Honours Analysis - Week 6 - The Lebesgue Integral

Antonio León Villares

October 2021

Contents

1	Motivation	2
2	The Indicator/Characteristic Function 2.1 Defining the Characteristic Function	2
3	The Step Function 3.1 Defining Step Function	5
4	4.2 Defining Lebesgue Integrable Functions 4.3 Theorem: Integral of Step Function Independent of Interval 4.4 Corollary: Step Functions are Lebesgue Integrable 4.5 Properties of Lebesgue Integrals 4.5.1 Theorem: Linearity of Lebesgue Integral 4.5.2 Theorem: Positivity of Lebesgue Integral 4.5.3 Theorem: Lebesgue Integral of Absolute Value 4.5.4 Theorem: Lebesgue Integral of Max/Min	11 12 12 14 14 15 15
5	Exercises	16
6	Workshop	20

1 Motivation

- seek to define integrals of real functions as to represent the notion of "area under the curve"
- mainly focus on **definite** integrals (so that $\int f$ is a real number rather than a function)
- want it to have desirable features: linearity and positivity
- want usual rules (recognition of antiderivatives, product rule, substitution etc...) to hold rigorously, validating the usual techniques for calculating integrals
- also want to consider situations in which order of integration and summation can be swapped

2 The Indicator/Characteristic Function

2.1 Defining the Characteristic Function

- How can bounded intervals be described?
 - consider $a, b \in \mathbb{R}, a < b$
 - if E is a **bounded interval**, it has one of the following forms:
 - * [a, a] = a (interval containing only the element a)
 - * [a, b]
 - * [a,b)
 - * (a,b]
 - * (a, b)
- What is the length of an interval?
 - consider a **bounded interval** E
 - we denote its length via:

 $\lambda(E)$

– if E is defined by the bounds $a, b \in \mathbb{R}$, $a \leq b$, then, independent of whether E is open, closed or half-open:

$$\lambda(E) = b - a$$

- What is a characteristic function?
 - a function over a **bounded interval** $E \subseteq \mathbb{R}$:

$$\mathcal{X}_E:\mathbb{R}\to\mathbb{R}$$

- defined as:

$$\mathcal{X}_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

• What is the integral of a characteristic function?

- using the principles outlined in the motivation pushes us to define:

$$\int \mathcal{X}_E := \lambda(E)$$

3 The Step Function

3.1 Defining Step Function

- What is a step function?
 - a function $\phi: \mathbb{R} \to \mathbb{R}$ which is **constant** on **discrete intervals** of the real line
 - its value on different intervals can vary.
- How can we formally describe a step function?
 - more formally consider the real numbers:

$$x_0 < x_1 < \ldots < x_n, \qquad n \in \mathbb{N}$$

– can define a step function with respect to $\{x_0, x_1, \dots, x_n\}$ via:

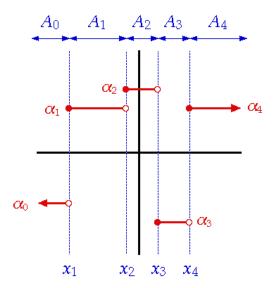
$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

where $0 \le j \le n-1$ and $c_j \in \mathbb{R}$.

- alternatively, ϕ is a step function if and only if it can be defined as:

$$\phi(x) = \sum_{j=1}^{n} c_j \mathcal{X}_{I_j}(x), \qquad I_j = (x_{j-1}, x_j)$$

- Are step functions defined at the endpoints of the intervals (x_j, x_{j+1}) ?
 - these can be defined, but we don't formally define the value of $\phi(x_i)$
 - in particular ϕ is continuous on all of \mathbb{R} , except possibly at $\{x_0, x_1, \ldots, x_n\}$
 - each of $\{x_0, x_1, \ldots, x_n\}$ is called a **potential jump point of** ϕ
- Are step functions bounded?
 - from their definition, step functions must be bounded
 - in particular, there always exists a bounded interval $I \subset \mathbb{R}$, such that if $x \notin I$, we have $\phi(x) = 0$ (this I can be defined by x_0 or x_n)



3.2 Theorem: Sum of Step Functions is a Step Function

Let ϕ and ψ be **step functions**. Then, $\phi + \psi$ is also a step function. [Example 4.1]

Proof: Sum of Step Functions. Since ϕ and ψ are step functions, in particular:

- ϕ is a step function with respect to a set $\{x_0, x_1, \ldots, x_n\}$
- ψ is a step function with respect to a set $\{y_0, y_1, \dots, y_m\}$

Then, consider the bounded, finite set:

$$\{z_0, z_1, \dots, z_k\} = \{x_0, x_1, \dots, x_n\} \cup \{y_0, y_1, \dots, y_m\}$$

where $k \leq m + n$ (it can be the case that there are elements in common in both sets).

Notice, it must be the case that:

- ϕ is constant on any interval (z_j, z_{j+1}) , since in particular, each (z_j, z_{j+1}) must be a subinterval (either the same size or smaller) than any interval defined by $\{x_0, x_1, \ldots, x_n\}$
- ψ is constant on any interval (z_j, z_{j+1}) , since in particular, each (z_j, z_{j+1}) must be a subinterval (either the same size or smaller) than any interval defined by $\{y_0, y_1, \dots, y_m\}$

In particular, since ϕ and ψ are both constant on any interval (z_j, z_{j+1}) defined by $\{z_0, z_1, \ldots, z_k\}$, it must be the case that $\phi + \psi$ must also be constant on any interval (z_j, z_{j+1}) .

