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In Week 7, we discussed the integrability of sequences and series of function. Whilst for series we gave
quite robust statements, in terms of sequences, we only have the Monotone Convergence Theorem, which is
quite restrictive:

Suppose that fn is a sequence of monotone, non-decreasing, integrable func-
tions on an interval I:

f1(x) ≤ f2(x) ≤ . . .

For any x ∈ I, define:
f(x) = lim

n→∞
fn(x)

We allow that for some x, this limit diverges to infinity: we are not concerned with
particular points. Notice, that if fn is a bounded sequence, it will necessarily con-
verge, since its monotone.

Then, f must be integrable on I if and only if :

sup
n∈N

∫
I

fn = lim
n→∞

∫
I

fn <∞

(this equivalence might not be immediately obvious, but it is due to the fact that fn
is non-decreasing, so fn ≤ fn+1 =⇒

∫
I
fn ≤

∫
I
fn+1, so the supremum must

coincide with the limit)

Moreover, we have that: ∫
I

f = lim
n→∞

∫
I

fn

There is an equivalent result if the sequence of functions is monotone, non-increasing,
in which we just need to check that:

inf
n∈N

∫
I

fn

exists for ∫
I

f = lim
n→∞

∫
I

fn
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1 Fatoux Lemma

The Fatoux Lemma is a useful building block for the next theorem, the Dominated Convergence Theorem.

Let fn be a sequence of non-negative, integrable functions on an in-
terval I. Let:

f(x) = lim inf
n→∞

fn(x), ∀x ∈ I

(recall, intuitively, the limit inferior is the smallest value to which any
subsequence can tend to).
If we have that:

lim inf
n→∞

∫
I

fn(x) <∞

then f is integrable on I, and we can bound the value of the integral:∫
I

f ≤ lim inf
n→∞

∫
I

fn(x)

[Lemma 4.2]

Proof: Fatoux Lemma. We shall make use of properties of the limit inferior, which you can find here.

By Completeness of the Real Numbers, and since the sequence of fn is non-negative, we know that
fn(x) ≥ 0 means that its infimum exists, and hence, so does the limit inferior.

Define the following sequence of functions:

gn(x) = inf
k≥n

fn(x), ∀x ∈ I

For example:
g1 = inf{f1, f2, . . . , }

g2 = inf{f2, f3, . . . , }

g3 = inf{f3, f4, . . . , }

From the definition of gn, it follows that for every n ≥ 1:

• the sequence gn is (pointwise) non-decreasing (for example, we can notice that g1 = min{f1, g2}, so
clearly gn ≤ gn+1)

• by the same argument as above (gn = min{fb, gn+1}), we must have that gn ≥ fn

• lastly, gn must be integrable, since:

gn(x) = lim
k→∞

min{fn, fn+1, . . . , fk}
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Recall, one of the properties of Lebesgue Integrals is that min{f, g} is integrable if f and g are inte-
grable, so in particular min{fn, fn+1, . . . , fk} is integrable:

lim
k→∞

∫
I

min{fn, fn+1, . . . , fk} <∞

Moreover, min{fn, fn+1, . . . , fk} is a monotone, non-increasing sequence of functions which con-
verge to gn. Hence, by the Monotone Convergence Theorem, it must be the case that gn is integrable.

Furthermore, it is easy to see that:
f(x) = lim

n→∞
gn

by the definition of limit inferior

lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n

xk

)
We have also shown that the sequence of gn is monotone, non-decreasing. Consider:

lim
n→∞

∫
I

gn

(I recommend visiting this shorter proof)

Consider:

lim
n→∞

∫
I

gn

Since each gn is integrable on I, the limit exists and coincides with the limit inferior:

lim
n→∞

∫
I

gn = lim inf
n→∞

∫
I

gn(x)

But as we have shown above, fn ≥ gn, so:

lim
n→∞

∫
I

gn ≤ lim inf
n→∞

∫
I

fn(x)

and by the Theorem’s Assumption, lim inf
n→∞

∫
I
fn(x) < ε.

