FNLP - Week 2: Annotation, Evaluation, N-Gram Models & Smoothing

Antonio Ledén Villares

Feburary 2022

Contents

1

Annotations
1.1 Considerations When Annotating
1.2 Ensuring Annotation Quality e

Evaluation

2.1 The Need for Evaluation e e e e
2.2 Measuring Model Performance e
2.3 Evaluation With More Than 2 Labels
2.4 Significance Testso e e

Language Models

3.1 The Purpose of Language Models e
3.2 Language Models From MLE Estimation o
3.3 N-Gram Language Models

Evaluating Language Models

4.1 Considerations When Building an N-Gram Model
4.2 Evaluation in NLP 0 0 e
4.3 Entropy
4.4 Cross-Entropy e
4.5 Perplexity e e

Smoothing

5.1 Why Use Smoothing
5.2 Laplace Smoothing e
5.3 Lidstone Smoothing L
5.4 Good-Turing L e

1 Annotations

1.1 Considerations When Annotating

e What factors should be considered when annotating a document?

— what is the source?

* genre, size, licensing
— how complex and fine-grained do we want to annotate?
— what guidelines to follows when annotating?
— what is the expertise of annotators? is training required?
— which annotation software to use?

* GUI vs CLI

e What are gray areas in annotation?

— the existence of ambiguities in text, meaning that a word can be annotated with different categories
— these are necessary to create a flexible language
— for example, “walking” can act as a:

* noun: “Walking was the remedy.”
* adjective: “My house is within walking distance”
* verb: “They went walking together.”

1.2 Ensuring Annotation Quality
e What are annotation guidelines?
— set of rules which define how to act in these “gray areas”

— ensure tagging is consistent and reliable (both for annotators and end-users)

— for example:

“The temporal expressions yesterday, today and tomorrow should be tagged as
nouns (NN) rather than as adverbs (RB). Note that you can (marginally) plu-
ralize them and that they allow a possessive form, both of which true adverbs do
not.”

e Can gold labels still be tarnished despite annotation guidelines?

— yes:
* context not considered
* machine can make erronous pre-annotation, not noticed by human
x forget guideline detail
* guidelines don’t cover all cases

e What is inter-annotator agreement?

— a measure of the reliability of an annotation
— independent human annotators work on the same sample, and compare annotations

— typically use raw agreement rate
e Why is TAA useful for guidelines?

— IAA = upper bound for annotating system

— if high disagreement, can be used to re-evaluate the guidelines
¢ Why use Cohen’s Kappa instead of Raw Agreement Rate?

— not all mistakes are the same
— mistaking a word for a noun (more likely to be accidental) or an interjection (less likely to be accidental)

— Cohen’s Kappa checks that agreement is made beyond what is expected in a random situation (i.e 2
systems assigning nouns 90% of the time, CK expects random agreement of 81%)

e What is crowdsourcing?

— let users make annotations for small sums of money
— ensure users are qualified and serious

— for example: each point annotated 5+ times; reject annotators with many wrong answers

2 Evaluation

2.1 The Need for Evaluation

e Why is evaluation necessary?

— used to test hypotheses

— used to improve systems (empirically)
e Which hypothese are relevant in NLP?

— Linguistic Objects: “Is this written by Shakespeare or Marlowe?”

— System Output: “How well is data predicted by the model? How accurate is this parser? How does
this POS tagger compare to model X?”

— Humans: “How reliable is annotator Y?7”
e How are models developed?

— train a model using a training set

— fine tune a model using a development set (i.e model parameters, text features)

finally, evaluate a model using a testing set

— never should the model see data in the testing set
e What is k-fold cross validation?

— used to validate a model where little training/testing data is available

— split training data into & folds (especially if we want to change model parameters; need to keep test data
secret)

train k different models on k — 1 of the folds, test on the remaining fold

— accuracy: average accuracy over k folds

2.2 Measuring Model Performance

e What is a confusion matrix?

— table used to gauge model’s classification performance (with respect to gold labels)

gold standard labels

gold positive gold negative

system
system oy
output positive
labels ~ System
negative

What are TP, FP, TN, FN?