In particular if $x \in (z_j, z_{j+1})$, and $\phi(x) = c_j$, $\psi(x) = d_j$, then:

$$(\phi + \psi)(x) = c_j + d_j$$

Lastly, assuming that $\{z_0, z_1, \ldots, z_k\}, \{x_0, x_1, \ldots, x_n\}, \{y_0, y_1, \ldots, y_m\}$ are all ordered, it is easy to see that that $\phi(x) = 0, \forall x < z_0 | x > z_k$ and $\psi(x) = 0, \forall x < z_0 | x > z_k$. In other words, $\phi + \psi$ is also zero outside of $[z_0, z_k]$.

Thus, we have shown that $\phi + \psi$ is a step function with respect to $\{z_0, z_1, \dots, z_k\}$, as required.

3.3 Theorem: Constructing Step Functions from Other Step Functions

These are all part of Exercise 4.1.

3.3.1 Theorem: Step Functions are a Vector Space

The class of **step functions** defines a **vector space**. If ϕ , ψ are step functions, and α , $\beta \in \mathbb{R}$, then:

$$\alpha \phi + \beta \phi$$

is also a **step function**.

Proof. If

$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

then:

$$\alpha\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ \alpha c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

so $\alpha\phi$ is also a step function Since the sum of step functions is a step function, it follows that $\alpha\phi + \beta\psi$ is a step function.

3.3.2 Theorem: Absolute Value of Step Function is a Step Function

If ϕ is a **step function**, then $|\phi|$ is a **step function**.

Proof. If

$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

then:

$$|\phi(x)| = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ |c_j|, & x \in (x_j, x_{j+1}) \end{cases}$$

so $|\phi|$ is also a step function.

3.3.3 Theorem: Maximum and Minimum of Step Functions is a Step Function

Let ϕ, ψ be step functions. Then, $\max\{\phi, \psi\}$ and $\min\{\phi, \psi\}$ are step functions.

Proof. We know that 1 :

$$\max\{\phi,\psi\} = \frac{\phi + \psi + |\phi - \psi|}{2}$$

which is a linear combination of step functions, and so is a step function.

Similarly, we know that:

$$\min\{\phi,\psi\} = \frac{\phi + \psi - |\phi - \psi|}{2}$$

which is a linear combination of step functions, and so is a step function.

3.3.4 Theorem: Product of Step Functions is a Step Function

If ϕ , ψ are step functions, then $\phi\psi$ is a step function.

3.4 Theorem: Step Functions as Sums of Characteristic Functions

We formally prove the intuitive result which we presented intuitively above.

 ϕ is a step function **if and only if** it can be written in the form:

$$\phi = \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}$$

for some n, c_j , and bounded intervals J_j .

Proof: Step Function as Sum of Characteristic Functions. Intuitively, this makes a lot of sense. If we look at the definition of a step function:

$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

and of a characteristic function:

$$\mathcal{X}_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

¹http://caseychu.io/posts/minimum-and-maximum-of-two-functions/

Then if we let $J_j = (x_j, x_{j+1})$ (or (x_{j-1}, x_j) as in the formulation of the theorem), we can see that:

$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases} \iff \phi(x) = \begin{cases} 0 (= \mathcal{X}_{J_j}(x)), & \forall j, x \notin J_j \\ c_j \mathcal{X}_{J_j}(x), & x \in J_j \end{cases}$$

We argue more formally, however.

Firstly, we show that if

$$\phi = \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}$$

then ϕ is a step function.

(This can be proven by the fact that the sum of 2 step functions is a step function, and then arguing that each $c_j \mathcal{X}_{J_j}$ is a step function with respect to the end points of J_j . This is what is said in the notes (basically). In the videos they go from first principles, which is the proof below.)

If ϕ is indeed a step function, then we should be able to define the set of points with respect to which ϕ is a step function.

Since each J_j is a bounded intervals, and we are considering n such intervals, then the set of all endpoints of each J_j must be finite. Define this set as:

$$A = \{a_0, a_1, \dots, a_k\}$$

with $a_0 < a_1 < \ldots < a_k$. We claim ϕ is a step function with respect to A, as:

- if $x < a_0$ or $x > a_k$, we know by construction that for any j, $\mathcal{X}_{J_j}(x) = 0$, since any such x is beyond any of the endpoints of any J_j
- if $x \in [a_0, a_k]$, there must exist at least one interval (a_{j-1}, a_j) , such that $c_j \mathcal{X}_{J_j}(x) = c_j$. Consider any interval (a_{j-1}, a_j) . Then either $(a_{j-1}, a_j) \subset J_j$, in which case $\mathcal{X}_{J_j}(x) = 1$ so $c_j \mathcal{X}_{J_j}(x) = c_j$; or $(a_{j-1}, a_j) \cap J_j = \emptyset$, in which case $\mathcal{X}_{J_j}(x) = 0$ so $c_j \mathcal{X}_{J_j}(x) = 0$

Thus, ϕ satisfies all the properties of a step function, with respect to A.

