ENLP - Week 3: More Smoothing, Spelling Correction, Dynamic

Programming & Naive Bayes

Antonio Leon Villares

Feburary 2022

Contents
1 Further Smoothing 2
1.1 Recap: Smoothing L 2
1.2 Imterpolation e 3
1.3 Back-Off Smoothing e 3
1.4 Kneser-Ney Smoothing e 4
1.5 Distributed Representations L L e b)
2 The Noisy Channel Model & Spelling Correction 5
2.1 Defining the Noisy Channel Model 5
2.2 First Try: Spelling Correction 0 o e 6
2.3 Dynamic Programming: Edit Distance oo oL 8
2.3.1 Worked Example: Edit Distance 10
2.4 Expectation Maximisation Lo Lo e e 12
3 Text Classification 13
3.1 The Classification Task e 13
3.2 Naive Bayes: Supervised Classification L 13
3.2.1 Naive Bayes: Worked Example 16
3.3 Naive Bayes: Self-Supervised Classification o 17
3.3.1 Naive Bayes (Semi-Supervised): Worked Example 17
3.3.2 Naive Bayes (Semi-Supervised, EM: Worked Example 19
3.3.3 Evaluating Naive Bayes e 20

For edit distance, I recommend checking my notes for TADS here.

1 Further Smoothing

1.1 Recap: Smoothing

e How does sparsity affect n-gram models?

— n-grams assume a fixed length history to reduce the effect of sparsity

— not enough: unseen items = 0 counts = n-gram assumes items can never exist
e How does smoothing resolve the sparsity problem?

— transfer probability mass from seen elements to unseen ones
e How do Laplace/Lindstone smoothing work?

— halluccinate o < 1 observations for each word in vocabulary

— transfers too much probability mass, reducing the effect of high frequency counts
e How does Good-Turing improve the distribution of probability mass?

— the halluccinated counts are more adaptive:

Neyr
= (c+1)==
e+ D=
where N, is the number of n-grams observed ¢ times
— the probability becomes:
C*
Per = —
n

For a trigram “I spent three”:

* n: counts of “I spent”
* ¢: count of “I spent three”
x ¢*: adjusted count of “I spent three”

e Is Good-Turing infallible?

— still has problems:

* unknown vocabulary size
* “holes” in higher frequency counts
* discounts high frequencies

e What is a fundamental problem in all smoothings so far?

— unknown n-grams which are smoothed will all receive the same probability, regardless of the n-gram:

P(drinkers | Scottish beer) = P(eaters | Scottish beer)

— the former should naturally have higher probability, but smoothing doesn’t know this

— to solve this, we can incorporate information from lower order n-grams (so use our knowledge of
“beer drinkers” and “beer eaters”)

https://github.com/alv31415/notes/blob/master/IADS/IADS-Sem2.pdf

1.2 Interpolation

e How does interpolation use lower-order n-grams?

use a linear combination of all lower-order n-grams:
p(wn | Wn—2, wnfl) = Alp(wn) + >\2P(wn | wnfl) + AB-P(U)n | Wn—2, wnfl)
P(three | I, spent) = A\ P(three) + Ay P(three | spent) + AsP(three | I, spent)

low-order n-grams have robust counts (but limited context)
high-order n-grams have better context, but sparse counts

interpolation is a way to get the best of both worlds

¢ How do we determine the \;?

these are known as interpolarion parameters or mixture weights (since they defined a mixture
model - a distribution composed of a combination of distributions)

we pick \; such that they maximise likelihood (or minimise perplexity) in a held-out corpus (done
using expectation maximisation)

we must have that:

dai=1

1 = Y Pnr(wslwr,w)

w3

=) [\ Pu(ws) + Ay Pa(wsfwa) + Az Ps(ws|wy, ws)]

w3

= M Y Pi(ws)+ Ay Y Pa(wslws) + Az Y | Pa(ws|wy, ws)

w3 w3 w3

= AM+X+ A3

e How can we pick more sophisticated interpolation weights?