— True Positives: positive instances correctly classified
— False Positives: negative instances incorrectly classified

— True Negatives: negative instances correctly classified

False Negatives: positive instances incorrectly classified
What is accuracy?

— proportion of correctly classified instances, over all instances:

TP+TN
TP+FP+TN+FN

accuracy =

Why is accuracy not the best measure?

— sensitive to unbalanced classes
— for example, if 1% of population gets cancer, a classifier which always predicts “not cancer” would have
99% accuracy
What is precision?
— proportion of truly positive labels predicted, given all labels predicted as positive:

TP

precision = TP+ FP

What is recall?

— proportion of truly positive labels predicted, given all truly positive labels:

TP

recall = m——m

What is the F-measure?

— a way of combining precision and recall into a single metric

— the F-Measure is:
(8% + 1)precision x recall

B%precision + recall

g =

How does 3 affect the F-Measure?

— as f — 0, Fg = precision, so precision becomes more important

— as § — oo, F3 = recall, so recall becomes more important
What is the Fj-measure?

— in practice, use 3 = 1, to produce the F}-measure:

precision X recall 2
X

1 1
precision + recall

=2 — =
precision + recall

— this is the harmonic mean of precision and recall

¢ Why is the harmonic mean good as a metric in Fj-measure?

— it ensures that precision and recall are not only high, but similar

— it emphasises the lower of the 2 values

— if they differ greatly, F; will be low (for example, if precision = 1 and recall = 0, F; = 0)

2.3 Evaluation With More Than 2 Labels

e Can we evaluate classification for more than 2 labels?

— in practice, it is the most likely situation

— confusion matrices can be extended

system
outpu

gold labels
urgent normal spam
urgent 8 1 0 1 precisione—
¢ normal 5 60 50 precisions
o 3 3 0 2 00 precisions=
‘recallu- recalln<recalls= |
‘8 1 60 i 200 :

" 84543 10460430 14504200

8+10+1

54+60+50

__.3+30+200

— however, precision and recall need to be modified via macroaveraging or microaveraging

¢ What is macroaveraging?

— compute performance for each class, and then compute the average over all classes

e What is microaveraging?

— combine all decision into a single confusion matrix (whether a decision was correct or not, independent
of the label), and compute the statistics from the matrix

Class 1: Urgent Class 2: Normal Class 3: Spam
frue frue tfrue true true true
urgent not normal not spam not
system system system
urgent 8 11 normal 60 | 55 spam 200| 33
te! it te!
Mot | 8 |340 ot | 40 {212 Yot | 51 | 83
60 200
precision = ——= 42 precision= —— = .52 precision= _—— = 86
8+11 60+55 200433
precision 3 ’

Pooled
true true
yes no
system
sem 1768 | 99
system
Y| 99 635
microaverage _ 268 _
precision 268+99

2.4

Significance Tests

How can we understand if a statistic is good?

— having 95% accuracy on its own is not significant
— need to be able to compare or bound this performance

— if we set bounds, these should depend on the task
How can we define an upper bound for performance?

— use a Turing Test: how much does a human agree with a gold label?
How can we define a lower bound for performance?

— use a baseline model, which is simpler

— for example, a majority baseline: model picks most frequent class (i.e using a probability distribution
matching what is observed)

How can we determine if the difference between models is significant?

— if 2 models differ in their accuracy by 10%, how can we know that this is not due to randomness in the
testing data

— we need to understand when differences are significant

— this allows us to decided if a model is superior to the baseline
What is a parametric test?

— makes assumption about the underlying distribution of the data
— typically assume normality (i.e t-test, ANOVE, z-test)
— not typically applicable to NLP

What is non-parametric testing?
— testing based on sampling, making little assumptions about data
— McNemar’s Test, stochastic/permutation tests (i.e bootstrapping)

What is the effect size?

— used to compare 2 models, A, B when applied on data z:

What is hypothesis testing?