Now, we show that if ϕ is a step function, it must have the form:

$$\phi = \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}$$

Since ϕ is a step function, it must be so with respect to some set:

$$X = \{x_0, x_1, \dots, x_n\}$$

Then, it is easy to see that, $\forall x \notin X$:

$$\phi(x) = \sum_{j=1}^{n} c_j \mathcal{X}_{(J_j}(x)$$

where c_j is a constant, and $J_j = (x_{j-1}, x_j)$. In order to fix the fact that $\sum_{j=1}^n c_j \mathcal{X}_{(J_j)}$ doesn't equal ϕ on X, we introduce an additional term:

$$\phi(x) = \sum_{i=1}^{n} c_j \mathcal{X}_{(J_j)}(x) + \sum_{i=0}^{n} \phi(x_i) \mathcal{X}_{\{x_i\}}(x)$$

Notice, with this new formulation, we are able to account for whichever value ϕ takes at each value in X, since $\mathcal{X}_{\{x_i\}}(x)$ is 1 only if $x = x_i$.

We have shown that any step function ϕ can thus be expressed as in the form above, as required.

3.5 The Integral of the Step Function

- How can we define the integral of a step function?
 - let $\phi(x)$ be a step function with respect to $\{x_0, x_1, \dots, x_n\}$
 - we can express $\phi(x)$ as:

$$\phi(x) = \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}(x)$$

where c_j is a constant, and $J_j = (x_{j-1}, x_j)$

- under our desired property of **linearity**, and given the finite sum, we can define:

$$\int \phi(x) = \int \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}(x)$$

$$= \sum_{j=1}^{n} c_j \int \mathcal{X}_{J_j}(x)$$

$$= \sum_{j=1}^{n} c_j \lambda(J_j)$$

$$= \sum_{j=1}^{n} c_j (x_j - x_{j-1})$$

- Since a step function can be represented in many ways, is their integral always the same?
 - yes, independent on the intervals with which we describe a step function, the integral always evaluates to the same value
 - this shows that the integral is **well-defined**: it only depend on the inherent function, and not necessarily its representation
 - this will be presented more formally when discussing **Lebesgue integrals**

4 Lebesgue Integrable Functions

- 4.1 Integrals: Intuition Using Step Functions
 - Can you approximate non-negative, continuous functions by using step functions?
 - yes. In fact as we add more and more infinitesimally small intervals, we can perfectly describe a continuous function. Formally, for any continuous function f(x) on some interval I, there exists some step function, such that::

$$f(x) = \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}$$

where each $J_i \subset I$, and $c_i \geq 0$.

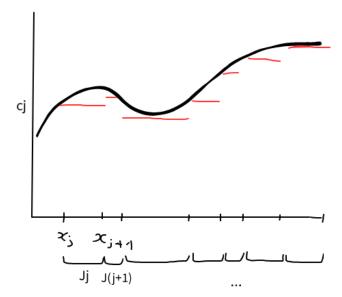


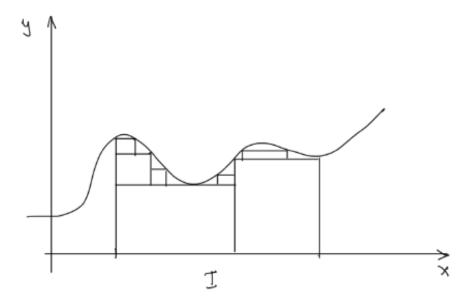
Figure 1: As the intervals J_j become smaller, we can better approximate the function.

• How can we use step functions to find the area under a non-negative continuous function?

- since we can express f(x) via a step function, and we can integrate step functions, it follows that:

$$\int f(x) = \sum_{j=1}^{n} c_j \lambda(J_j)$$

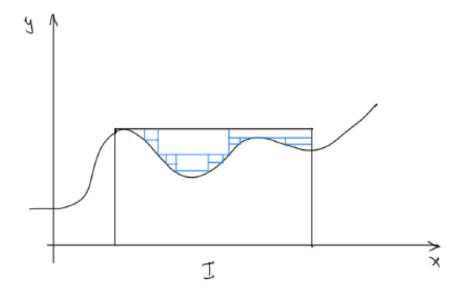
– diagramatically, this can be thought of as filling the curve with non-overlapping rectangles of height c_j and width $\lambda(J_j)$.



- this idea is due to Archimedes, but he used triangles

• What if the continuous function is sometimes negative?