define the weights by conditioning them on context (i.e high frequency context = larger weights)

1.3 Back-Off Smoothing

e How does back-off use lower-order n-grams?

defines the probability of an n-gram using the largest order n-gram with non-zero evidence

for example, if “I spent three years” never appears, consider “spent three years”; if this never appears,
consider “three years”; if this never appears, consider “years”

e Does this define a probability distribution?

if we add different order n-gram probabilities, the result won’t be 1

* think of it: if a trigram has probability zero, changing if for a non-zero bigram will increase the
overall probability mass

as with Good-Turing, need to discount probability mass from higher-order n-grams

e What is Katz-Backoff?

— the way of converting the back-off into a true distribution:

Backoff
E—

Raw Aéter |
trigram smoothing bigram

Figure 1: The first bar represents the raw trigram counts. When applying Good-Turing, the counts are proportion-
ally squashed, to leave a probability mass of % for the bigrams. What Katz back-off does is take the bigram counts

(green column), and scale the probabilities to fit in the red square of probability mass. In this way, we ensure that
the probability mass across trigrams is preserved.

— mathematically:

PB()(’wil’wi—N+1, ceey 'wi—l) -

fP*(wil'wi—N+1a ey Wi—1)

if count(wi_NH, ey ’LU,,,) >0

(Wi N1, -y Wi—1) Pro(wi|wi— N2, ..., Wi—1)
\ else

where:

— Ppo is the Katz Back-Off probability for the n-gram

— P* is a discounted probability for a seen n-gram

— « is a back-off weight used to distribute the probability mass of higher n-grams across lower n-grams

1.4 Kneser-Ney Smoothing

e What does Kneser-Ney Smoothing focus on?

— how certain frequent words only appear in limited context (low diversity of history)

— for example, “York” can have high frequency in a text, but it will typically occur after “New”

— the probability of “York” appearing after any other word should be lower than the probability of “York”
appearing after “New”

e How does Kneser-Ney deal with diversity of history?

— we consider the number of different histories of a word (i.e the number of unique words which occur
before a given word w;):
N1 (o wi) = [{wi1 [e(wi—1,w;) > O}

— instead of using an MLE estimate, use count histories to get word probabilities:

e How is Kneser-Ney used in practice?

— we use interpolated Kneser-Ney:
max(c(w;—1,w;) —d,0)
c(wi—1)
where d is a discounting constant, and A is a normalising constant use dto distribute probability mass:
d
>y (wiz1v)

— in general, a recursive formula is used for this, for more than bigrams

Prn(w; | wim1) = + Mw;—1)Pr n(w;)

Awi—1) = X [{w | e(wi-a, w) > O}

1.5 Distributed Representations
¢ What are distributed language models?

— use of neural networks to project words into a continuous space

— in this way, words can be represented by vectors, such that similar words are mapped to vectors which
are close

— these vectors are known as embeddings

useful: if we know P(salmon | caught two), we can attempt to derive P(swordfish | caught two)
(n-grams can’t do this!)

2 The Noisy Channel Model & Spelling Correction
2.1 Defining the Noisy Channel Model

¢ What is the noisy channel model?

— we consider a system in which an input sequence is polluted with noise
— we only get the output after the noise has been added
— a noisy channel model is a way of modelling the way in which noise is added to the input sequence

symbol noisy/ output
y —p | errorful |[=—P P
sequence encoding sequence

P(Y) P(XIY) P(X)

Figure 2: For example, in speech recognition the input Y can be a sequence of spoken words, and the output
X will be an acoustic signal. We want to get the noisy channel model which tells us the probability P(X|Y)
of obtaining output X, given input Y.

e How does the noisy channel model apply to spelling errors?

— we can think of it in terms of spelling correction:

1. P(Y) is a language model: the distribution of words intended by the user
2. P(X|Y) is the noise model: what user is likely to type, given their intention
3. P(X): the distribution of what the user sees

— if we want to correct spelling, we can (potentially) pass every word through the model, and see which
one comes closest to the misspelled word

e How can we describe the noisy channel model mathematically?