— formalisation of 2 hypotheses, as to confirm whether a result is significant (i.e not due to randomness)
— we define:

* the null hypothesis, Hy: the result is not significant (i.e could be caused by randomness)
* the alternate hypothesis, H,: the result is significant

— for example:
Hy:0(z) <0, model A is not better than model B

Hy : 6(x) > 0, model A is better than model B
What is a p-value?

— we want to know whether the value §(x) is abnormal, or consistent with the fact that A is better than B

— the p-value is the probability of, assuming the null-hypothesis (that is, that A no better than B),
observing a 0 greater than (or equal) to d(z):

P(6(X) = 6(x) | Ho)

— if the p-value is small, it indicates that the null hypothesis might not be valid, since the §(x) is extremely
abnormal under Hj,

— if the p-value is large, it indicates that the observed evidence is in line with the null hypothesis
e When is a result statistically significant?

— when the p-value is extremely small, we reject H

— when we reject the null hypothesis, we say that the result we observed (i.e “A is better than B”) is
statistically significant

— the threshold for a p-value is typically 0.05 or 0.01
e What is the paired bootstrap test?

— bootstrapping generates artificial observations, based on observed data, by sampling with replace-
ment from the original data

— in a paired bootstrap test, we compare 2 classifiers on different data, and take bootstrap samples
on this data

1 2 3 4 5 6 7 8 9 10 A% B% &()
x AB AF AB XB AF AB AF AB AB AE .70 .50 .20
x()' AR AB AR AXB AB AE AB AB AB AB .60 .60 .00
x? AR AB KB AB XB AB AB AF AB AB .60 .70 -.10
x(b)
Figure 1: The first row represents observations in the original data. We generate new observations (1), z(2), ... by

sampling with replacement from x. We can then compute the performance of classifiers, alognsides §.

e How is a p-value computed during bootstrapping?

— if we generate b bootstrap tests, then the p-value can be the proportion of those tests in which the
bootstrap § was greater than or equal to §(x):

b
1
P =17 o) -s)20)
i=1

— the data doesn’t have 0 means, then instead we consider how often § was greater than §(z) by at least

§(x):

b
1
P =7 Xoa)2250)

i=1

function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate §(x) # how much better does algorithm A do than B on x
=0
fori= 1tobdo
forj=1tondo # Draw a bootstrap sample x(!) of size n
Select a member of x at random and add it to x?)
Calculate 8(x(?)) # how much better does algorithm A do than B on x')
se—s+ 1if 8(x'V) > 28(x)
p-value(x) = £ # on what % of the b samples did algorithm A beat expectations?

b
return p-value(x) # if very few did, our observed & is probably not accidental

3 Language Models

3.1 The Purpose of Language Models
e What is the probability of a sentence?

— the likelihood of a sentence being generated by a natural language

— intuitively, we can see that sentences which make more “common sense” are more likely:
P(the cat slept peacefully) > P(peacefully cat the slept)

P(she studies morphosyntaz) > P(she studies more faux sin tax)
e What is the purpose of a language model?

— predicting/estimating the approximate probability of a sentence

— define a probability distribution over sequences of words
e When can language models be used?

1. Spelling Correction: use an error model to determine spelling corrections for a phrase, and a
language model to decide the most likely option:

mis-spelled text no much effert

{ (Error model)
no much effect
possible outputs so much effort
no much effort
not much effort

l (Language model)

best-guess output not much effort

2. Automatic Speech Recognition: use an acoustic model to turn sounds into possible sentences, and
a language model to decide the most likely option:

speech input
i) (Acoustic model)
She studies morphosyntax
possible outputs She studies more faux syntax
She’s studies morph or syntax

1 (Language model)

best-guess output She studies morphosyntax

3. Machine Translation: use a translation model to provide possible translations, and a language
model to decide the most likely option:

non-English input

l (Translation model)
She is going home
possible outputs She is going house
She is travelling to home
To home she is going

1 (Language model)

best-guess output She is going home

4. Prediction: for example, when typing on your phone, gives you suggestions of misspelt words. In this
case, the probability distribution can be over characters

— we use separate models because there is a lot of data to judge the feasability of a sentence, so we can
train a LM well

— not enough data to train EM/AM/TM however, so makes sense to have these separate from LM

3.2 Language Models From MLE Estimation
e How do probability theory and estimation theory differ?

— probability theory uses previous evidence to derive true probabilities of events
* typical example of 4 red and 3 blue marbles; can easily derive the probability of picking a red marble
— estimation theory uses data to estimate the probability of events

* instead of knowing the number or colour of marbles, we know previous sampling events (i.e out of
10 samplings, 4 had red marbles, and 6 had blue marbles - compute the probability of seeing a red
marble)

— language models seek to estimate the probability of a word sequence w occurring
e What is maximum likelihood estimation?