- then we modify the argument in 2 ways:
 - * we allow any c_i (positive or negative)
 - * instead of considering area in terms of rectangles **under** the curve, we consider rectangles **above** the curve, and find the area under the cruve by substracting rectangle areas



– to avoid the possibility that $\sum_{j=1}^{n} c_j \lambda(J_j)$ is conditionally convergent (and so, that adding areas of rectangles in different orders affects the value of the series), we enforce that:

$$\sum_{j=1}^{n} |c_j| \lambda(J_j) < \infty$$

4.2 Defining Lebesgue Integrable Functions

- What is a Lebesgue Integrable function?
 - consider a function

$$f:I\to\mathbb{R}$$

- -f is **Lebesgue Integrable** on an interval I if we can represent it as a **convergent step function**, and said step function series has a defined integral
- more rigorously, f is **Lebesgue Integrable** if there exist:
 - $* c_i \in \mathbb{R}$
 - * bounded intervals $J_j \subset I, j \in \mathbb{N}$

such that the series:

$$\sum_{j=1}^{\infty} c_j \lambda(J_j)$$

is absolutely convergent (so $\sum_{j=1}^{\infty} |c_j| \lambda(J_j) < \infty$), and for any $x \in I$ for which:

$$\sum_{j=1}^{\infty} |c_j| \mathcal{X}_{J_j}(x) < \infty$$

we have that:

$$f(x) = \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}(x)$$

– we call the number $\int_I f$ the **integral of** f **over** I, and we denote it by:

$$\int_{I} f = \sum_{j=1}^{\infty} c_j \lambda(J_j)$$

4.3 Theorem: Integral of Step Function Independent of Interval

We noted before that we can represent a step function using many different intervals and constants, but said that different representations don't affect the integral for the step function. This is formalised in the following theorem:

Let c_j, d_j be real numbers. Let J_j, K_j be bounded intervals for any $j \in \mathbb{N}$. Assuming that the following series converge:

$$\sum_{j=1}^{n} |c_j| \lambda(J_j) \qquad \sum_{j=1}^{n} |d_j| \lambda(K_j)$$

if we also have that:

$$\sum_{j=1}^{n} c_j \mathcal{X}_{J_j}(x) = \sum_{j=1}^{n} d_j \mathcal{X}_{K_j}(x)$$

for any x for which:

$$\sum_{j=1}^{n} |c_j| \mathcal{X}_{J_j}(x) < \infty \qquad \sum_{j=1}^{n} |d_j| \mathcal{X}_{K_j}(x) < \infty$$

Then we have:

$$\sum_{j=1}^{n} c_j \lambda(J_j) = \sum_{j=1}^{n} d_j \lambda(K_j)$$

In other words, the integral of a step function defined in 2 distinct ways is equal. [Theorem 4.1]

Proof is quite complicated, and left in the advanced section of the notes.

4.4 Corollary: Step Functions are Lebesgue Integrable

Let ϕ be a **step function**, such that $\phi : \mathbb{R} \to \mathbb{R}$. Then, ϕ is **Lebesgue Integrable**. *Proof.* Recall the definition of a step function:

$$\phi(x) = \begin{cases} 0, & x < x_0 \text{ or } x > x_n \\ c_j, & x \in (x_j, x_{j+1}) \end{cases}$$

Further, recall we could express the step function as:

$$\phi(x) = \sum_{j=1}^{n} c_j \mathcal{X}_{J_j}(x)$$

It is easy to see that for j > n, we will have $\phi(x) = 0$. Since the sum is of finitely many terms, and each interval J_j is bounded, we are guaranteed that:

$$\sum_{j=1}^{\infty} |c_j| \lambda(J_j) < \infty$$

and that for any $x \in \mathbb{R}$:

$$\sum_{j=1}^{\infty} |c_j| \mathcal{X}_{J_j}(x) < \infty$$

Lastly, since indeed

$$\phi(x) = \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}(x)$$

it must be the case that:

$$\int \phi(x) = \sum_{j=1}^{\infty} c_j \lambda(J_j) = \sum_{j=1}^{n} c_j \lambda(J_j)$$

Thus, Lebesgue Integrability coincides with the definition of Integrability for Step Functions

4.5 Properties of Lebesgue Integrals

The following are all part of Theorem 4.2

4.5.1 Theorem: Linearity of Lebesgue Integral

Let $\alpha, \beta \in \mathbb{R}$. Moreover, let f, g be **Lebesgue Integrable** functions. Then, $\alpha f + \alpha g$ is also **Lebesgue Integrable**, and:

$$\int_{I} \alpha f + \beta g = \alpha \int_{I} f + \beta \int_{I} g$$

Proof: Linearity of Lebesgue Integral. From the definition of Lebesgue Integrability, we know that for the interval I, since f and g are Lebesgue Integrable, we can find c_j , d_j and J_j , $K_j \subset I$ such that:

$$\sum_{j=1}^{\infty} |c_j| \lambda(J_j) < \infty \qquad \sum_{j=1}^{\infty} |d_j| \lambda(K_j) < \infty$$

and:

$$f(x) = \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}(x) \qquad g(x) = \sum_{j=1}^{\infty} d_j \mathcal{X}_{K_j}(x)$$

holds for all $x \in I$ where both series are absolutely convergent.

Using this, we want to show that $\alpha f + \beta g$ are Lebesgue Integrable.