Overall, we have then shown that lim
n→∞

∫
I
gn < ε, and that gn is monotone, non-decreasing. Furthermore,

f(x) = lim
n→∞

gn(x). Hence, f must be integrable by the Monotone Convergence Theorem, and:∫
I

f =

∫
I

(
lim

n→∞
gn

)
= lim

n→∞

∫
I

gn ≤ lim inf
n→∞

∫
I

fn(x)

as required.

2 Dominated Convergence Theorem

The Dominated Convergence Theorem gives us conditions under which function limits and integrals can be
exchanged. This requires finding a dominating function.
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2.1 The Dominated Convergence Theorem

Let fn be a sequence of integrable functions on an interval I, and as-
sume that:

f(x) = lim
n→∞

fn(x)

Further assume that the sequence fn is dominated by a integrable func-
tion g:

|fn(x)| ≤ g(x), ∀x ∈ I,∀n ≥ 1

with: ∫
I

g <∞

Then, the function f is integrable on I and:∫
I

f =

∫
I

(
lim
n→∞

fn

)
= lim

n→∞

∫
I

fn

[Theorem 4.12]

Proof: Dominated Convergence Theorem. This is easily provable by considering the Fatoux Lemma. For
that, we need to construct a non-negative sequence of integrable functions on I, whose limit inferior converges.

Notice:
|fn(x)| ≤ g(x) =⇒ −g(x) ≤ fn(x) ≤ g(x)

If we add g throughout, in particular we see that:

0 ≤ fn(x) + g(x)

Lets use this as the sequence of functions to consider.

Notice that:
lim
n→∞

(fn + g)(x) = (f + g)(x)

since g is independent of n. Moreover, since the limit exists, it must be the case that it is equal to the limit
inferior, so:

lim inf
n→∞

(fn + g)(x) = lim
n→∞

(fn + g)(x) = (f + g)(x)

Moreover, since fn ≤ g, it follows that:

lim inf
n→∞

∫
I

(fn + g)(x) ≤ lim inf
n→∞

∫
I

2g(x) <∞

By Fatoux Lemma, it follows that:∫
I

f(x) + g(x) ≤ lim inf
n→∞

∫
I

fn(x) + g(x)
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which means that: ∫
I

f(x) ≤
∫
I

fn(x)

where we have used the linearity of the Lebesgue Integral.

Working similarly as above, we can also see that, if we substract fn(x) from the inequality −g(x) ≤
fn(x) ≤ g(x) we see that:

g(x)− fn(x) ≥ 0

We use this again with Fatoux Lemma, noticing that:

lim sup
n→∞

(g − fn)(x) = lim
n→∞

(g − fn)(x) = (g − fn)(x)

Again, since fn ≥ −g:

lim sup
n→∞

∫
I

(g − fn)(x) ≤ lim sup
n→∞

∫
I

2g(x) <∞

Hence, Fatoux Lemma applies again, and:∫
I

g(x)− f(x) ≤ lim sup
n→∞

∫
I

g(x)− fn(x)

cancelling out the
∫
I
g term:

−
∫
I

f(x) ≤ −lim sup
n→∞

∫
I

fn(x) =⇒
∫
I

f(x) ≥ lim sup
n→∞

∫
I

fn(x)

Overall, we have shown that:

lim sup
n→∞

∫
I

fn(x) ≤
∫
I

f(x) ≤ lim inf
n→∞

∫
I

fn(x)

But notice that it is always true by properties of the limit inferior and superior that:

lim sup
n→∞

∫
I

fn(x) ≥ lim inf
n→∞

∫
I

fn(x)

Hence, under the assumptions of the Dominated Convergence Theorem:

lim sup
n→∞

∫
I

fn(x) = lim inf
n→∞

∫
I

fn(x) = lim
n→∞

∫
I

fn(x)

and so: ∫
I

f(x) = lim
n→∞

∫
I

fn(x)

as required.