— estimates probabilities, such that they maximise the likelihood of observing the training data used:

Pryre(S=w) = %

where:
* w: sentence whose probability we estimate
*x C(w): number of times w appeared in the training corpus
* N: number of sentences in the training corpus

— for example, if out of 1000 M&Ms we see there are 237 red ones, our MLE estimation would be %070 =

0.237; this produces a distribution which best matches our observations during training
e What is the main issue with MLE estimation?
— data is sparse, so there are many sentences in training with:
Clw)=0

so their MLE estimate is:
Pyre(S=w)=0

— MLE thinks anything that hasn’t occurred will never occur: not enough observations to estimate
probabilities well simply by counting observed data

— this doesn’t correspond with reality: unlikely, never-before written sentences can be perfectly valid:

“The Archaeopteryx soared jaggedly amidst foliage”

— in fact, many words occurring only once don’t have the same probability (i.e cornflakes, mathematicians,
pseudo-rapporteur, lobby-ridden, Lycketoft)

— many testing sentences will never occur during training

3.3 N-Gram Language Models
¢ What are N-Gram Language Models?
— instead of estimating the probability of a whole sentence appearing, consider subsentences
e How can we formalise an N-Gram Language Model?

— we want:

— the chain rule for probability says that:

P(w1a7wn):HP(wl | wla'“awi—l)

i=1

— as of now, this is still subject to the sparse data problem. For example:

To compute the probability of:
w = “I spent three years before the mast.”
we would need to compute:
P(mast | I spent three years before the)

and using an MLE estimation of this probability we get:

C(I spent three years before the mast)
C'(I spent three years before the)

which are quite likely to get zero or very low counts.

— an N-gram model uses the independence assumption that the probability of a word occurring only
depends on the N — 1 previous words:

P(w; [wi—n+1, ... wi—1)

For the previous example, if N = 3, then:

P(mast | I spent three years before the) ~ P(mast | before the)

— to compute the N-gram approximation, we can use MLE:

C(wzeNH, s, Wi, wz)
C(WimN41s-- - Wi—1)

P(’LUZ | U)Z',Nle,...,’wi,l) =

10

— overall, our estimation for a phrase becomes:

n

P(wl,...,wn) %HP(’U)Z | wi_N+1,...,wi_1)

i=1
e What are common N-Gram Models?

1. a unigram model uses no past history:

C w;
P(w; | wi,...,wi—1) = P(w;) = (V)
where V is the number of words in the training corpus
2. a bigram model uses the previous word:
Cw;—1, w;
P(w; | wy,...,wi—1) = Plw; | wi—1) = (C(wll))

3. a trigram model uses the 2 previous words:

Clwi—2,wi—1,w;)
C(U/ifz, wifl)

P(w; | wy,...,wi—1) = P(w; | wi—2,wi—1) =

e Is the N-Gram assumption always good?

— no: many similar sentences with different probabilities will be assigned the same probability. The
following all have approximate probability P(mast | before the)

P(mast | I spent three years before the)
P(mast | I revised all week before the)
P(mast | I jumped around Mars before the)

— moreover, sparsity can still be a problem (0 probabilities can still happen in short phrases)

— nonetheless, it is a powerful model; as N increases we see great improvements. For example, we can
generate Shakespeare using unigrams, bigrams, trigrams and tetragrams, with clear improvements:

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
‘tis done.
gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram -It cannot be but so.

e What is the tradeoff in N-Grams?