The first step is to show that there exist $b_j, I_j \subset I$ such that:

$$(\alpha f + \beta g)(x) = \sum_{j=1}^{\infty} b_j \mathcal{X}_{I_j}(x)$$

Doing this is fairly easy. We can use f for even j, and g for odd j. More specifically, we can define I_j and b_j such that:

$$I_{j} = \begin{cases} J_{\frac{j+1}{2}}, & j \text{ is odd} \\ K_{\frac{j}{2}}, & j \text{ is even} \end{cases}$$

$$b_{j} = \begin{cases} \alpha c_{\frac{j+1}{2}}, & j \text{ is odd} \\ \beta d_{\frac{j}{2}}, & j \text{ is even} \end{cases}$$

We can indeed show that:

$$(\alpha f + \beta g)(x) = \sum_{j=1}^{\infty} b_j \mathcal{X}_{I_j}(x)$$

since:

$$\sum_{j=1}^{\infty} b_j \mathcal{X}_{I_j}(x) = \sum_{j=1}^{\infty} \alpha c_j \mathcal{X}_{J_j}(x) + \sum_{j=1}^{\infty} \beta d_j \mathcal{X}_{K_j}(x)$$
$$= \alpha \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}(x) + \beta \sum_{j=1}^{\infty} d_j \mathcal{X}_{K_j}(x)$$
$$= \alpha f(x) + \beta g(x)$$
$$= (\alpha f + \beta g)(x)$$

and this holds for any x for which $\alpha \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}(x)$ and $\beta \sum_{j=1}^{\infty} d_j \mathcal{X}_{K_j}(x)$ are absolutely convergent, by the work at the start of the proof.

Lastly, we know that $\sum_{j=1}^{\infty} |b_j| \lambda(I_j) < \infty$ since:

$$\sum_{j=1}^{\infty} |b_j| \lambda(I_j) = \sum_{j=1}^{\infty} |\alpha c_j| \lambda(J_j) + \sum_{j=1}^{\infty} |\beta d_j| \lambda(K_j)$$
$$= |\alpha| \sum_{j=1}^{\infty} |c_j| \lambda(J_j) + |\beta| \sum_{j=1}^{\infty} |d_j| \lambda(K_j)$$
$$< \infty$$

by the work at the start of the proof.

Thus, by the definition of Lebesgue Integrability, $\alpha f + \beta g$ is Lebesgue Integrable.

4.5.2 Theorem: Positivity of Lebesgue Integral

 $\begin{array}{l} \textit{If } f \geq 0 \textit{ on } I, \textit{ then } \int_I f \geq 0. \\ \textit{If } f \geq g \textit{ on } I, \textit{ then } \int_I f \geq \int_I g. \end{array}$

Proof: Positivity of Lebesgue Integrable Functions. The proof for the first part is a bit complex, and can be found in the notes.

The second part follows directly from the first part. Since $f \geq g$, then define:

$$h = f - g$$

Then, $h \ge 0$, so from the first part:

$$\int_{I} h \ge 0$$

From linearity of Lebesgue Integrals:

$$\int_{I} h \ge 0 \implies \int_{I} f - \int_{I} g \ge 0$$

from which the result follows.

4.5.3 Theorem: Lebesgue Integral of Absolute Value

If f is integrable, then |f| is integrable on I, and:

$$\left| \int_{I} f \right| \le \int_{I} |f|$$

Proof: Absolute Value of Lebesgue Integrable Function. Again, the proof that |f| is integrable is quite complex, and can be found in the notes.

Once we know |f| is integrable, we note that:

$$-|f| \le f \le |f|$$

These are all integrable, so by positivity:

$$-\int_I |f| \leq \int_I f \leq \int_I |f|$$

Which is precisely the definition of:

$$\left| \int_I f \right| \leq \int_I |f|$$

as required.

4.5.4 Theorem: Lebesgue Integral of Max/Min

If f, g are integrable, then both $\max\{f, g\}$ and $\min\{f, g\}$ are integrable.

Proof: Lebesgue Integrability of Max/Min of Functions. Firstly, we know that:

$$\max\{f,0\} = \frac{f+|f|}{2}$$

so $\max\{f,0\}$ is integrable by linearity and by integrability of absolute value.

But then, notice that:

$$\max\{f, g\} = \max\{f - g, 0\} + g$$

so from the above, $\max\{f,g\}$ is integrable.

But then, $\min\{f,g\} = -\max\{-f,-g\}$, so $\min\{f,g\}$ is also integrable.

4.5.5 Theorem: Lebesgue Integrability of Function Products

Let f, g be integrable. If one of f, g is bounded then the product fg is integrable on I.

4.5.6 Theorem: Bounded Functions and Lebesgue Integrability

Let f, g be integrable. If $f \geq 0$ with $\int_I f = 0$ then any function h such that $0 \leq h \leq f$ on I is integrable on I.

5 Exercises

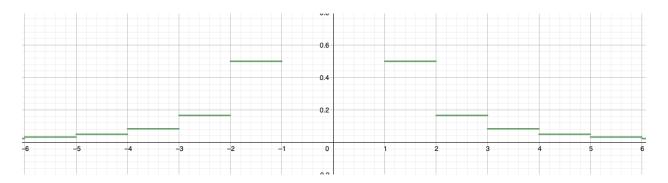
1. Let [x] denote the integer part of a number $x \in \mathbb{R}$. Define

$$f(x) = \frac{1}{[x][x+1]}$$

for $x \ge 1$. Show that f is Lebesgue Integrable on the interval $[1, \infty)$.