— we want a model which maximises P(z|y); in other words, given an output x, we want to pick the y
which is most likely to have produced it:

g = argmaxP(y|z)
yev

— using Bayes:

9 = argmaxP(x|y)P(y)
yeVv

e Why bother using Bayes rule? Can’t we train P(y |) directly?

— in practice yes

— however, training P(z | y) or P(y | z) requires similar effort: in both cases we need a corpus of
input-output pairs:

* speech recognition: speech wave forms and transcribed text
* spelling correction: misspelled words and correct spelling
— such data is rare, so the model won’t be too good
— however, training P(y) is easy: it’s a language model, so plenty of data available

— if we train both P(z | y) and P(y), the latter will be very good, so it adds reliability for the overall
model

— How can we train the noisy model?

* naively, we can search through all possible inputs, until we find the best one
* this is a search problem, which is rather inefficient (nearly infinite possible inputs)
* instead, we make assumptions, and use edit distance

2.2 First Try: Spelling Correction

e What simplified model can we use for spelling correction?

— we make 3 extremely unrealistic assumptions:

1. existence of large dictionary with real words
2. spelling mistakes not caused by word splits or merges

3. spelling mistaks create non-words by inserting, deleting or substituting characetrs in real
words

— under these assumptions, to correct mistakes:

1. Produce a list of all words y differing from the non-word x by 1 character
2. Return the y with the highest:
P(z | y)P(y)

e Under the above assumptions, how can we compute the noise model P(z | y)

— we assume that typing a character x; depends only on the character that was meant to be typed y;

— since we ignore context, we get that:

n

P(z |y =[] Plai | v)

i=1

— for example,
P(no | not) = P(n | n) x P(o| o) x P(— | t)

e What is an alignment corpus?
— the corpus used to compute the probabilities:
P(xi | yi)

— it contains alignments between our correct words y, and the misspelled words z

actual: n o - m u u ¢ h e
NN T R R O N N
intended: n o ¢t m u ¢ h e

- —
- — b
o —

Figure 3: We have one substitution (0 — ¢), one deletion (¢t — —) and one insertion (— — «). The actions are
always from the produced output, to the intended input.

e How do we use an alignment corpus to compute probabilities?

— construct a confusion matrix, with the rows indicating the intended input character, and the
columns indicating the output character

— each entry contain the number of times in which a character y; was typed as z; (including the empty
character “-” to account for deletion/insertion)

A B C D E F G H
168 1 0 2 5
136 1 0 3 2 0
5 6
1

<
/
8

6 111
17 4 157 6 1
10 0

IToOoOmMTmOn®X>
NFRFFRNRFRRO

(e}

o0

N

\l

oo

D WOoOYO1TL O 01 B~ W

o W o
W
N
O =
w O O
w
—
N
-\J

Figure 4: We intended to write C, but wrote G, a total of 36 times.

— apply MLE/smoothing to estimate probabilities. For example:

_c(H,H) 4 41
P(H | H) = c(H) 2+3+3+4 12 3

e How is the spelling correction system constructed?

— with the alignment corpus, we construct the confusion matrix

— we can then see how many words y are 1 edit away from z (for example, see this implementation by
Peter Norvig)

— finally, compute P(z | y)P(y), and pick the y that produces the largest probability

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

2.3 Dynamic Programming: Edit Distance

e What is minimum edit distance?

— the number of character changes required to convert a word into another word

* med(stall, table) = 3: delete s, change first 1 for b, insert an e at the end

* med(intention, execution): 5 actions

— a character change can have different values (for example, if a substitution costs 2, MED is known as
the Levenshtein distance)

e How many possible alignments are there?
— many possibilities

— MED seeks optimal alignments, but many non-optimal alignments are possible

There may be multiple best alignments. In this case, two:

S T A L L - S T A - L L
d | | s | i d | | i | s
- T A B L E - T A B L E

And lots of non-optimal alignments, such as:

S T A - L - L S T AL - L -
s d | i | i d d d s s i | i
T - AB L E - - - T A B L E

e Why is edit distance useful?

