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1 Integrating Series of Functions

1.1 Theorem: Integrability of a Convergent Series of Functions

We consider a theorem which tells us whether a sequence of functions fn, which form a convergent series
to some function f(x), are Lebesgue Integrable. What is remarkable, is that we only require pointwise
convergence, whilst previously, integrability of series of functions relied on uniform convergence.

Suppose fn is a sequence of functions, each of which is integrable on
some I.
(a) If:

∞∑
n=1

∫
I

|fn| <∞

(the sum of integrals of each function in the sequence is convergent)
and f is a function on I, such that,

f(x) =
∞∑
n=1

fn(x)

for any x, such that
∑∞

n=1 |fn(x)| <∞a , then f is integrable on I,
and its integral is: ∫

I

f =
∞∑
n=1

∫
I

fn <∞

(b) If we further have that for any n ∈ N, fn ≥ 0, and

f(x) =
∞∑
n=1

fn(x)

for all x ∈ I (except for possibly finitely many points, in which we can
allow that

∑∞
n=1 fn(x) =∞).

Then f is integrable on I if and only if:

∞∑
n=1

∫
I

fn <∞

[Theorem 4.3]

athis is just saying that we require the x to be such that the sum converges (to f)
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In this theorem, we are basically saying that if:

∞∑
n=1

∫
I

|fn|

exists, and we can express f(x) as a series of fn(x) (except possibly at
finitely many points), then the integral of f exists, and can be expressed
as an infinite sum of the integrals of fn(x).
In part a), the convergence of

∑∞
n=1

∫
I
|fn| is a sufficient condition to

prove convergence; in part b), and assuming fn is non-negative, it is a
sufficient and necessary condition (notice that since fn ≥ 0, then∑∞

n=1

∫
I
|fn| is just

∑∞
n=1

∫
I
fn).

The proof for this is at the end of the notes.

1.2 Theorem: Monotone Convergence Theorem

This theorem deals with the integrability of sequences of functions, as opposed to series of functions (as
above).
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Suppose that fn is a sequence of:

• monotone

• non-decreasing

• integrable

functions on an interval I:

f1(x) ≤ f2(x) ≤ . . .

For any x ∈ I, define:
f(x) = lim

n→∞
fn(x)

We allow that for some x, this limit diverges to infinity: we are not con-
cerned with particular points. Notice, that if fn is a bounded sequence, it
will necessarily converge, since its monotone.
Then, f must be integrable on I if and only if:

sup
n∈N

∫
I

fn = lim
n→∞

∫
I

fn <∞

(this equivalence might not be immediately obvious, but it is due to the fact
that fn is non-decreasing, so fn ≤ fn+1 =⇒

∫
I
fn ≤

∫
I
fn+1, so the

supremum must coincide with the limit)
Moreover, we have that: ∫

I

f = lim
n→∞

∫
I

fn

There is an equivalent result if the sequence of functions is monotone,
non-increasing, in which we just need to check that:

inf
n∈N

∫
I

fn

exists for ∫
I

f = lim
n→∞

∫
I

fn

[Theorem 4.4]

Proof: Monotone Convergence Theorem. Without loss of generality, lets assume that f1 ≥ 0 (so every term
is non-negative). If this is not the case, just consider the sequence formed by fn − f1 (this is guaranteed to
always be non-negative), and at the end just add the integral of f1.
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Now, define a new sequence, gn, such that:

gn =

{
f1, n = 1

fn − fn−1, n > 1

Notice, gn is a sequence of non-negative, integrable functions, so in particular we can use part b) of the
Series Integrability Theorem (1.1).

In order to apply the theorem, we just need to consider:

∞∑
n=1

gn(x)

But then notice that for any x ∈ I:

∞∑
n=1

gn(x) = lim
n→∞

n∑
k=1

gk(x)

= lim
n→∞

(f1(x) + (f2(x)− f1(x)) + . . .+ (fn(x)− fn−1(x))

= lim
n→∞

fn(x)

= f(x)

Thus, by the Theorem above, since f(x) =
∑∞

n=1 gn(x), it must be the case that f is integrable if and only
if:

∞∑
n=1

∫
I

gn(x) <∞

So, we evaluate the series above:

∞∑
n=1

∫
I

gn(x) = lim
n→∞

n∑
k=1

∫
I

gk(x)

=

∫
I

g1(x) +

∫
I

g2(x) + . . .+

∫
I

gn(x)

= lim
n→∞

(∫
I

f1(x) +

∫
I

(f2(x)− f1(x)) + . . .+

∫
I

(fn(x)− fn−1(x))

)
= lim

n→∞

∫
I

fn(x)

= sup
n∈N

∫
I

fn(x)

Thus, it follows that f is integrable, if and only if

∞∑
n=1

∫
I

gn(x) <∞

And this is true if and only if:

sup
n∈N

∫
I

fn(x)

converges, as required.
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Knowing that f is integrable, and since f(x) =
∑∞

n=1 gn(x), by the Theorem Above, it must be the case
that: ∫

I

f =

∞∑
n=1

∫
I

gn(x)

But we have shown that:
∞∑

n=1

∫
I

gn(x) = lim
n→∞

∫
I

fn(x)

So it follows that: ∫
I

f = lim
n→∞

∫
I

fn(x)

2 The Riemann Integral

2.1 Defining the Riemann Integral

• What is a Riemann Integrable function?