2.2 Integrability of Uniformly Continuous Functions

The following is a Theorem which we claimed all the way back in Week 4, but gave no proof. Now that we
have the Dominated Convergence Theorem, the proof is trivial.
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Let (a, b) be a bounded interval, and suppose that

fn : (a, b)→ R

are integrable functions which converge uniformly to a function f .
Then, f is integrable on (a, b), and:∫ b

a

f = lim
n→∞

∫ b

a

fn

[Theorem 4.13]

Notice, there are 2 key differences when compared to the Dominated Convergence Theorem:

• DCT requires only pointwise convergence, whilst this theorem requires uniform convergence

• DCT poses no restriction on the interval I, whilst this theorem required a bounded interval

Proof: Interchanging Integral and Limit for Uniformly Convergent Sequence of Functions. Since fn converges
uniformly to f , for any ε > 0, we can find n ≥ N such that ∀x ∈ (a, b):

|fn(x)− f(x)| < ε

In particular, we can pick ε such that for n ≥ N :

|fn(x)− fN (x)| ≤ 1

for every x ∈ (a, b). Define:
g(x) = |fN (x)|+ 1

The absolute value of a function is Lebesgue integrable if the function is Lebesgue integrable. Moreover, we
are integrating 1 over a bounded interval, so it is also integrable. Hence, g(x) is the sum of 2 integrable
functions, and so, g is integrable. Moreover, it is easy to see that:

|fn(x)| ≤ g(x)

But then, fn → f and fn is dominated by g so:∫
I

f = lim
n→∞

∫
I

fn

by the Dominated Convergence Theorem.
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3 Workshop

Recall the concept of Riemann integral. A function f : [a, b] → R
is Riemann integrable if and only if ∀ε > 0 there exists a partition
a = x0 < x1 < x2 < . . . < xn = b such that:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) < ε, Ij = (xj−1, xj)

This is Lemma 4.1 of the Lecture Notes.

1. Discuss Riemann integrability of the Dirichlet function XQ∩[0,1].

Notice, the rationals and the irrationals are dense, so on any open subinterval of [0, 1], we can always
find at least one rational and at least on irrational. This means that no matter how we segment [0, 1]
into subintervals Ij , we can always find at least one rational and one irrational, such that:

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) = 1, ∀j ∈ [1, n]

This then means that for example with ε = 0.5:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) =

n∑
j=1

λ(Ij) = 1 > ε

so the Dirichlet Function won’t be Riemann integrable.

2. Prove or disprove these 2 statements:

(a) If f is Riemann integrable on [a, b] then so is |f |.
This is true. If we apply the reverse triangle inequality, ∀x, y ∈ [a, b]:

||f(x)| − |f(y)|| ≤ |f(x)− f(y)|

Since f is integrable, then:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) < ε, Ij = (xj−1, xj)

But then:

n∑
j=1

sup
x,y∈Ij

||f(x)| − |f(y)||λ(Ij) ≤
n∑

j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) < ε, Ij = (xj−1, xj)

so |f | must be Riemann integrable.

(b) If |f | is Riemann integrable on [a, b], then so is f .

This is false. Let:

f(x) =

{
1, x ∈ Q ∩ [0, 1]

−1, x ∈ QC ∩ [0, 1]

Then, ∀x, y ∈ [0, 1]:
|f(x)| = 1 =⇒ |f(x)| − |f(y)| = 0
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So ∀ε > 0:
n∑

j=1

sup
x,y∈Ij

||f(x)| − |f(y)||λ(Ij) = 0 < ε

and so, |f | is Riemann integrable.

However, f isn’t Riemann integrable. Again, since the rationals and irrationals are dense, on any
subinterval Ij we have:

sup
x,y∈Ij

|f(x)− f(y)| = 2

so:
n∑

j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) =

n∑
j=1

2λ(Ij) = 2

so if |f | is Riemann integrable, f need not be Riemann integrable.

We now consider Lebesgue integrability again.

Let −∞ ≤ a < b ≤ ∞. Suppose that a function f is integrable on the
interval (a, v), ∀v ∈ (a, b). Then, f is integrable on the interval (a, b) if
and only if there exists M <∞ such that:∫ v

a

|f | ≤M, ∀v ∈ (a, b)

Moreover, if this holds: ∫ b

a

f = lim
v→b−

∫ v

a

f

where if b =∞ we understand limv→b− to be limv→∞.

