to n)

– element (i, j) contains the partial parse (if any) of the substring span(i, j)

Figure 6: For example, span(0, 1) = “I”, whilst span(3, 5) = “morning flight”.

– ultimately, we want to know whether entry (0, n) contains S as a partial parse

– it must be noted that we only use the upper triangular part of the table (since we require that i > j)

– the table is filled in top to bottom and left to right, to ensure that all possible substrings are parsed
beforehand

• What is the full CYK algorithm?

– from the book:

11

https://alv31415.github.io/notes/IADS/IADS-Sem2.pdf

Figure 7: Technically, this only recognises whether a word sequence is well-formed; to get the parse tree, we just
need to ensure that each entry is paired with a pointer, indicating where it was derived from.

– in lectures, the table is slightly different (it is n × n × n and boolean, with entry (i, j, C) indicating
whether span(i, j) can be parsed as C or not)

Figure 8: This is how preterminal rules (i.e terminal productions) are handled.

Figure 9: This is how binary rules are handled. Notice, we can see the runtime will be O(n3|R|), where R is the
set of all productions in the grammar.

12

Figure 10: If we define a CNF which allows unary productions (i.e C1 → C2), we only need a slight modification.

• What does the CYK algorithm not account for?

– the algorithm can fail if there are chains of rules: that is, if we have A → B or B → C, then
A → B → C =⇒ A → C is a perfectly valid production

– however, CYK won’t account for this

– the algorithm could be adjusted (i.e run repeatedly until entries don’t change)

– in practice, extend the grammar to enforce transitive closure (i.e include a rule A → C as part of the
grammar)

– or just make sure that there are no unary rules, that is, ensure you work with a CNF, and
you won’t get these dumb problems

2.5.1 Worked Example: CYK

We consider parsing:
“lead can poison”

13

Figure 11: We begin by considering the possible derivations for words. We can first think of them as POS tags.

14

Figure 12: For some reason, they also consider unary rules, so in this case we also need to consider them. In
particular, since V is a possible tag for “lead”, and there is a production V P → V , V P is also a valid parse for
“lead”.

15

Figure 13: We now consider parsing “lead can”. This relies on combining the parses of “lead” and “can”. The only
possible combination which has a valid production is NP → NNP , so the only possible label is NP .

16

Figure 14: Similarly, for “can poison”, we consider the parses of “can” and “poison”. We can see there are 3 possible
productions: S → NPV P , V P → MV and NP → NNP .

Now for “lead can poison”, we need to consider 2 types of parses: “lead” + “can poison” and “lead can” +
“poison”.

17

Figure 15: For “lead” + “can poison”, there are only 2 possible productions: S → NPV P and NP → NNP .

18

Figure 16: For “lead can” + “poison”, there is only 1 possible production: S → NPV P .

19

Figure 17: Hence, this sentence is ambiguous in the grammar, since it has 2 possible parse trees (but the second
one is less likely - hint for the next section).

3 Statistical Parsing

3.1 Probabilistic Context Free Grammars

• What are PCFGs?

– a natural extension of CFGs

– formally defined as 4-tuples:

1. N: set of non-terminals

2. Σ: set of terminal symbols, disjoint from N

3. R: set of productions:
A → β[p], A ∈ N, β ∈ Σ, p ∈ [0, 1]

4. S: a start symbol

– here p is the probability of the production A → β, where:

p = P (A → β) = P (β | A)

such that:
∀A ∈ N,

∑
β:A→β∈R

P (A → β) = 1

20

• Why are PCFGs useful?

1. Disambiguation: allow us to compute the probability of parse trees, so we can pick the most
likely parse

2. Language Modelling: allow us to compute the probability of a sentence

• How is the probability of a parse tree computed?

– consider a sentence S with parse tree T

– then the probability of having S parsed with T is the product of all the productions used to expand
non-terminal nodes. In particular, if n nodes are expanded using rules:

LHSi → RHSi, i ∈ [1, n]

then:

P (T, S) =

n∏
i=1

P (RHSi | LHSi)

– however, notice that:
P (T, S) = P (T)P (S | T) = P (T)

where we use the fact that P (S | T) = 1 (that is, T always generates S, since it is its parse tree)

– thus, we can talk about the probability of a parse tree, independently of the sentence used to generate
it (this makes sense, since the preterminal probabilities are not required to compute the probability
P (T, S))

21

3.2 Issues with PCFGs

• What are the 2 key problems of PCFGs?