We can write f using $c_j = \frac{1}{j(j+1)}$ and $\mathcal{X}_{[j,j+1)}$:

$$f(x) = \sum_{j=1}^{\infty} \frac{1}{j(j+1)} \mathcal{X}_{[j,j+1)}(x)$$



and this is true for all $x \ge 1$ (we don't need to check for the absolute convergence of $\sum_{j=1}^{\infty} \frac{1}{j(j+1)} \mathcal{X}_{[j,j+1)}(x)$ because each c_j is positive, so if the series converges, it converges absolutley).

Moreover, we know that:

$$\sum_{j=1}^{\infty} \left| \frac{1}{j(j+1)} \right| \lambda([j,j+1)) = \sum_{j=1}^{\infty} \frac{1}{j(j+1)} = 1 < \infty$$

Thus, it follows that on $[1, \infty)$, f(x) is Lebesgue Integrable, and:

$$\int_{I} f(x) = \sum_{j=1}^{\infty} \frac{1}{j(j+1)} \lambda([j,j+1)) = \sum_{j=1}^{\infty} \frac{1}{j(j+1)} = 1$$

2. Let I be an interval, and $E \subset I$ be a countable set. Show that \mathcal{X}_E is integrable, and that $\int_I X_E = 0$

Since E is countable, we can list each of its elements:

$$E = \{e_1, e_2, e_3, \ldots\}$$

We can then express \mathcal{X}_E as an infinite series:

$$\mathcal{X}_{E}(x) = \sum_{i=1}^{\infty} \mathcal{X}_{\{e_{j}\}}(x)$$

where each $\mathcal{X}_{\{e_j\}}(x) = 1$ whenever $x = e_j$.

But then, from the integrability of the characteristic function:

$$\int_{I} \mathcal{X}_{E} = \int_{I} \sum_{j=1}^{\infty} \mathcal{X}_{\{e_{j}\}}(x) = \sum_{j=1}^{\infty} \lambda(\{e_{j}\}) = 0$$

3. The Cantor Set C is defined as the set resulting from extracting the middle third out of [0,1], and doing so iteratively

1				
1/3				
1/9				
1/27				
1/81				

C is uncountable. Show that \mathcal{X}_C is integrable on [0,1] or \mathbb{R} ?

We would like to write:

$$\mathcal{X}_C = \sum_{i=1}^{\infty} c_j \mathcal{X}_{J_j}$$

Let F_j denote the set resulting from applying the iterative procedure j times. For example:

$$F_0 = [0, 1]$$

$$F_1 = [0, 1] - (1/3, 2/3) = F_0 - (1/3, 2/3)$$

$$F_2 = F_1 - (1/9, 2/9) - (7, 9, 8/9)$$

Overall, we can see that at each F_j , we are removing 2^{j-1} intervals of length 3^{-j} . In other words, F_j must be made up 2^j non-overlapping, closed intervals of length 3^{-j} .

Using all this, we notice that:

$$\mathcal{X}_{F_0} = \mathcal{X}_{[0,1]}$$
 $\mathcal{X}_{F_1} = \mathcal{X}_{[0,1]} - \mathcal{X}_{(1/3,2/3)}$

(think that if x is in both [0,1] and (1/3,2/3), $\mathcal{X}_{F_1} = 0$, and 1 otherwise, as expected)

If we continuously apply this, we get:

$$\mathcal{X}_C(x) = \mathcal{X}_{[0,1]}(x) - \sum_{j=1}^{\infty} \mathcal{X}_{J_j}(x)$$

where:

$$J_2 = (1/3, 2/3)$$

$$J_3 = (1/9, 2/9)$$

 $J_4 = (7/9, 8/9)$

and inductively J_5, J_6, J_7, J_8 will be four open intervals of length $\frac{1}{3^3}$.

We expect that if the integral exists, then:

$$\int \mathcal{X}_C = \lambda([0,1]) - \sum_{j=1}^{\infty} \lambda(J_j)$$

If we consider the absolute convergence of the above, this depends on the absolute convergence of the series. In other words, we consider:

$$\sum_{j=1}^{\infty} |c_j| \lambda(J_j) = \sum_{j=1}^{\infty} \lambda(J_j)$$

$$= \frac{1}{3} + 2\left(\frac{1}{3^2}\right) + 2^2\left(\frac{1}{3^3}\right) + \dots$$

$$= \sum_{j=1}^{\infty} 2^{j-1} \frac{1}{3^j}$$

$$= \frac{1}{3} \sum_{j=1}^{\infty} \left(\frac{2}{3}\right)^{j-1}$$

which is a convergent geometric series.

All of the above implies that \mathcal{X}_C is integrable, and:

$$\int \mathcal{X}_C = 1 - \frac{1}{3} \sum_{j=1}^{\infty} \left(\frac{2}{3}\right)^{j-1} = 1 - \frac{1}{3}(3) = 0$$

and this is true for any $x \in \mathbb{R}$

If $\int \mathcal{X}_E$ is 0, then E is said to be a set of **measure zero**. Thus, all countable sets have measure zero, and the Cantor Set is an example of an uncountable set with measure zero.

4. Let f(x) = [x] for all $x \in \mathbb{R}$. Compute the following integrals:

(a)

$$\int_{(0,5)} f$$

It is easy to see that $\forall x \in (0,5)$:

$$f(x) = \sum_{i=1}^{4} i \mathcal{X}_{[i,i+1)}(x)$$

(we don't need to consider [0,1), since in that case $\mathcal{X}_{[i,i+1)}(x)$ is just 0).