– consider a function f : R→ R
– f is Riemann Integrable if ∀ε > 0, there exist 2 step functions φ, ψ such that:

φ ≤ f ≤ ψ

and: ∫
ψ −

∫
φ < ε

2.2 Theorem: Riemann Integrable Implies Boundedness

If f is Riemann Integrable, then:

• f is bounded

• f has bounded support: ∃E ⊂ R such that E is bounded, and if
x 6∈ E, then f(x) = 0; in particular,

E = {x | f(x) 6= 0} ⊂ [a, b]

[Example 4.3]

Proof: Riemann Integrability and Boundedness. Let f be a Riemann Integrable Function. By the definition
of Riemann Integrability, for any ε = 1, we can find step functions φ, ψ satisfying:

φ ≤ f ≤ ψ
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and ∫
ψ −

∫
φ < 1

We first show that f must be bounded.

Since φ, ψ are step functions, they are so with respect to some countable, bounded set of points. We
consider the case for φ; ψ is analogous. We can define:

φ(x) =


0, x < x0

0, x > xn

cj , x ∈ (xj , xj+1)

From this it follow that φ(x) is clearly bounded, since its supremum exists:

sup
x∈R
|φ(x)| = max{|c0|, |c1|, . . . , |cn−1|, |φ(x0)|, |φ(x1)|, . . . , |φ(xn)|}

where we need to consider the value of φ both on intervals (xj , xj+1) and at the endpoints of said intervals
(which may be defined in any way). Since the set above is bounded, its supremum must exist.

If we apply the same logic on ψ, we observe that there must exist some M ∈ R, such that for any x ∈ R:

|φ(x)| < M

|ψ(x)| < M

So in particular:
φ ≤ f ≤ ψ =⇒ −M < f < M

so f is bounded. (Could’ve just argued that any step function is bounded, but this is an explicit statement
of this)

We now show that f has bounded support. This follows very easily from the work below.

For φ, we know that if x < x0 or x > xn, φ(x) = 0. Similarly, for ψ, we know that there exist y0, yk such
that, if x < y0 or x > yk, ψ(x) = 0.

But then, it follows that if x < a = min{x0, y0} or x > max{xn, yk}, we must have f(x) = 0, so it must
be the case that the support E of f is bounded, since E ⊆ [a, b].

If we think about this, this is precisely the definition of Riemann Integral
we know from school: φ, ψ represent the rectangles which we use to ap-
proximate the function, and so their integral is representative of the area
of the function. What this definition is saying is that a function f is inte-
grable if and only if we can construct arbitrarily small rectangles which
can bound the area of f .
This also means that step functions are Riemann Integrable, since if f is a
step function, we can choose φ = ψ = f .
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2.3 Theorem: Riemann Integrability and Bounded Support

Let f be Riemann Integrable.
If f(x) = 0 for all x 6∈ [a, b], then we can take φ, ψ, such that φ and ψ are
also 0 outside of [a, b]. [Example 4.3]

Proof: Bounded Support and Step Function for Riemann Integrable Functions. Let f be Riemann Integrable.
Then, ∀ε > 0, there exist step functions φ, ψ, such that:

φ ≤ f ≤ ψ =⇒
∫
ψ −

∫
φ < ε

Now, define 2 new step functions:
φ∗ = φX[a,b]

ψ∗ = ψX[a,b]

These are clearly 0 outside of [a, b], and within [a, b] have the same value as φ and ψ on said interval.

Now, we claim that φ ≤ φ∗. This is easy to see. If we consider x ∈ [a, b], then by definition of φ∗, we
have φ(x) = φ∗(x). Now, lets consider x 6∈ [a, b]. Since f is Riemann Integrable, for any x, we have:

φ(x) ≤ f(x)

But we know that f(x) = 0 for any x 6∈ [a, b], so it follows that:

φ(x) ≤ 0

But φ∗(x) = 0 precisely when x 6∈ [a, b], so it follows that for any x:

φ(x) ≤ φ∗(x)

Similarly, we claim that ψ ≥ ψ∗. This is easy to see. If we consider x ∈ [a, b], then by definition of ψ∗,
we have ψ(x) = ψ∗(x). Now, lets consider x 6∈ [a, b]. Since f is Riemann Integrable, for any x, we have:

f(x) ≤ ψ(x)

But we know that f(x) = 0 for any x 6∈ [a, b], so it follows that:

0 ≤ ψ(x)

But ψ∗(x) = 0 precisely when x 6∈ [a, b], so it follows that for any x:

ψ∗(x) ≤ ψ(x)

From the work above, it follows that for any x:

φ(x) ≤ φ∗(x) ≤ f ≤ ψ∗(x) ≤ ψ(x)

So in particular:

ψ∗(x)− φ∗(x) ≤ ψ(x)− φ(x) =⇒
∫
ψ∗(x)− φ∗(x) ≤

∫
ψ(x)− φ(x) < ε

So it follows that ∫
ψ∗(x)− φ∗(x) < ε

Thus, we can use ψ∗(x), φ∗(x) for the Riemann Integrability of f , and these are 0 outside of [a, b], as required.
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2.4 Theorem: Computing Riemann Integral From Defintion

From the definition, we know that for an integrable function, we can define 2 step functions whose integrals
get arbitrarily close to each other. Using this, we can find the value of a Riemann Integral.