— it helps solve the 3 key problems in the naive approach above:

* unrealistic independence assumption
* errors typically occur in more than 1 character
* can’t always have an alignment corpus

— using edit distance, we can easily develop our spelling corrector (just need a dictionary of words)
e Can we compute edit distance with brute force?

— the number of possible alignments of 2 strings is exponential
— checking each possibility is unfeasible
e What is the edit distance algorithm?
— a dynamic programming algorithm, which guarantees O(mn) runtime (where m,n are the lengths of
the strings)
— the key idea is that the minimum distance between 2 string D(s[1,n],¢[1,m]) is one of the following:
x D(s[1,n],t[1,m — 1]) + cost(ins) (we insert a character into t)
x D(s[1,n — 1],¢t[1,m]) + cost(del) (we delete a character from t)
* D[s[1,n — 1],t[1,m — 1]) + cost(sub) (we substitute a character from t)

— we can employ this recursive idea, and store results in a table, in which entry D], j] corresponds to the
MED of s[1,1i],¢[1, j]

function MIN-EDIT-DISTANCE(source, target) returns min-distance

n<— LENGTH(source)
m<— LENGTH(target)
Create a distance matrix Dfn+1,m+1]

Initialization: the zeroth row and column is the distance from the empty string
D[0,0]1=0
for each row i from 1 to n do
D[i,0] < D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do
D[0,j] < D|0, j-1] + ins-cost(target[j])

Recurrence relation:
for each row i from 1 to n do
for each column j from 1 to m do
D[i, j] < MIN(D[i—1,j] + del-cost(sourceli]),

D[i—1,j—1] + sub-cost(sourcelil, target(j]),
Dli, j—1] + ins-cost(target[j]))

Termination

return D[n,m]

e What costs should be used in MED?

— we can choose them depending on how we want to define the importance of each operation

— for our noise model, we can compute the most probable way of changing one word into another by
using:
cost(sub(c,c’)) = P(c' | ¢)

— however, this leads to a Catch 22: to compute the cost of operations in edit distance, we need to use the
noisy channel model, which relies on alignments; but to get the alignments, we need to use the costs for
edit distance

e How can we keep track of the alignment after applying the edit distance algorithm?

— instead of using an alignment corpus, we can use the edit distance table to generate the alignment
— just use pointers in each cell to indicate how the substrings were aligned
— in particular:

* move down = deletion

* move right = insertion
* move diagonal right down = substitution

e What is MED used for?

— spell correction
— morphological analysis (how are words related?)

— aligning DNA sequences

2.3.1 Worked Example: Edit Distance

I . T | A | B | L | E |
0
S
T
A
L
L ?
Figure 5: We want to find the MED and alignment of stall and table.
H T | A | B | L | E |
0
S S|
T
A
L
L

Figure 6: We begin with med(S, —). Only possibility is to perform a deletion, so 1 action performed: D[1,0] = 1.
We add a pointer to show that S gets aligned with —.

Il T | A | B | L | E |

il el

Figure 7: We continue with med(ST,—). Only possibility is to perform 2 deletions, so 2 action performed:
D[2,0] = D[1,0] + 1 = 2. We add a pointer to show that ST gets aligned with ——.

10

0
11
12
13
14
15

Bl R !

Figure 8: The gist is the same as we move down the column, since we are performing deletions, to align “stall” with
the empty string.

0 +~1
0!
12
13
4
15

Figure 9: We now consider med(—,T'). Only possibility is to perform 1 insertion, so 1 action performed: D[0,1] = 1.
We add a pointer to show that — gets aligned with T

wnl B el B N1 R)

| T A | B L E
0 «—1

! 12
12
13
14
15

Figure 10: We now consider med(S,T). We consider the 3 possibilities.

We can make a substitution: (—, —) — (S,7). This has a cost of 2. Add a diagonal backpointer, since we align
S and T

We can make a deletion: (S,T) — (—,T). Hence, med(S,T) = med(—,T) + 1 = 2. Add a vertical pointer, since
we align (—,T) and (S, T).