3. Formulate an analogous statement on integrability on (a, b) under the assumption of inte-
grability of f on intervals (u, b) where u ∈ (a, b).

Let −∞ ≤ a < b ≤ ∞. Suppose that function f is integrable on the
interval (u, b), where u ∈ (a, b). Then f is integrable on the interval (a, b)
if and only if there exists M <∞ such that:∫ b

u

|f | ≤M, ∀u ∈ (a, b)

Additionally, if this condition holds, then:∫ b

a

f = lim
u→a+

∫ b

u

f

where if a =∞ we understand lim
u→a+

to be lim
u→∞

).
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4. Consider a sequence (vn) of numbers:

a < v1 < v2 < . . . < b

such that:
lim
n→∞

vn = b

Let:
I1 = (a, v1] Ij = (vj−1, vj ] j = 2, 3, . . .

Deduce that: ∫ v

a

|f | ≤M, ∀v ∈ (a, b) ⇐⇒
n∑

j=1

∫
Ij

|f | ≤M, n ∈ N

Deduce from this integrability of f on:

(a, b) =
⋃

j∈NIj

by quoting a correct theorem from the lecture notes, and finally deduce that:∫ b

a

f = lim
v→b−

∫ v

a

f

We begin by noticing that:
n∑

j=1

∫
Ij

|f | =
∫ vn

a

|f |

Now, if
∑n

j=1

∫
Ij
|f | ≤M , recall Theorem 4.8, part c) of the notes:

If f is integrable on I, and ∀x ∈ I, f(x) ≥ 0 then:∫
J

f ≤
∫
I

f

where J is a subinterval of I.

We can always pick n ∈ N such that vn ≥ v, so that:∫ v

a

|f | ≤
∫ vn

a

|f | ≤M

Similarly, if
∫ v

a
|f | ≤M , we can always pick n ∈ N such that vn ≤ v so:∫ vn

a

|f | ≤
∫ v

a

|f | ≤M

Hence, we get that: ∫ v

a

|f | ≤M, ∀v ∈ (a, b) ⇐⇒
n∑

j=1

∫
Ij

|f | ≤M, n ∈ N
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Now, recall Theorem 4.8, part d) of the notes:

Suppose that I can be written as a disjoint union of intervals In.
Assume f is integrable on each In.
Then, f is integrable on I if and only if:

∞∑
n=1

∫
In

|f | <∞

in which case: ∫
I

f =
∞∑
n=1

∫
In

f

Now, ∀n ∈ N, we can always find u ∈ (a, b) such that:

n∑
j=1

∫
Ij

|f | ≤
∫ v

a

|f | ≤M

which means that also:
∞∑
j=1

∫
Ij

|f | ≤M

Hence, Theorem 4.8, part d) applies, and so, f is integrable over (a, b) =
⋃

j∈NIj and:

∫ b

a

f =

∞∑
j=1

∫
Ij

f

But notice: ∫ b

a

f =

∞∑
j=1

∫
Ij

f

= lim
n→∞

n∑
j=1

∫
Ij

f

= lim
n→∞

∫ vn

a

f

= lim
v→b−

∫ v

a

f

as required.

5. Prove the converse, assume that f is integrable on (a, b) and show that ∃M <∞ such that:

n∑
j=1

∫
Ij

|f | ≤M, n ∈ N
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By properties of the Lebesgue integral, if f is integrable, then |f | is integrable, and so ∃M ∈ R:∫ b

a

|f | ≤M

But then, since v ∈ (a, b): ∫ v

a

|f | ≤
∫ b

a

|f | ≤M

so the result follow by the equivalence∫ v

a

|f | ≤M, ∀v ∈ (a, b) ⇐⇒
n∑

j=1

∫
Ij

|f | ≤M, n ∈ N

as required.

6. Analogously, prove the statement formulated in Q3.

This is taken directly from my homework answers, so it is unnecessarily
long and over detailed. The above is more similar to the solutions pro-
vided.