A function f : R → R is Riemann Integrable if and only if, given 2
step functions φ, ψ, we have:

sup

{∫
φ | φ ≤ f

}
= inf

{∫
ψ | ψ ≥ f

}
In particular, if such step functions exist, then we define the Riemann In-
tegral of f as:

(R)

∫
f = sup

{∫
φ | φ ≤ f

}
= inf

{∫
ψ | ψ ≥ f

}
[Theorem 4.5]

2.5 Theorem: Connection Between Riemann and Lebesgue Integrability

Let f be a Riemann Integrable function.
Then f is also Lebesgue Integrable, and both integrals are equal:

(R)

∫
f =

∫
f

[Theorem 4.6]

Proof: Riemann Integrability Implies Lebesgue Integrability. We begin by noting that this holds for step
functions. This is because the integral of a step function corresponds with the Lebesgue Integral of said
function, and Riemann Integrals are found by bounding a function using step functions, and considering
their integral.

The aim of the proof is to, from Riemann Integrability, use the Monotone Convergence Theorem
(1.2), since this is a Theorem about Lebesgue Integrability. However, for this we need to consider a sequence
of monotone, non-increasing/non-decreasing functions which converge to some function. In order to construct
this sequence, we will use the step functions which help define Riemann Integrability.

The proof will follow the following steps:

1. Use Riemann Integrability to derive a sequence of step functions which bound f

2. From the above sequence, produce a sequence of monotone, step functions, as to apply the Monotone
Convergence Theorem
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3. Deduce that the step functions converge to step functions which bound f , and whose integral is equal
to the Riemann Integral of f , by the MCT

4. We can then use the Thoerems about Lebesgue Integrability, to describe f as a sum of step functions,
which implies Lebesgue Integrability

5. If we integrate our expression for f , we will notice that it reduces to the Riemann Integral of f

Indeed, a function is Riemann Integrable if there is a sequence of 2 step functions φn, ψn who’s infi-
mum/supremum coincide. In particular, for any εn > 0, we can find φn, ψn such that:

φn ≤ f ≤ ψn =⇒
∫
ψn − φn < εn

and from properties of infimum and supremum, we must have:

(R)

∫
f = lim

n→∞

∫
φn = lim

n→∞

∫
ψn

However, we don’t have any guarantee that φn or ψn is monotone. In order to ensure this, we construct a
new set of sequences of functions Φ,Ψ defined in the following manner:

Φ1 = φ1 Φ2 = max{φ1, φ2} Φ3 = max{φ1, φ2, φ3} . . . 1

and
Ψ1 = ψ1 Ψ2 = min{ψ1, ψ2} Ψ3 = min{ψ1, ψ2, ψ3} . . .

By doing this, Φn and Ψn now represent monotone sequences of function, all memebers of which are step
function. Moreover, notice that by construction, for any n ∈ N:

φn ≤ Φn

Ψn ≤ ψn

Furthermore, we must also have (again by construction):

φn ≤ Φn ≤ f ≤ Ψn ≤ ψn

and by properties of integrals: ∫
φn ≤

∫
Φn ≤ (R)

∫
f ≤

∫
Ψn ≤

∫
ψn

But recall from the work above that:

(R)

∫
f = lim

n→∞

∫
φn = lim

n→∞

∫
ψn

So taking the limit of the expression above, and applying Squeeze Theorem implies that:

(R)

∫
f = lim

n→∞

∫
Φn = lim

n→∞

∫
Ψn

Lastly, notice that the following limits must exist:

lim
n→∞

Φn(x) = Φ(x)

1I advocate for the definition with Φ1 = φ1 and Φn = max{Φn−1, φn}, both because it is more succint, and more clearly
evokes the monotonicity
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lim
n→∞

Ψn(x) = Ψ(x)

since Φn,Ψn are monotone and bounded (step functions are always bounded). It also follows that:

Φ(x) ≤ f(x) ≤ Ψ(x)

Since Φn,Ψn are monotone sequences of Lebesgue Integrable functions, by the Monotone Convergence The-
orem, we have that: ∫

Φ(x) = lim
n→∞

∫
Φn(x)∫

Ψ(x) = lim
n→∞

∫
Ψn(x)

and since:

(R)

∫
f = lim

n→∞

∫
Φn = lim

n→∞

∫
Ψn

it follows that:

(R)

∫
f =

∫
Φ =

∫
Ψ

Now that we have an expression for the Riemann Integral of f in terms of step functions, we need to show
that f is Lebesgue Integrable, and that it is equal to the Riemann Integral. In order to do this, we can define
a function:

h(x) = Ψ(x)− Φ(x)

Notice that we must have h(x) ≥ 0, and h is Lebesgue Integrable, since its the difference between 2 step
functions. Moreover, it must be the case that:

0 ≤ f(x)− Φ(x) ≤ h(x)

But now, recall a property of Lebesgue Integrability:

If f ≥ 0 with
∫
I
f = 0 then any function h such that 0 ≤ h ≤ f on I is

integrable on I.