We can make an insertion: (S,—) — (S,T). Hence, med(S,T) = med(S,—) +1 = 2. Add a horizontal pointer,
since we align (S, —) and (S,T)

Either way, we see that D[1,1] = 2.

| | | 1| w2

11

0 +1
T 12
12 N1
13
14
15

e |) w2

Figure 11: We now consider med(ST, —T'). We consider the 3 possibilities.

No need to substitute, since the last 2 characters align. Hence, med(ST, —T) = med(S,—) = 1.

Just look to the right, diagonal and top, and select the smallest plus the cost. In this case: D[1,1] +0 = 1,
D[2,0]+1=2+4+1=3, D[1,1]+1 =2+ 1= 3. Hence, we go to (1,1).

| T A | B | L E

0 +~1 «—2 3 +—4 5
! 12 +13 +4 +5 +6
12 N1 +—2 +3 +—4 95
13 12 N 2 +3 +—4
T4 13 12 13 N2 +3
15 14 13 14 NE —N\14

wnl Hunl Be 2 WO | R O]

Figure 12: The complete table. The MED is 4. The total number of optimal alignments is obtained by considering
all possible paths through the arrows.

2.4 Expectation Maximisation
e What stops us from using edit distance?

— we have a catch-22:

* to get the character alignment costs, we need the alignment probability (to ensure that edit
distance gives the most likely alignment)

* to get the alignment probability, we need edit distance to compute the character alignments
¢ What is expectation maximisation?

— algorithm used to estimate model parameters, when these, alongside auxiliary variables, are missing
— when parameters tell us about the variables, and variables tell us the parameters, but we have neither

e How can we use expectation maximisation with edit distance?
1. Initialise character alignment costs arbitrarily (i.e all to 1)
2. Run MED to get optimal character alignment
3. Use the alignments as an alignment corpus, and compute P(z; | ;)
4. Use the probabilities as new costs, repeating 2 and 3 until model parameters stop changing

e Is EM optimal?

— the above is hard EM, which converges to something (not nice to define mathematically)
— true EM (deals with probabilities, expect values) converges to local optima

— 0 are the model parameters, P(data | 6) is the likelihood of the model; true EM will converge to a
global maximum of the likelihood function

12

3 Text Classification
3.1 The Classification Task

e What is text classification?

— the process of taking an observation, extracting useful features, and assigning it a discrete class
— typically use supervised machine learning: use training data , labelled with classes, to learn how to
map an observation to a class

¢ How can we formalise supervised classification?

— we have an input z;
— a set of output classes ¢i,¢o,...,cup

— the supervised task involves using (input, class) pairs, to learn where a new input gets mapped to
e What is a probabilistic classifier?

— assigns a class using a probability
e What are some tasks handled by text classification?

— spam detection

— sentiment analyser

— topic classification

— authorship attribution

— native language identification

gender /dialect /political orientation
¢ What are the 2 types of classifiers?

— a generative classifier models how a class generates data (i.e we can sample from the distribution to
get instances of a class)

a discriminative classifier learns the features which can be used to discriminate between different
classes

for example, when classifying pictures of cats and dogs, a generative classifier learns how a dog/cat
looks; a discriminative classifier learns features used to discriminate (i.e whether there is a dog collar)

— generative classifiers tend to be probabilistic; discriminative are not generally (logistic regression
is, but ANNs/DTs aren’t)

e Can n-grams be used as a classifier?

— possible, but not practical:

* want to focus on words, not their organisation

* features need not be words (i.e POS tags, metadata)

3.2 Naive Bayes: Supervised Classification

¢ What is the multinomial naive Bayes classifier?

— a generative, probabilistic, Bayesian classifier

— generate a distribution, such that if we have a document d, and a set of classes, we derive:

¢ = argmazP(c | d)
ceC

e What features does Naive Bayes use?

13

— treats a document as a bag of words. For example:

“This was very exciting. This was great.”

would be given by d = {(this, 2), (was, 2), (very,1), (exciting, 1), (great,1)}
— each feature corresponds to the number of times a word appears
e Why is Naive Bayes called thus?