We first prove that if ∫ b

u

|f | ≤M, ∀u ∈ (a, b)

then f is integrable on (a, b) and ∫ b

a

f = lim
u→a+

∫ b

u

f

Lets consider a sequence (un)n∈N of numbers, such that:

a < . . . < u2 < u1 < b

with:
lim
n→∞

un = a

We can then partition the interval (a, b) via:

I1 = [u1, b)

I2 = [u2, u1)

...

Ij = [uj , uj−1]

...

such that:
∞⋃
j=1

Ij = (a, b)
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Lets define |fj | = XIj |f |. It follows that ∀x ∈ (un, b):

n∑
j=1

|fj(x)| = |f(x)|

Since f is integrable on any subinterval of (u, b), in particular it is integrable on the interval from un to
b: ∫ b

un

|f | =
∫ b

un

n∑
j=1

|fj | =
n∑

j=1

∫ b

un

|fj | =
n∑

j=1

∫
Ij

|f |

where we have made us of the linearity of the Lebesgue Integral, alongside Theorem 4.8, part b). But
then, if ∀u ∈ (a, b) we have: ∫ b

u

|f | ≤M

since un ∈ (a, b), and (un, b) ⊆ (u, b) for any u ∈ (a, b), it follows by Theorem 4.8, part c) that:∫ b

un

|f | =
n∑

j=1

∫
Ij

|f | ≤
∫ b

u

|f | ≤M

Hence, it follows that if
∫ b

u
|f | ≤M then:

n∑
j=1

∫
Ij

|f | ≤M

Notice, the inequality
∑n

j=1

∫
Ij
|f | ≤

∫ b

u
|f | holds ∀n ∈ N, so

∑n
j=1

∫
Ij
|f | ≤ M is also true ∀n ∈ N. It

must then be the case that:

lim
n→∞

n∑
j=1

∫
Ij

|f | =
∞∑
j=1

∫
Ij

|f | ≤M

Notice, we have written
⋃∞

j=1 Ij = (a, b), where each Ij is disjoint. Moreover, by the statement of
the question, we know that f is intergrable on any interval (u, b) where u ∈ (a, b), so by properties of
Lebesgue Integrability, so is |f |. Thus, since we have shown that:

∞∑
j=1

∫
Ij

|f | <∞

It follows by Theorem 4.8, part d) of the notes that f is integrable over (a, b), and:∫ b

a

f =

∞∑
j=1

∫
Ij

f

Finally, notice that, from the work above:

∞∑
j=1

∫
Ij

f = lim
n→∞

n∑
j=1

∫
Ij

f

but:

lim
n→∞

n∑
j=1

∫
Ij

f = lim
n→∞

∫ b

un

f = lim
un→a+

∫ b

un

f = lim
u→a+

∫ b

u

f
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(since un → a+ as n→∞, and we can always find u ∈ (a, b) such that ∀n ∈ N, un ≥ u). Then, it must
be the case that: ∫ b

a

f = lim
u→a+

∫ b

u

f

We now show that if f is integrable on (a, b), then∫ b

u

|f | ≤M, ∀u ∈ (a, b)

Since f is integrable on (a, b), by properties of Lebesgue Integrability, |f | is also integrable on the interval,
so ∃M <∞ such that: ∫ b

a

|f | ≤M

Hence, by Theorem 4.8, part c) of the notes, for any u ∈ (a, b), since (u, b) ⊂ (a, b) it must be the case
that: ∫ b

u

|f | ≤
∫ b

a

|f | ≤M

7. Show that f(x) = e−x cos(x) is integrable on [0,∞), and calculate the value of the integral.

Notice, f is a product of continuous functions, so in particular, it is continuous on any interval [0, v], v ∈
R, and so, integrable on such intervals.

We apply the Theorem above. Notice:∫ v

0

|f(x)| dx
∫ v

0

|e−x|| cos(x)| dx ≤
∫ v

0

e−x = −
[
e−v − e0

]
= 1− e−v ≤ 1

Hence, the theorem applies, and the function is integrable on [0,∞).