We can then compute the integral by using linearity:

$$\int_{(0,5)} f = \int \sum_{i=1}^{4} i \mathcal{X}_{[i,i+1)}(x) = \sum_{i=1}^{4} i \lambda([i,i+1)) = \sum_{i=1}^{4} i = 10$$

$$\int_{\left(-\frac{7}{3},\frac{12}{5}\right))}f$$

Notice that:

$$-\frac{7}{3} = -2.\dot{3}$$

and

$$\frac{12}{5} = 2.4$$

So we can express f as (using [x] as the floor function):

$$f(x) = -3 \times \mathcal{X}_{\left(-\frac{7}{3}, -2\right)} + \sum_{i=-2}^{1} i \mathcal{X}_{\left(i, i+1\right]}(x) + 2 \times \mathcal{X}_{\left(2, \frac{12}{5}\right)}$$

So:

$$\int_{\left(-\frac{7}{3},\frac{12}{5}\right))} f = -3\left(\frac{1}{3}\right) + (-2) + (-1) + 0 + 1 + 2\left(\frac{2}{5}\right) = -\frac{11}{5}$$

5. Show that if $n \in \mathbb{Z}$ and $f(x) = [nx]^2$, for all $x \in \mathbb{R}$ then:

$$\int_{(0,1)} f = \frac{1}{n} \sum_{j=1}^{n-1} j^2$$

We want to express f in the form:

$$f(x) = \sum_{j=1}^{\infty} c_j \mathcal{X}_{J_j}$$

Lets consider how the function looks like for different values of n on the interval (0,1):

- if n = 0, f(x) = 0
- if n = 1, $f(x) = [x]^2 = 0$
- if n = 2, $f(x) = [2x]^2$ so notice that we have:

$$f(x) = \begin{cases} 0, & x < \frac{1}{2} \\ 1, & x \ge \frac{1}{2} \end{cases}$$

• if n = 3, $f(x) = [3x]^2$ so notice that we have:

$$f(x) = \begin{cases} 0, & x < \frac{1}{3} \\ 1, & \frac{1}{3} \le x < \frac{2}{3} \\ 4, & \frac{2}{3} \ge x \end{cases}$$

This means that, if we consider n > 0, we must have:

$$f(x) = \sum_{j=1}^{n-1} j^2 \times \mathcal{X}_{\left(\frac{j}{n}, \frac{j+1}{n}\right]}$$

This is a finite sum, so we can compute the integral directly:

$$\int_{(0,1)} f = \sum_{j=1}^{n-1} j^2 \times \lambda \left(\left(\frac{j}{n}, \frac{j+1}{n} \right] \right) = \frac{1}{n} \sum_{j=1}^{n-1} j^2$$

3. Let $f(x) = \frac{1}{[x]^2}$ for all $x \ge 1$. Show that f is integrable on the interval $[1, \infty)$ and

$$\int_{[1,\infty)} f = \sum_{j=1}^{\infty} \frac{1}{j^2}.$$

Solution: We have

$$f(x) = \sum_{j=1}^{\infty} \frac{1}{j^2} \chi_{[j,j+1)}(x), \quad \forall x \ge 1.$$

Since

$$\sum_{j=1}^{\infty} \left| \frac{1}{j^2} \right| \lambda([j,j+1)) = \sum_{j=1}^{\infty} \frac{1}{j^2} \lambda([j,j+1)) = \sum_{j=1}^{\infty} \frac{1}{j^2} < \infty$$

we see that f is integrable on $[1,\infty)$ and its integral is

$$\int_{[1,\infty)} f = \sum_{j=1}^{\infty} \frac{1}{j^2}.$$

6 Workshop

This workshop covered an auxiliary topic: Uniform Continuity

1. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. We know that it is continuous at a for all $a \in \mathbb{R}$. So, for every a, for every $\epsilon > 0$, there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$. For a > 1 and $\epsilon = 1$, find the best possible δ . Is this best possible δ independent of a? As a hint, draw the graph of the function, and include the horizontal lines $y = a^2 \pm 1$.

I still have no idea what "best possible" δ means. As a course that takes marks off for failing to mention a theorem when justifying that a function is continuous, I find this hilarious.

2. Consider the same function, but now on [0,1]. Prove that $\forall \varepsilon > 0$ if we take $\delta = \frac{\varepsilon}{2}$ we have that $|x-a| < \delta$ (where $x, a \in [0,1]$) implies $|f(x)-f(a)| < \varepsilon$. In this case, the "best" δ can be taken to be independent of a.

This works. Assume that $|x-a| < \frac{\varepsilon}{2}$. Then:

$$|f(x) - f(a)| = |x^2 - a^2|$$

$$= |x - a||x + a|$$

$$< \delta(|x| + |a|)$$

$$= 2\delta$$

$$= \varepsilon$$

Let I be an interval in \mathbb{R} and let $f: I \to \mathbb{R}$ be a function. f is **uniformly continuous** on I if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if $x, y \in I$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$ **Uniform continuity** only makes sense when f is already continuous.