1. they make an oftentimes invalid independence assumption

2. no considerations for lexical information

• Why is the independence assumption poor?

– PCFGs expand non-terminals independently of context

– this is why we multiply expansion probabilities to compute the probability of a tree

– this is an issue: for example, if an NP can be expanded in 2 ways, one expansion will be more likely than
the other in a given context (i.e in a subject, NP → PRP occurs 91% of the time, but the production
NP → PRP in general is much lower), but PCFGs don’t capture these relationships

• Why is lexical information important?

– PCFGs will be biased for more likely structures (i.e PP tends to attach to NP more often than to VP)

– if lexical considerations were made, this probability could be more “refined” (i.e the preposition “into”
has more affinity for the noun “sacks” - “Workers dumped sacks into a bin”; but the preposition “of”
has more affinity for the verb “caught” - “Fishermen caught lots of fish”)

22

3.3 Most Likely Parse: A Probabilistic Distribution Over Parse Trees

• How are production probabilities computed?

– the ML estimate is:

P (α | X) =
C(X → α)

C(X)

that is, the proportion of times in which the non-terminal X produced α

– these probabilities are typically computed using a treebank

– smoothing like Good Turing can be used (particularly helpful for preterminal productions)

• When is a PCFG consistent?

– when the sum of probabilities of all sentences in the grammar is 1

– this can happen with, for example, rules like S → S[1], which cause infinitely long strings

• What is a proper distribution over parse trees?

– when the sum of probabilities of all trees in the grammar is 1:∑
T

P (T) = 1

– if we estimate probabilities using MLE, we are guaranteed a proper distribution

23

3.4 Probabilistic CYK

• What is the best parse according to a PCFG?

– PCFGs allow us to define a best parse, as the most likely parse tree:

T̂ = argmax
T∈G(x)

P (T)

where G(x) is the set of all derivations of a sentence x

– finding all possible T is exponential in nature, so we need to use probabilistic CYK

• What is probabilistic CYK?

– extension of CYK, adapted to PCFGs in CNF

– when converting to CNF, the production probabilities need to be adapted

– for a sentence with n words, and a PCFG with V non-terminals, produces a n+ 1× n+ 1× V table

– entry (i, j, C) corresponds to the highest probability of span(i, j) being a constituent of type C

Figure 18: Again, use backpointer to keep track of where the most likely probability comes from to reconstruct the
tree.

Figure 19: For handling preterminal rules.

24

Figure 20: For handling binary rules. Again, to handle the unary productions, a slight modification is required.

• How can we deal with unary closure?

– notice, if we have A → B and B → C, adding A → C (by defining P (A → C) = P (A → B)×P (B → C)),
will break the consistency of the PCFG

– necessary, since a rule directly defined by A → C might have a very low probability, but A → B and
B → C might be very likely

– need to store the fact that A → C is composite (i.e don’t evaluate the product P (A → B)×P (B → C)),
so that we can recover the parse tree

– rules like X → X should have probability 1

• Should PCFGs worry about infinite productions or loops?

– no, since such productions will have infinitesimal probabilities (large products)

– since CYK selects largest probability, such situations won’t be considered

• How can probabilistic CYK be sped up?

1. Basic Pruning: only store labels with high probabilities (i.e within a factor of N of the most likely
label); only consider rules which lead to trees with non-zero probabilities

2. Coarse-to-fine Pruning: use simpler grammar to parse and precompute probabilities for each span(i, j);
then consider labels with non-negligible probabilities for the full parse

25

	Syntax
	The Need for Syntax
	Constituents
	Context Free Grammars
	Chomsky Normal Form

	Syntactic Parsing
	The Purpose of Parsers
	The Issue with Structural Ambiguity
	Top-Down Parsing
	Bottom-Up Parsing
	The CYK Algorithm
	Worked Example: CYK

	Statistical Parsing
	Probabilistic Context Free Grammars
	Issues with PCFGs
	Most Likely Parse: A Probabilistic Distribution Over Parse Trees
	Probabilistic CYK