Indeed, we have that h(x) ≥ 0, and:∫
h(x) =

∫
Ψ(x)− Φ(x) = 0

But then, by the Theorem above, and since 0 ≤ f(x) − Φ(x) ≤ h(x), then f(x) − Φ(x) must be Lebesgue
Integrable.

But since we can write:
f(x) = Φ(x)− (Φ(x)− f(x))

and both Φ(x) and (Φ(x) − f(x)) are Lebesgue Integrable, f must be Lebesgue Integrable. Furthermore,
from

0 ≤ f(x)− Φ(x) ≤ h(x)

we know that
∫
f(x)− Φ(x) = 0, so if we compute the Lebesgue Integral for our expression of f :∫

f(x) =

∫
Φ(x)− (Φ(x)− f(x)) =

∫
Φ(x) = (R)

∫
f(x)

as required.
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2.6 Lemma: Equivalent Criteria for Riemann Integrability

Let f : R→ R be a bounded function with bounded support [a, b]. The
following are equivalent:

1. f is Riemann Integrable

2. ∀ε > 0, we can find a = x0 < x1 < . . . < xn = b, such that if Mj and
mj denote the infimum and supremum of f on (xj−1, xj) respectively,
then:

n∑
j=1

(Mj −mj)(xj − xj−1) < ε

3. ∀ε > 0 there exist a = x0 < x1 < . . . < xn = b such that if
Ij = (xj−1, xj) for j ≥ 1, then:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) < ε

[Lemma 4.1]
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2.7 Theorem: Riemann Integrability, Continuity and Monotonicity

Suppose that
g : [a, b]→ R

and that g(x) = f(x) for any x ∈ [a, b], and f(x) = 0 elsewhere.

1. If g is continuous on [a, b], then f is Riemann Integrable

2. If g is a monotone function, then f is Riemann Integrable

The above holds even if g is continuous on (a, b) and bounded. [Theorem
4.7]

Proof: Riemann Integrability for Continuous and Monotone Functions. We first proof Theorem 1: continu-
ity of g implies Riemann Integrability of f .

Clearly, f is bounded, by the Extreme Value Theorem, and has bounded support (by definition). In
particular, since f is continuous on [a, b], it must also be uniformly continuous on said interval:
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Let I be an interval in R, and let f : I → R be a function.
We say that f is uniformly continuous on I if for every ε > 0 there is
a δ > 0 such that for any x, y ∈ I and |x − y| < δ implies that |f(x) −
f(y)| < ε.

Indeed, pick ε > 0, such that there exists a δ > 0, such that for any x, y ∈ [a, b], we have that |x− y| < δ
implies |f(x)− f(y)| < ε

b−a .

We can exploit the above property by dividing the interval [a, b] into subintervals of length less than δ,
by considering the points:

a = x0 < x1 < . . . < xn = b

with xj − xj−1 < δ. This then means that if x, y ∈ Ij = (xj−1, xj), then we must have |f(x)− f(y)| < ε
b−a .

Now, consider:
n∑

j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij)

Since we know that for any x, y ∈ Ij , |f(x)− f(y)| < ε, it is easy to see that supx,y∈Ij |f(x)− f(y)| ≤ ε. So:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) ≤
ε

b− a

n∑
j=1

λ(Ij) = ε

But then, from the Equivalence Theorem for Riemann Integrability (2.6), it follows that f is Riemann
integrable.

We now prove part 2: if g is monotone, f is Riemann Integrable.

To do this, we again use the Equivalence Theorem (2.6). For simplicity, we can assume that f is monotone
non-decreasing, so for any x ∈ [a, b], we have f(a) ≤ f(x) ≤ f(b). f must thus be bounded

If f(a) = f(b), then f is constant, and it is a step function, which we know is Riemann Integrable.

Thus, consider f(a) < f(b). If this is the case, we partition [a, b] via

a = x0 < x1 < . . . < xn = b

which in particular means that:

sup
x,y∈(xj−1,xk)

|f(x)− f(y)| = f(xj)− f(xj−1)

from non-decreasing monotonicity.

In particular, if we use any ε > 0 and define δ = ε
f(b)−f(a) , such that λ(Ij) = xj −xj−1 < δ, we can again

use the equivalence Theorem used for part 1:
n∑

j=1

sup
x,y∈Ij

|f(x)− f(y)|λ(Ij) <
ε

f(b)− f(a)

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)|

=
ε

f(b)− f(a)

n∑
j=1

f(xj)− f(xj−1)

=
ε

f(b)− f(a)
(f(x1)− f(x0) + f(x2)− f(x1) + . . .+ f(xn)− f(xn−1))

= ε
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so f is Riemann Integrable.