— it is Bayesian, since to learn the distribution we use Bayes Rule:

¢ = argmazP(c | d)

ceC
=ar maxi(|) P(c)
S P@
= argmazP(d | ¢)P(c)
ceC

* we can remove P(d): it’s just a constant across all classes
* P(c) is the prior: the probability of picking a class, without any prior knowledge of the document
*x P(d | ¢) is the likelihood: the probability of d being generated by class ¢

— it is Naive because estimating;:
P(d | c)P(c) = P(fi, f2,-- . fn | ©)P(c)

(where f1,..., f, are the features of d) is hard (data sparsity), so we make a naive assumption:

+x Naive Bayes assumes that features are conditionally independent given the class, so:
P(d | e)P(c) = [T P(fi | e)P(c)
i=1

* this means that according to Naive Bayes, a word occurs just because of the class
* it doesn’t consider word order, or the existence/non-existence of other words

e Why is Naive Bayes a linear classifier?
— instead of multiplying many small probabilities, we can add costs (negative log of probabilities)

¢ = argmin (log(P Zlog (filc))

ceC

— hence:

— this leads to a linear function in log space
e Are word counts the only type of features possible?

— binary features: f; =1 if a word appears, and 0 otherwise
— binarisation: don’t double-count words which appear more than once in a document
x for example, “and it was so fun, and so great”, “and” and “so” would only add 1 to the count
— ignore stopwords
+ might not always work: stopwords can be useful
* depressive people use more 1st person; people with schizophrenia use more 2nd person
— only use task-relevant words

x for example, in sentiment analysis, consider only sentiment lexicon (i.e brave, acclaimed are
positive; abysmal, cold are negative)

* however, some other words might be useful

x for instance, for computer reviews, “quiet” and “memory” can be useful

14

* if negations (i.e not, don’t, won’t) appear, we can change subsequent words via:
“not great” — “not NOT_great”

— more complex features: syntactic, n-grams (these are used in language identification - for example “nya”
can be indicative of Eastern European languages), morphological

e How does Naive Bayes learn the prior distribution?

— just use a MLE estimation:

where:

* N, is the number of documents in training with class ¢
% N is the total number of documents in training

the your model cash Viagra «class account orderz | spam?
docl | 12 3 1 0 0 2 0 0 -
doc2 | 10 4 0 4 0 0 2 0 +
doc3 | 25 4 0 0 0 1 1 0 -
doc4 | 14 2 0 1 3 0 1 1 +
doch5 | 17 5 0 2 0 0 1 1 +

Figure 13: In binary classification, we have here that P(spam) = 3/5 = 0.6

e How does Naive Bayes learn the likelihood distribution?

— use Laplace Smoothing MLE:

P | o) = count(fi,c) + a _ count(f;, c) + a
(ZfeF count(f,c) +oz> (ZfeF count(f, C)) +aF
the your model cash Viagra «class account orderz | spam?
docl | 12 3 1 0 0 2 0 0 -
doc2 | 10 4 0 4 0 0 2 0 +
doc3 | 256 4 0 0 0 1 1 0 -
doc4 | 14 2 0 1 3 0 1 1 +
doch | 17 5 0 2 0 0 1 1 +

Figure 14: For example, the likelihood of “your” appearing in a spam document is:

11+ «

P(your | spam) = ST of

where “your” appears 11 times in spam documents, and there are 68 word counts in spam documents.

15

function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w/|c)

for each classc € C

Calculate P(c) terms

N, = number of documents in D
N, = number of documents from D in class ¢

logprior|[c] + log

c

doc

V4 vocabulary of D
bigdoc[c] + append(d) for d € D with class c
for each word w in V

count(w,c) < # of occurrences of w in bigdoc|c]

loglikelihood[w,c]+ log

Calculate P(w|c) terms

count(w,c) + 1

return logprior, loglikelihood, V

>_w inv (count (W',c) + 1)

function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best ¢

for each classc € C

sum|c) 4+ logprior|c]
for each position i in testdoc

word + testdoc[i]

ifword eV

return argmax,. sum|c]

sum|c] + sum|[c|+ loglikelihood|word,c]

3.2.1 Naive Bayes: Worked Example

[In practice, if we are given an instance to classify, and it contains a word which does not appear in the vocabulary,
such word is ignored.]