At this point, remember we have just shown that the integral is bounded,
but the bound we have computed requires approximations, which don’t nec-
essarily reflect the value of the integral (for example, using an absolute
value, or removing terms from the integral).

We compute: ∫ ∞
0

e−x cos(x) dx = lim
v→∞

∫ v

0

e−x cos(x) dx

We can apply integration by parts with:

u = e−x du = −e−x

dv = cos(x) v = sin(x)

So: ∫
e−x cos(x) = e−x sin(x) +

∫
e−x sin(x) dx

Applying integration by parts again:

u = e−x du = −e−x
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dv = sin(x) v = − cos(x)

So: ∫
e−x sin(x) dx = −e−x cos(x)−

∫
e−x cos(x)

Hence, we have that:

I = e−x sin(x)− e−x cos(x)− I =⇒ I =
e−x

2
(sin(x)− cos(x))

Thus: ∫ ∞
0

e−x cos(x) dx = lim
v→∞

∫ v

0

e−x cos(x) dx

= lim
v→∞

[
e−v

2
(sin(v)− cos(v))− e0

2
(sin(0)− cos(0))

]
= lim

v→∞

[
e−v

2
(sin(v)− cos(v)) +

1

2

]

Now, since sin(v) and cos(v) are bounded, it follows that:

lim
v→∞

[
e−v

2
(sin(v)− cos(v)) +

1

2

]
= 0 +

1

2
=

1

2

8. Discuss integrability of: ∫ 1

0

dx√
1− x2

and find the value of the integral if it exists.

Notice, 1√
1−x2

is continuous on all (0, 1), and positive, so:∫ v

0

|f | =
∫ v

0

dx√
1− x2

= arcsin(v)− arcsin(0) = arcsin(v)

Now, arcsin(x) is bounded on [0, 1], such that:

arcsin(v) ≤ π

2

Hence, 1√
1−x2

is integrable on (0, 1), and:∫ 1

0

dx√
1− x2

= lim
v→1−

[arcsin(v)] =
π

2

by continuity.

9. Discuss integrability of: ∫ 1

0

ln(x) dx

and find the value of the integral if it exists.

We compute:∫ 1

u

| ln(x)| dx =

∫ 1

u

− ln(x) dx = −[x ln(x)− x]1u = −(0− 1− u ln(u) + u) = 1− u(ln(u)− 1)
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Notice, since u(ln(u)− 1)→ 0 as u→ 0 (i.e by L’Hôpital), it follows that:∫ 1

u

| ln(x)| dx ≤ 1

so the function is integrable over (0, 1), and:∫ 1

0

ln(x) dx = lim
u→0+

(−1 + u(ln(u)− 1)) = −1

10. Explain why the function:

f(x) =
(−1)[x]

[x]
, x ≥ 1

is not integrable on [1,∞) even though the limit:

lim
v→∞

∫ v

1

f(x) dx

exists.

It doesn’t satisfy the condition necessary to apply the theorem. If we let Ij = [j, j + 1), then:∫
Ij

|f | =
∫ j+1

j

1

j
=

1

j

Hence:
n∑

j=1

∫
Ij

|f | =
n∑

j=1

1

j

However, this sum diverges as n→∞, so in particular it can be made arbitrarily large, and so, we can
choose n such that ∀M ∈ R:

n∑
j=1

1

j
≥M =⇒

∫ v

1

|f(x)| dx ≥M

Hence, the theorem won’t apply, and so, the function isn’t integrable on [1,∞).

11. Are the functions in Q7-Q9 Riemann integrable? Explain your answers?

They aren’t.

• e−x cos(x) isn’t Riemann integrable on (0,∞), since it has unbounded support, and Riemann inte-
grability is defined by the fact that f can be approximated arbitrarily way by step functions, so if
f has unbounded support, it means it can’t be represented by step functions, and so, it can’t be
Riemann integrable

• again, the requirement of being approximated by step functions means that we require that f is
bounded, but neither ln(x) or 1√

1−x2
are bounded on (0, 1), and so, can’t be Riemann integrable
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