2.8 Corollary: Requirements For Both Riemann and Lebesgue Integrability

Let I = (a, b) be a bounded interval and suppose that there exist points

a = x0 < x1 < . . . < xn = b

such that a function f : I → R is bounded and continuous on each
subinterval (xj−1, xj), with j = 0, 1, . . . , n.
Then, such function is both Riemann and Lebesgue integrable.

Proof. Write f as f1 + f2 + . . .+ fn, defining:

fj = f ×X(xj ,xj+1)

Since each fj is continuous and bounded on its subinterval (it is pointwise continuous), by the Theorem above,
fj must be Riemann Integrable. But then f must be Riemann Integrable, and so, Lebesgue Integrable.

3 Exercises

1. Show that f(x) = 1 is not integrable on (1,∞)

We can easily write f(x) by using characteristic functions. Indeed, ∀n ∈ N, and for any x > 1, we have:

fn(x) = X(n,n+1]

such that:

f(x) =

∞∑
n=1

fn(x)

We now apply the Integrability of Series of Functions, and consider whether:

∞∑
n=1

∫
(1,∞)

fn(x)

converges. But notice, ∫
(1,∞)

X(n,n+1] = λ((n, n+ 1]) = 1

so:
∞∑

n=1

∫
(1,∞

fn(x) =

∞∑
n=1

1 =∞

Since the above series diverges, it follows that f(x) = 1 is not integrable on the interval (1,∞).
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2. Let f(x) = xm if x ∈ [0, 1), and f(x) = 0 otherwise. Show that f is integrable, and compute∫
xm

We want to express xm as the limit of a sequence of functions (intuitively, as the interval over which we
define each step functions decreases, the approximation will be better). This can be done in a natural
way: we can split [0, 1) into subintervals, of length depending on n ∈ N, such that the left endpoint of
any interval IJ is given byxj = j

n . We can define a sequence of functions fn via:

fn(x) =

{
(xj)

m, x ∈ Ij = [xj , xj+1),∀j ∈ [0, n− 1]

0, otherwise

Under this formulation, we can see that:

f(x) = lim
n→∞

fn(x)

If x is outside [0, 1) this is clearly true, since fn(x) = 0. Thus, consider x ∈ [0, 1). In particular, pick
x ∈ Ij , it is then easy to see that:

(xj)
m ≤ f(x) < (xj+1)m

We need to show that |f(x)− xmj | → 0. To do so, we can consider the difference between the bounding
terms:

(xj+1)m − (xj)
m =

(j + 1)m

nm
− jm

nm

=
1

nm
((j + 1)m − jm)

=
1

nm
(jm +mjm−1 +O(m− 2)− jm)

=
1

nm
(mjm−1 +O(m− 2))

<
1

nm
(mnm−1 +O(n− 2)) Since j ≤ n− 1

=
1

n
(m+ . . .))→ 0

Since (xj+1)m − (xj)
m → 0, and |f(x)− (xj)

m| ≤ (xj+1)m − (xj)
m, by Squeeze Theorem:

|f(x)− xmj | → 0

as required.

Since we are dealing with a sequence of functions, we want to use the Monotone Convergence Theorem.
However, for this we require that our fn be monotone, which is not necessarily the case. We can see why
diagramatically:
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1

Figure 1: x2 using n = 1 (1 interval)

1
2
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1
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Figure 2: x2 using n = 2 (2 intervals)
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Figure 3: x2 using n = 3 (3 intervals)
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1
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4
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1

1
16

1
4

9
16

Figure 4: x2 using n = 4 (4 intervals)

From the above we can see that, for example, when n = 3, on the interval
(
1
2 ,

2
3

)
, we can see that f2 > f3.

However, when we have n = 2k, each subinterval of fn is contained in the subintervals of f2k+1 , which
ensures that f2k ≤ f2k+1 .

Notice, since fn → f , and f2k is just a subsequence of fn, we still have f2k → f . Thus, the only step
left required to show f is integrable on [0, 1) is to show that:

lim
k→∞

∫
[0,1)

f2k <∞

In order to do this, we will consider our original fn, and apply the general result to the particular integral
above. Notice, we can write fn as a finite sum:

fn(x) =

n−1∑
j=0

(xj)
mX[xj ,xj+1)
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We can easily compute the integral of this finite sum, since characteristic functions are easily integrable:∫
fn(x) =

∫ n−1∑
j=0

(xj)
mX[xj ,xj+1)

=

n−1∑
j=0

(xj)
mλ([xj , xj+1))

=
1

n

n−1∑
j=0

(
j

n

)m

=
1

nm+1

n−1∑
j=0

jm

If we use induction, we get:

nm+1

m+ 1
≤

n−1∑
j=0

jm ≤ (n+ 1)m+1

m+ 1

So it follows that:
1

m+ 1
≤
∫
fn(x) ≤ 1

m+ 1

(
n+ 1

n

)m+1

So by Squeeze Theorem,

lim
n→∞

∫
fn(x) =

1

m+ 1

Hence, f is integrable, and by the Monotone Convergence Theorem, since:

f2k → f

and f2k is a monotone, nondecreasing sequence, and:

lim
k→infty

∫
[0,1)

f2k =
1

m+ 1

it follows that: ∫
[0,1)

f =
1

m+ 1

3. Show that the Dirichlet Function, defined by:

XQ∩[0,1]

is not Riemann Integrable.