We again consider:

the your model cash Viagra class account orderz | spam?
docl | 12 3 1 0 0 2 0 0 -
doc2 | 10 4 0 4 0 0 2 0 +
doc3 [25 4 0 0 0 1 1 0 -
doc4 | 14 2 0 1 3 0 1 1 +
docb [17 5 0 2 0 0 1 1 +

and we try to classify:

e count(get, spam) = 0

o count(your,spam) =4+2+5=11

e count(cash,spam)=4+1+2=7

“get your cash and your orderz”

16

o count(and, spam) = 0
e count(your, spam) = 11
e count(orderz,spam)=1+1=2

Hence:

« o 11+« o 7T+« y « y 11 + « y 24+«
684+ aF 68+aF 684+aF 684+aF 68+aF 684 aF

3
P(spam | d) = e
If we do the same thing for “not spam”, we can then classify based on which of the 2 has the largest probability.

3.3 Naive Bayes: Self-Supervised Classification
e What is semi-supervised learning?

— a way of improving a classifier, in a situation with:

* limited annotated data
* plentiful unannotated data

e How can we apply semi-supervised learning to NB?

. Train NB on the labelled data
. Predict labels of unlabelled data

. Now that all the data has an annotation, re-estimate NB

N

. Keep re-training NB, and re-labelling the unlabelled data

3.3.1 Naive Bayes (Semi-Supervised): Worked Example

Consider the following:

Bayes your model cash Viagra class orderz |spam!
lab doc | 0 I 3 0 0 2 0 -
- lab doc 2 0 2 0 4 0 0 0 +
7]
T §|lbdoc3 |0 2 2 0 0 3 0 .
©
® " |labdoc4 |0 3 2 | 3 0 | +
lab doc 5 0 I 0 2 0 0 I +
g unlabdoc | | I | I 0 0 2 |
@ Labels
2 2 | unlabdoc?2 |2 2 0 0 0 0 0 o
® O missing
S unlab doc 3 |0 | 0 0 I 0 |

We have FF = 7, = 0.1. In the labelled docs, in spam we have 20 words; in non-spam we have 13 words.
document 2 is “your Bayes”, we can classify it by using the data from the labelled documents:

a? (6 4+ «)? a?(6 + a)?

) 6
Pd2| +) = - ~ 2.1 x 10
@214) = 505702 X @0+7a) ~ @0+ 7a) %
a? (3+ a)? a?(3 + a)?
Pd2]|-)= = ~29x107°
(@21 =)= 35702 X A3+ 7a) ~ (137 7a)3 x

Thus: 5 5
P(+] d2) « £ X 21X 107% P(—]d2) x = X 2.9 107

17

Hence, the second document is most likely spam. Doing this for the remaining docs:

Bayes your model cash Viagra class orderz |spam?
lab doc | 0 I 3 0 0 2 0 -
o lab doc 2 0 2 0 4 0 0 0 +
? §|lbdoc3 0 2 2 o 0 3 0 :
£ " |llabdoc4 |0 3 2 | 3 2 ' +
abdoc5 |0 1 0 20 mistake R
3 unlabdoc | || I I 0 0 2 | -
3 8 |unlabdoc2 {2 2 0o 0 0 0 +
S unlabdoc3 |0 I 0 0 | 0 | +

We can retrain NB. Again for doc 2 (now using data from both the labelled and unlabelled documents):

(2+a)? (6+3+a)* (2+a)*(9+a) 4
P2 | +) = _ ~6.2x 1
(@214 = Go 75702 X 2037570 (27 + Ta)? 0.2>10
(1+a)? (B+1+a)? (14 a)?(4 + a)? 4
P2 -) = - ~1.35 % 1
@2 =)= 3565702 “ M346+7a)7 ~ (19+ 7a)] 35 10
342 5
P = —_— = —
H=3533"%

Notice that since we are treating the unlabelled data as labelled, this changes the counts: for example, + now has
7 new instances, and “your” appears in spam 3 more times.