11

— using longer histories captures a more coherent language (see above), but they are sparse
— using shorter histories reduces sparseness, but is a worse model

e How do N-Grams account for the different distribution of words at the start, middle and end
of sentences?

— different words are more likely to appear at the start, middle or end of sentences (for example, “hello”)
— N-grams introduce special tokens to signify:

* the start of a sentence:
<s>

* the end of a sentence:
</s>

— these tokens are also necessary because:

“ Without <s>, </s>, instead of the sentence probabilities of all sentences
summing to one, the sentence probabilities for all sentences of a given length
would sum to one. This model would define an infinite set of probability distri-

butions, with one distribution per sentence length”
More on this here.

— depending on N, we add more or less <s>:

* bigram: <s>I like green eggs and ham.</s>
* trigram: <s><s>I like green eggs and ham.</s>

— alternative: model everything as a long sentence, and use punctuation as indicators
e In practice, are probabilities computed using multiplication?

— since the probabilities are small, multiplying all of them would lead to infinitesimal probabilities

— in practice, apply a negative log transformation, so we end up summing numbers between 0 and oo

4 Evaluating Language Models
4.1 Considerations When Building an N-Gram Model

e How is the development set used when developing an N-Gram Model?

— we can use it to construct several models with different N, and seeing which one performs best
— we can construct the same model with different smoothing

— if we used the test set to test the different models, we risk overfitting
e How does the training data influence the model?

— a model trained on A will learn the idiosyncrasies of A
— even if A, B are in the same language, the models produced will be radically different

* for example, a model trained on WSJ vs Shakespeare:

12

https://linguistics.stackexchange.com/questions/11531/whats-the-real-need-for-an-end-symbol-in-n-gram-models

—~To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 *tis done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;

gram It cannot be but so.
1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U, §. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

— it is important that training and testing data are chosen from the same genre and dialect:

* to train an SMS text prediction model, use a corpus of SMS texts
* to train a model for business meetings, use a corpus of business meeting transcriptions

* African American communities tend to use different vocabulary to express themselves (i.e “finna”)
e What is the closed vocabulary assumption?

— we know all the words that can appear (during training and testing)
— feasible in speech recognition and machine translation (they use a fixed dictionary of “allowed”
lexicon)

e What is an open vocabulary system?

— used to model the existence of out of vocabulary (OOV) or unknown words
— includes the token:
<UNK>

e How are unknown word models trained?

1. Convert to Closed Vocabulary
— define a fixed vocabulary
— convert any unknown training word into <UNK>
— estimate probabilities for <UNK> (as if it were a word)
2. Implicit Closed Vocabulary
— used if there is no pre-defined closed vocabulary
— replace with <UNK> any training word appearing less than n times
— train, using <UNK> as a word

13

4.2 Evaluation in NLP

e What is extrinsic evaluation?

measuring performance using an external application (i.e Google Translate)
— most reliable (since used in a situation where it matters)
— time-consuming (need to try many different models)

— requires a measure of performance in the application
e What is intrinsic evaluation?

— design a measure inherent to the task
— quicker and easier during development (it applies directly to the model)

— need to determine a measure which (hopefully) correlates with extrinsic measures
e Is accuracy a good measure?

— accuracy of a model is an intrinsic measure:

w, == W,
2 |T|

weT
where T is the corpus of sentences of length n, and for each sentence w = wi,ws,...,w,, the model
predicts w,, from wq, ws, ..., wp_1.
— this is not ideal, since even if w,! = w,,, it might still be an appropriate/correct choice
— we need flexible measures that account for the variability of language

* “Pizza with cheese” and “Pizza with peppers” are both equally good constructions
e Is a measure informative on its own?

— no: the value of a metric will depend on the model and the corpus

— if a corpus is predictable, we expect metrics to be generally favourable, but that doesn’t mean that a
model is “good” (just that it is “easy” to learn)

— need to compare metrics for different models on the same corpus

— when comparing metrics, use the testing/held-out data (ensures an “even playing field”)

4.3 Entropy
e What is entropy?

— a measure of the uncertainty in a probability distribution, designed as an intrinsic measure
—if Xisa RV:

H(X) == P(x)logy(P(x)) = E[-logy(P(X))]
xeX

— practical experience suggests entropy-based metrics correlate with extrinsic evaluation.
e What is an intuitive view of entropy? (For a nice article on entropy and bits, see this Towards Data
Science article.)
— the lower the entropy, the lower the uncertainty of a model (it is more confident in its prediction)
— can be phrased in terms of bits or yes/no questions:

* how many questions would you need, in order to be certain about an outcome?