We could just say that the Dirichlet Function is not Riemann Integrable by just showing that it is not
continuous.

We can show this from the definition of Riemann Integrability. That is, assume that we can find 2 step
functions φ, ψ such that, letting F = Q ∩ [0, 1]:

φ ≤ XF ≤ ψ =⇒
∫
ψ −

∫
φ < ε
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for any ε > 0. Since the function has bounded support, we can assume that φ, ψ are 0 outside [0, 1].

φ and ψ must be step function with respect to a set {x0, x1, . . . , xn}. φ can be defined by the values of
cj , and ψ defined by the values of dj when x ∈ (xj−1, xj . But now, notice that on any open interval,
there is always at least one rational and irrational number. Let y be a rational and z be an irrational
on said interval.

Notice, XF (y) = 1, so it follows that ψ(y) ≥ 1, so we must have that for any x, dj ≥ 1. Similarly,
XF (z) = 0, so it follows that φ(z) ≤ 0, we we must have that for any x, cj ≤ 0.

Now, consider: ∫
ψ −

∫
φ =

∑
j

dj(xj − xj−1)−
∑
j

cj(xj − xj−1)

≥
∑
j

(xj − xj−1 − 0)

= xn − x0
= 1

But this contradicts our initial claim that for any ε > 0, we must have:∫
ψ −

∫
φ < ε[

so the Dirichlet Function can’t be Riemann Integrable.

However, it is Lebesgue Integrable, since F is a countable set, and so we know that:∫
XF = 0

4. We have seen that the Dirichlet Function is not Riemann Integrable. Is it true that if E is
a countably infinite, bounded subset of the reals, XE is not Riemann Integrable?

We can show there is a counterexample. Let E =
{

1
n | n ∈ N

)
}. E is clearly countable (we can make a

bijection to the natural numbers), and bounded (since ∀n ∈ N, 0 < 1
n ≤ 1.

We can gain intuition by looking at how XE looks like. It is 1 whenever x = 1
n , and 0 otherwise.

Define 2 step functions:
φ(x) = 0

ψ(x) =


0, x > 1, x < 0

0, x ∈
(

1
n+1 ,

1
n

)
, n = 1, 2, . . . , k − 1

1, x = 1
n , n = 1, 2, . . . , k

1, x ∈
[
0, 1k

)
where k is some positive integer. The above definition ensures that ψ is defined everywhere. We use
the interval

[
0, 1k

)
because naturally, using reciprocals we will never reach 0, so this interval solves said

issue.
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The above definition ensures that for any x:

φ(x) ≤ f(x) ≤ ψ(x)

Consider the integrals of these step functions: ∫
φ = 0

∫
ψ = 1λ

([
0,

1

k

))
+

k∑
n=1

1λ

([
1

n

])
+ 0 + 0 =

1

k

But then it follows that: ∫
ψ −

∫
φ =

1

k

and since k is arbitrary, this difference can be made arbitrarily small, so for any ε > 0:∫
ψ −

∫
φ < ε

Thus, XE is Riemann Integrable.

4 Workshop

1. Let f(x) = [x] for all x ∈ R. Calculate the integrals:∫
(0,5)

f

∫
(− 7

3 ,
12
5 ]
f

For the first one, on (0, 5) we can write f as a step function. If:

Ij = [j, j + 1)

then:

f(x) =

4∑
i=0

iXIj (x)

Since f is a step function, it is integrable over all R, and:∫
(0,5)

f =

4∑
i=0

iλ(Ij) =

4∑
i=0

i = 10

For the second one, we can also write f as a step function on
(
− 7

3 ,
12
5

]
. We first note that:

−7

3
= −2.3̇

12

5
= 2.4

If:

Ij =


(
− 7

3 ,−2
)
, j = −3[

2, 125
]
, j = 2

[j, j + 1), otherwise

then:

f(x) =

2∑
j=−3

iXIj (x)

f as a step function is integrable, and:∫
(− 7

3 ,
12
5 ]
f = −3

1

3
− 2− 1 + 0 + 1 + 2

2

5
= −2.2
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2. Show that if n ∈ Z and f(x) = [nx]2 for all x ∈ R, then:∫
(0,1)

f =
1

n

n−1∑
j=1

j2 =
1

6
(n− 1)(2n− 1)

We build some intuition. Notice, we integrate over (0, 1) so we restrict x ∈ (0, 1):