The classification becomes:
5 3
P(+|c12)o<§><6.2><10‘-4 }%—\@)u§x135xur4

Even d2 is not spam, it is continuously classified as such (and with bigger probability). Why does this happen?
Computing the original probability:

3 x21x107°

~ 0.52
3 x21x1076+ 2 x29x10-6

P(+ | d2) =

In other words, the model is not confident in its decision, and nonetheless we are treating the decision as a gold
label.

¢ What are the pros and cons of self-training?

— pros:
* simple
x works on other classifiers
* NB is simple to update given new data

— cons:

x doesn’t account for uncertainty
— improvements:

* discard low-confidence prediction

* use a curriculum (begin training the model with unlabelled data similar to labelled data)

18

e How can we improve self-supervised NB?

— instead of using gold labels, use soft labels (expectation maximisation)

— that is, each document is spam and not spam with a probability. In the example above, doc 2 is 0.52+
and 0.48-

— similarly, the observed counts also get adapted:

Bayes your model cash Viagra class orderz |spam!?
lab doc | |0 | 3 0 0 2 0 -
o |labdoc2 |0 2 0 4 0 0 0 +
E E lab doc 3 | 0 2 2 0 o0 3 0 :
€ " llabdoc4 |0 3 2 | 3 0 | +
lab doc 5 |0 | 0 2 0 0 | +
b 2x0.53 2x053 0 0 0 0 0 + (.53)
© ©
Sg|unldec2)y, 047 2x047 0 0 o 0 0 - (47)
c
3

Figure 15: I rounded to 2 significant figures, so my probabilities were 0.52.

— self-learning is nothing but hard EM

— improves likelihood of observed data
e What is the EM algorithm for NB?

1. Train NB on labelled data
2. Make soft predictions on unlabelled data

3. Recompute NB model using soft counts

3.3.2 Naive Bayes (Semi-Supervised, EM: Worked Example

If we now want to compute the probabilities for doc2 being spam, we need to use:

3+0.52

Pdoc2 (Spam) = 511

The above is only applicable to doc2; for the others the probability changes.
64+2x0524+a

P =
(our [4) = S T x 052+ oF
3492 %048 +
P —) =
(our | =) = 3 048 + oF
2 % 0.52 + a
P(B -
(Bayes | +) = o0 < 052 1 oF
2 x 0.48
P(Bayes | —) x ta

T 1344x048+ aF

19

3.3.3 Evaluating Naive Bayes

In general, NB works reasonably well, and should be a classification baseline.

e What are the pros?

— easy to implement

fast to train/classify

good for small data sets

easy to update with new data (just update counts)
¢ What are the cons?

— its ... maive. For example, if the classes are travel and sport, the features “beach”, “sun”, “snow”,
“football”, “pitch” are not independent given the category. Given travel, if we see “beach”, it is more
likely to see “sun” than “snow”

— tends to be overconfident (5 features pointing to class 1 treated as 5 independent sources of evidence)

20

	Further Smoothing
	Recap: Smoothing
	Interpolation
	Back-Off Smoothing
	Kneser-Ney Smoothing
	Distributed Representations

	The Noisy Channel Model & Spelling Correction
	Defining the Noisy Channel Model
	First Try: Spelling Correction
	Dynamic Programming: Edit Distance
	Worked Example: Edit Distance

	Expectation Maximisation

	Text Classification
	The Classification Task
	Naive Bayes: Supervised Classification
	Naive Bayes: Worked Example

	Naive Bayes: Self-Supervised Classification
	Naive Bayes (Semi-Supervised): Worked Example
	Naive Bayes (Semi-Supervised, EM: Worked Example
	Evaluating Naive Bayes