* how many bits are necessary to encode an outcome? (for example, two outcomes can be encoded
using a single bit - 0 or 1; 4 outcomes require 2 bits: 00,01,10,11).

14

https://towardsdatascience.com/the-intuition-behind-shannons-entropy-e74820fe9800
https://towardsdatascience.com/the-intuition-behind-shannons-entropy-e74820fe9800

Say we predict a pet, and there are 4 equally likely possibilities (dog, cat, parrot
or goldfish). Then the entropy will be:

H(X) = —4 % 0.25 x 10g,(0.25) = —1 x —2 =2

In other words, we need to ask 2 yes/no questions to determine which of the
outcomes happened (for example: “Is it a mammal?” and “Does it fly?”). Al-
ternatively, the outcome that happened is uniquely represented by 2 bits (say 10,
a parrot).

If we again have 4 outcomes, but the person choosing is a dog lover and:

P(dog) = 0.97 P(=dog) = 0.01
then:
H(X) = —0.97 x log,(0.97) — 3 x 0.01 x log,(0.01) = 0.24194

We need nearly 0 bits/questions: that is, we are very certain that the outcome
is probably “dog”. Nonetheless, we still capture the fact that at times we might
need to ask a question, since there is uncertainty.

/ \ N TN

/ \ | \
| |
|\ || f]

\ / NE% NG

H(X)20 H(X)=1 H(X)=2

/ 1 /\ 4 B
_ NG

H(X)=3 H(X) = 1.35678 H(X)=0.24194

If we have 3 events, and 1 is more likely than the others, we could encode this
uSINg:
a=0 b=10 c=11

In general, H(X) < the average number of bits needed to encode X

4.4 Cross-Entropy
e How does cross-entropy differ from entropy?

— in entropy, we are using true probabilities; LMs only estimate these probabilities

15

— cross-entropy measures how close the estimate P is to the true probability P:

H(P.P) = — ¥ P(x)logy(P(x))
reX

— we have that:

H(P,P) > H(X)

since the model uncertainty is at least as big as the true uncertainty

e Cross-entropy still contains P(z). How do we cope with this?

— use per-word cross-entropy, which can be approximated by:

1
Hy(wy, ... ,wy) = —ElogQ(PM(wl, ce W)

where M is our LM, P, is the probability assigned by the model, and n is the number of words in each
sentence.

— per-word since we normalise using the length of the sentence

— a

Q

lower H); indicates a more confident model, which better predicts the next word

(lgo(P(N) + 1go(P(spent|l)) + Lg2(P (three|spent)) + lg,(P (years|three))
+ 1g, (P (before|years)) + lg,(P(the|before)) + lg,(P(mast|the)))

(—6.9381 — 11.0546 — 3.1699 — 4.2362 — 5.0 — 2.4426 — 8.4246)

(41.2660)

Figure 2: The per-word cross-entropy for “I spent three years before the mast”, using a bigram model. If we did
this with a unigram model, the per-word cross-entropy would be about 11. Hence, a bigram has about 5 bits of
uncertainty less.

¢ How do language models contribute to infromation theory?

— better language models can lead to better data compression

— using the above example:

* a unigram uses 7 X 11 = 77 bits to encode a 7 word sentence
* a bigram uses 6 X 7 = 42 bits to encode a 7 word sentence
x on average, ASCII requires 24 x 7 = 168 bits to encode a 7 word sentence

4.5 Perplexity

e What

is perplexity?