• n = 1 =⇒ f(x) = [x]2 = 0

•

n = 2 =⇒ f(x) =

{
1, 1

2 ≤ x < 1

0, 0 < x < 1
2

•

n = 3 =⇒ f(x) =


22, 2

3 ≤ x < 1

1, 1
3 ≤ x <

2
3

0, 0 < x < 1
3

Thus, ∀x ∈ (0, 1), if Ij =
[
j−1
n , j

n

)
we can write:

f(x) =

n−1∑
j=1

j2XIj (x)

Thus, f is a step function, and so integrable (Corollary of Theorem 4.1):∫
(0,1)

f =

n−1∑
j=1

j2λ(Ij) =

n−1∑
j=1

j2
(
j

n
− j − 1

n

)
=

1

n

n−1∑
j=1

j2

3. Let f(x) = 1
[x]2 for all x ≥ 1. Show that f is integrable on the interval [1,∞) and:

∫
[1,∞)

f =

∞∑
j=1

1

j2

Define Ij = [j, j + 1]. Then, ∀x ≥ 1, we can write f as a step function:

f(x) =

∞∑
j=1

1

j2
XIj (x)

By Definition 4.3, this is integrable, since:

∞∑
j=1

∣∣∣∣ 1

j2

∣∣∣∣λ(Ij) =

∞∑
j=1

1

j2
<∞

by the p-series test.

Moreover, it thus follows that: ∫
[1,∞)

f =

∞∑
j=1

1

j2

as required.
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4. Let:

f(x) =

{
1, x 6∈ Q
0, x ∈ Q

Prove that f is integrable on every bounded interval I and:∫
I

f = λ(I)

For this one I required the solutions. As expected, the key is to use the
countability of the rationals, and to define f in terms of step functions
which include these rationals.

Since Q is countable:
Q = {q1, q2, . . .}

where each qi is a non-repeating, irreducible rational number.

Then, ∀x ∈ I we can write:

f(x) = XI(x)−
∞∑
j=1

X[qj ,qj ](x)

Now, notice that since I is bounded, λ(I) is finite. Moreover [qj , qj ] is a degenerate interval. Thus:

λ(I) +

∞∑
j=1

| − 1|λ([qj , qj ]) = λ(I) + 0 = λ(I) <∞

Hence, f is integrable on I and: ∫
I

f = λ(I)

as required.

5. For the purposes of this exercise, we will take for granted that continuous functions on
closed bounded intervals are integrable. Let f : [a, b]→ R be continuous, and let:

M = sup
x∈[a,b]

|f(x)|

Suppose that M > 0 and let p > 0.

(a) Prove that ∀ε > 0 with 0 < ε < M
2 there is a non-empty open interval I ⊆ [a, b] such that:

(M − ε)pλ(I) ≤
∫ b

a

|f(x)|p dx ≤Mp(b− a)

This is the type of question where definitions are critical. Need to ensure
that every theorem is mentioned, as otherwise a lot of marks can be lost.

Since f is continuous, then |f | is continuous, and [a, b] is a closed bounded interval, then ∃c ∈ [a, b]
such that, by the Extreme Value Theorem:

|f(c)| = M
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Here, the solutions describe f as a step function, and I think this is more
formal - I just used standard integration.

Now, ∀x ∈ [a, b], we will have:

|f(x)| ≤MX[a,b] =⇒ |f(x)|p ≤MpX[a,b]

since taking powers is monotonic for positive numbers. Then, by Properties of the Lebesgue Integral
(Theorem 4.2, Part b) it follows that integration over [a, b] preserves the inequality:∫ b

a

|f(x)|p dx ≤
∫ b

a

MpX[a,b] dx = Mp(b− a)

(MpX[a,b] is integrable since it is a step function, and |f(x)|p is integrable because it is continuous)

Furthermore, since |f | is continuous, it is continuous at c, so ∀ε > 0 we can always find δ > 0 such
that:

|x− c| < δ =⇒ ||f(x)| − |f(c)|| = ||f(x)| −M | < ε

which in particular implies that for x ∈ I = (c− δ, c+ δ) ∩ [a, b]:

|f(x)| ≥M − ε

Again, by monotonicity of powers, we have that ∀x ∈ I:

|f(x)|p ≥ (M − ε)pXI

So integrating via Theorem 4.2, part b and Theorem 4.8, part c:∫ b

a

|f(x)|p dx ≥
∫
I

|f(x)|p dx ≥
∫
I

(M − ε)pXI dx = (M − ε)p|I|

Hence, we get that:

(M − ε)pλ(I) ≤
∫ b

a

|f(x)|p dx ≤Mp(b− a)

(b) Deduce that:

lim
p→∞

(∫ b

a

|f(x)|p dx

) 1
p

= M

Since

(M − ε)pλ(I) ≤
∫ b

a

|f(x)|p dx ≤Mp(b− a)

and all these elements are positive, taking powers preserves the inequality, so:

((M − ε)pλ(I))
1
p ≤

(∫ b

a

|f(x)|p dx

) 1
p

≤ (Mp(b− a))
1
p

which implies that:

(M − ε)(λ(I))
1
p ≤

(∫ b

a

|f(x)|p dx

) 1
p

≤M(b− a)
1
p
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We know that:

lim
p→∞

1

p
= 0

so by continuity of powers, and using the fact λ(I), b− a > 0:

lim
p→∞

M(b− a)
1
p = M(b− a)limp→∞

1
p = M(b− a)0 = M

lim
p→∞

(M − ε)(λ(I))
1
p = (M − ε)(λ(I))limp→∞

1
p = (M − ε)(λ(I))0 = M − ε

Hence, since limits preserve inequalities:

M − ε ≤ lim
p→∞

(∫ b

a

|f(x)|p dx

) 1
p

≤M

so by Squeeze Theorem, it follows that:

lim
p→∞

(∫ b

a

|f(x)|p dx

) 1
p

= M

6. Let f(x) = n ∀x ∈
(

1
(n+1)2 ,

1
n2

]
, n ∈ N. Sketch the graph of f . Prove that f is integrable on

(0, 1] and show that: ∫
(0,1]

f =

∞∑
j=1

1

j2

I pursued the most “straightforward” solution, which lead to a much
longer solution. The solutions notice a key step, which allows a much sim-
pler derivation. I include both for completeness.

If we consider some terms:

• if n = 1, we have that if x ∈
(
1
4 , 1
]
, then f(x) = 1

• if n = 2, we have that if x ∈
(
1
9 ,

1
4

]
, then f(x) = 2

• if n = 3, we have that if x ∈
(

1
16 ,

1
9

]
, then f(x) = 3
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1
9

1
16

x
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5

4

3

2

1

f(x)

From the solutions:

We can write:

f(x) =

∞∑
j=1

X(0,j−2](x), ∀x ∈ (0, 1]

Now, since:
∞∑
j=1

|1|λ((0, j−2]) =

∞∑
j=1

1

j2
<∞

(by p-series test) then f is integrable on (0, 1] and:∫
(0,1]

f =

∞∑
j=1

1

j2
<∞

Self:

If we define:

Ij =

(
1

(j + 1)2
,

1

j2

]
then we find that ∀x ∈ (0, 1]:

f(x) =

∞∑
j=1

jXIj (x)

Thus, for f to be Lebesgue Integrable, we require that:

∞∑
j=1

|j|λ(Ij) =

∞∑
j=1

j

(
1

j2
− 1

(j + 1)2

)
converges.
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Using the above summation:

∞∑
j=1

j

(
1

j2
− 1

(j + 1)2

)
=

∞∑
j=1

j

(
(j + 1)2 − j2

j2(j + 1)2

)

=

∞∑
j=1

j2 + 2j + 1− j2

j(j + 1)2

=

∞∑
j=1

2j + 1

j(j + 1)2

We now consider partial fraction decomposition. Let A,B,C ∈ R, and assume that:

2j + 1

j(j + 1)2
=
A

j
+

B

j + 1
+

C

(j + 1)2

We solve for A,B,C:

2j + 1

j(j + 1)2
=
A

j
+

B

j + 1
+

C

(j + 1)2

=⇒ 2j + 1

j(j + 1)2
=
A(j + 1)2 +Bj(j + 1) + Cj

j(j + 1)2

=⇒ 2j + 1

j(j + 1)2
=
Aj2 + 2Aj +A+Bj2 +Bj + Cj

j(j + 1)2

Which leads to the following equations:
A = 1

j2(A+B) = 0 =⇒ B = −1

j(2A+B + C) = 2j =⇒ C = 1

Thus, it follows that:
∞∑
j=1

2j + 1

j(j + 1)2
=

∞∑
j=1

(
1

(j + 1)2
+

1

j
− 1

j + 1

)
The form above indicates that, if we consider partial sums, some terms might cancel, simplifying the
expression. Hence, consider:

n∑
j=1

(
1

(j + 1)2
+

1

j
− 1

j + 1

)

=

(
1

22
+ 1− 1

2

)
+

(
1

32
+

1

2
− 1

3

)
+ . . .+

(
1

n2
+

1

n− 1
− 1

n

)
+

(
1

(n+ 1)2
+

1

n
− 1

n+ 1

)
=

(
1 +

1

22
+

1

32
+ . . .+

1

n2
+

1

(n+ 1)2

)
− 1

n+ 1

=

n+1∑
j=1

1

j2

− 1

n+ 1

But then, since an infinite series is the limit as n→∞ of its partial sums, it must be the case that:

∞∑
j=1

2j + 1

j(j + 1)2
= lim

n→∞

n+1∑
j=1

1

j2

− 1

n+ 1

 =

∞∑
j=1

1

j2

Page 27



Since
∑∞

j=1
1
j2 is a p-series with p = 2, it follows by the p-series test that it is a convergent series.

Overall, by the definition of Lebesgue Integrability, since:

∞∑
j=1

|j|λ(Ij) =

∞∑
j=1

1

j2
<∞

and for any x ∈ (0, 1] we have:

f(x) =

∞∑
j=1

jXIj (x)

it follows that f is Lebesgue Integrable, and:∫
(0,1]

f =

∞∑
j=1

1

j2

as required.
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