— the preferred way of reporting LM performance:

3=

PPy(wy,... wy) = 2HmW@ietn) — (P (g, wy,))”

1
- \/PM(wl,...,wn)

— for a bigram model:

1
PP o wy) = f
B(W1, ..., Wn) \/H:f_l P (w; | wi—1)

16

— the lower the perplexity, the higher the confidence of the model (a corpus becomes more predictable)
e How else can we think of perplexity?

— the weighted average branching factor of a language
— the branching factor indicates the number of words which can follow a given word
— the following are equivalent in terms of uncertainty:

* 6 bits of cross-entropy
* perplexity of model is 64
* the uncertainty of a uniform distribution with 64 possible outcomes

If we have a language with words 0,1, ...,9, and P(n) = -, then the branch-

10’
ing factor is 10, and indeed:

1 \ " n
However, if we observe a string of 100 words, W = 0000 . ..3001, with 91 Os,
and 1 of each other digit, we will see we will have a much lower perplexity:

9191 x 19 ™0

since we have a much more predictable environment, so the model is more con-
fident (even if the branching factor is still 10, the weighted branching factor
changes).

This can be further seen if we compare the perplexity across unigrams, bigrams
and trigrams, all trained on the same corpus. The branching factor will be the
same, but the average branching factor (perplezity) differs:

Unigram | Bigram | Trigram

Perplexity 962 170 109

5 Smoothing
5.1 Why Use Smoothing

e How does sparsity affect evaluation?

— because of sparsity, many probabilities are 0: LM thinks a construction doesn’t exist
— perplexity then will be oo (it is infinitely surprised by a new phrase, it would never expect it)

— this can happen even with unigrams
e What is smoothing?

— MLE maximises the likelihood of seen events by minimising the likelihood of unseen events
— smoothing “steals” probability mass from seen events, and “donates” it to unseen events

— informally: halluccinate counts for everything, seen and unseen

17

5.2 Laplace Smoothing
e What is Laplace Smoothing?

— we hallucinate that we have seen everything at least once

— in a trigram model:
C(wi—2,w;—1,w;)+1
C(wi—2,w;—1)+V

Poi(w; | wi—g,wi—1) =

We want: Z C(wi—2, wi—1, w;) +1 -1
sy C(wi—2, wi—1) +x
Solve for z:
Z (Clwi—2, wi—1,wi) +1) = C(wi—g,wi—1) + 2
w;EV
Z C(wi—2, wi—1,w;) + Z 1 = Clwi—o,wi—1)+2
w;EV w;, €V
C(wi—g,wi—1) +v = C(wi—g, wi—1) + 2
v = X

Figure 3: Since the numerator increases (everything is seen once), the denominator also increases (we have seen
all of the vocabulary V at least once) - this ensures that the sum of probabilities is 1.

e What are the issues with Laplace Smoothing?

— we assume that we know V' in advance
* if not, just use <UNK> when encountering an unknown word in testing)
— it steals too much probability mass

— this means that what MLE is good at (predicting frequent events) gets taken away by smoothing

i want to eat chinese food Ilunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4: Consider the following counts from a corpus.

18

i want to eat chinese food Ilunch spend

i 0002 033 0 0.0036 0O 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0O 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0014 0O 0.014 0O 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0O 0

spend 0.0036 0 0.0036 0 0 0 0 0

Figure 5: We can compute probabilities for a bigram model, getting the following. For example, P(want | i) = 0.33.

-

want to eat chinese food Iunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 | 2 1 1 1 1 1
Figure 6: We can apply Laplace Smoothing, adding 1 to each count.
i want to eat chinese food lunch spend
i 0.0015 021 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 7: We can then compute the bigram probabilities. We now see that P(want | i) = 0.21.

19

-

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 064 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 23 0.78
to 1.9 0.63 3.1 430 1.9 063 44 133
eat 034 034 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 22 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 038 0.19 0.19

spend 032 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 8: We can reconstitute the adjusted counts for each bigram, to see how much mass was stolen. The formula

for this is:
(Clwp—1,wp) + 1) x C(wy—1)

C(wn—l) + V

We can see that “I want” went from appearing 827 times, to having an adjusted count of only 527.

c* (wnfla wn) =

5.3 Lidstone Smoothing
e What is Lidstone Smoothing?

— instead of hallucinating everything happens at least once, we hallucinate it happening at least a < 1
times:
C(wi—g, wi—1, w;)+e

C(wi—2, w—1)+aV

Pio(w; | wi—g,wi—1) =

— also assumes that we know V'
e How is a chosen?

— use the development set:

1. training set: train different models with varying «
2. development set: pick model with lowest cross-entropy
3. test set: report results of best model

5.4 Good-Turing
¢ What is Good-Turing Smoothing?

— instead of changing the denominator, changes the numerator by creating adjusted counts

x instead of hallucinating new counts, we keep the total observation the same, and just change (dis-
count) the number of times we make a certain observation (i.e “I want” can be seen 3.7 times instead
of 4 times)

x the discounted probability mass can then be used to fill in problems caused by sparsity
e What are the adjusted counts in Good-Turing?

— in MLE, if ¢ is the number of times we see an n-gram (i.e “Yesterday I played football”), and n is the
number of times we’ve seen the context (i.e “Yesterday I played”), the probability is:

c
Pyre = —
n
— in Good-Turing, we use an adjusted count c*:

*

c

Per = —

n

— define N, to be the number of n-grams appearing ¢ times (this will follow a Zipf Curve)

20

x for example, Ny can be the number of bigrams we’ve never seen, N; is the number of bigrams we’ve
only seen once, Ny are bigrams we’ve seen twice, etc ...

— the new adjusted count c¢* will be:
* (C + 1)NC+1
N,
x for example, if “Yesterday I played football” appeared only 3 times, we adjust its count to:
4Ny
TNy

*

x by Zipf, typically Ny < N3, so ¢* < ¢

— the probability of n-grams seen ¢ times changes. If N is the size of the corpus:

. w (cFDNeys
P = — Po="=_Ne
N = N N
— so does the total probability mass:
N, ¢t (¢4 1)Neyr
P_[total] = Putotal] = — = ————
[total] N = [total] N N

* this means that those n-grams seen 0 times will have a total probability mass of % - we can see
that, considering all the discounts done to n-grams seen at least once, their sum is indeed %

e How do we compute Ny, if we don’t know how many n-grams will appear 0 times?

— we can’t always know how many n-grams are missing

— typically approximate using:
Ny=V?—-N

where V is the vocabulary size and N is the size of the corpus
e How can we justify the adjusted counts?

— we consider the MLE probability of observing an n-gram c times, given that it has appeared ¢ — 1 times

already
— if something is previously unseen, the probability that it is seen next is:
Ny
P(unseen) = —
(unseen) =
— if we distribute it equally amongst all things we haven’t seen before:
N1
unseen) = —— =
or Ny N N
so we must have that:
«_ M
= —
No
— similarly, if we’'ve already seen the n-gram, the probability of seeing it next is:
2N,
P(seen once) = —~
()=
(since once we see it again, we will have seen it twice)
— if we distribute it amongst all things seen once already:
1 N
Pgr(seen once) = — —
o)= MmN
SO again:
N
N

21

¢ What are the main issues of Good-Turing?

— again, we assume knowledge of vocabulary size (use <UNK>)

— relies on N.11 < Ng; good for low counts (Zipf curve); however, towards the end of the distribution,
there are bumps (i.e certain n-grams can be seen 47 times, but none are seen 48 times, and again some
are seen 49 times) - potentially fix by limiting GT to first counts/use linear regression to estimate values
in gaps

— high frequency counts discounted, when these are the most reliable counts

22

	Annotations
	Considerations When Annotating
	Ensuring Annotation Quality

	Evaluation
	The Need for Evaluation
	Measuring Model Performance
	Evaluation With More Than 2 Labels
	Significance Tests

	Language Models
	The Purpose of Language Models
	Language Models From MLE Estimation
	N-Gram Language Models

	Evaluating Language Models
	Considerations When Building an N-Gram Model
	Evaluation in NLP
	Entropy
	Cross-Entropy
	Perplexity

	Smoothing
	Why Use Smoothing
	Laplace Smoothing
	Lidstone Smoothing
	Good-Turing