3. Let $f(x) = \frac{1}{x}$ on $(0, \infty)$. Is f uniformly continuous?

If we negate the statement of uniform continuity, we get that f is not **uniformly continuous** if $\exists \varepsilon > 0$ such that $\forall \delta > 0$ we can find $x, y \in I$ such that $|x - y| < \delta$ but $|f(x) - f(y)| \ge \varepsilon$.

This is false. $\forall \delta > 0$, pick $x \in (0,1)$ such that $x < \delta$, and define $y = \frac{x}{2}$. Then:

$$|x-y| = \left|x - \frac{x}{2}\right| = \left|\frac{x}{2}\right| < \frac{\delta}{2} < \delta$$

Now, consider:

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{1}{x} - \frac{2}{x}\right| = \frac{1}{x}$$

Now, since $x \in (0,1)$, then $\frac{1}{x} > 1$. Thus, if we set $\varepsilon = 1$, we indeed have that:

$$|f(x) - f(y)| \ge \varepsilon$$

and so, f isn't uniformly continuous.

In the solutions, they use sequences $x_n = \frac{1}{n}$, $y_n = \frac{1}{n+1}$, to show that $|f(x_n) - f(y_n)| = 1$ so that no matter the δ , |f(x) - f(y)| won't be smaller than ε . However, the involvement of sequences makes me uneasy, since we haven't yet defined uniform continuity in terms of sequences.

4. Let $f(x) = \frac{1}{x}$ on $[a, \infty)$, where a > 0. Is f uniformly continuous? In this case, it works. Let $\delta > 0$, and assume that $x, y \in [a, \infty)$ such that:

$$|x - y| < \delta$$

Then:

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$
$$= \left| \frac{y - x}{xy} \right|$$
$$< \left| \frac{\delta}{xy} \right|$$

Now, since $x, y \in [a, \infty), xy \ge a^2 \implies \frac{1}{xy} \le \frac{1}{a^2}$ so:

$$|f(x) - f(y)| < \frac{\delta}{a^2}$$

Thus, if $\forall \varepsilon > 0$ we set $\delta = a^{-2}\varepsilon$ then:

$$|x - y| < \delta \implies |f(x) - f(y)| < a^2 \delta = \varepsilon$$

so f will be uniformly continuous.

5. Let I be an open interval in \mathbb{R} . Suppose that $f: I \to \mathbb{R}$ is differentiable, and its derivative f' is bounded on I. Prove that f is uniformly continuous on I.

Let $x, y \in I$. Then, [y, x] defines a closed interval, over which f is continuous, and (y, x) is an open interval over which f is differentiable. Then, $\exists c \in (y, x)$ such that, by the Mean Value Theorem:

$$f'(c) = \frac{f(x) - f(y)}{x - y} \implies |f(x) - f(y)| = |f'(c)||x - y|$$

Since the derivative is bounded, $\exists M$ such that:

$$|f(x) - f(y)| \le M|x - y|$$

Then, if $\forall \varepsilon > 0$ we have $\delta = \frac{\varepsilon}{M}$ if $|x - y| < \delta$ we get that:

$$|f(x) - f(y)| < \varepsilon$$

so f will be uniformly continuous, as required.

6. Show that $f(x) = \sin(x)$ is uniformly continuous on \mathbb{R} .

In the solutions they simply quote the result above, which is fine, but giving all the details is more fun.

Notice, $\sin(x)$ is continuous and idfferentiable on \mathbb{R} , so the MVT applies on any interval [y, x]. Indeed, by MVT $\exists c \in (y, x)$ such that:

$$f'(c) = \frac{f(x) - f(y)}{x - y} \implies |f(x) - f(y)| = |f'(c)||x - y|$$

Since $f'(x) = \cos(x)$ we know that $|f'(c)| \le 1$ so:

$$|\sin(x) - \sin(y)| \le |x - y|$$

Then, if $|x - y| < \delta = \varepsilon$ we get that:

$$|\sin(x) - \sin(y)| < \varepsilon$$

so $\sin(x)$ is uniformly continuous on \mathbb{R} .

7. Let I be an interval in \mathbb{R} . Prove that a continuous function $f: I \to \mathbb{R}$ is uniformly continuous on I if and only if whenever $s_n, t_n \in I$ are such that $|s_n - t_n| \to 0$, then $|f(s_n) - f(t_n)| \to 0$

For the first part of the proof, we give identical proofs. For the second part, I use contradiction, whilst the solutions give direct proof.

(1) Uniform Continuity Implies Sequence Definition

Assume that f is uniformly continuous. Then, $\forall \varepsilon > 0, \exists \delta > 0$ such that if $x, y \in I$ then:

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Now, consider sequences $s_n, t_n \in I$ such that:

$$|s_n - t_n| \to 0$$

By definition of convergence, this means that $\forall \delta > 0$ we can find a $N \in \mathbb{N}$ such that if $n \geq N$ then:

$$|s_n - t_n| < \delta$$

Hence, uniform continuity, and so we must have that:

$$|f(s_n) - f(t_n)| < \varepsilon \implies |f(s_n) - f(t_n)| \to 0$$

as required.

(2) Sequence Definition Implies Uniform Continuity

The solutions go by direct proof, and show that if f is not uniformly continuous, then the sequence definition doesn't follow.

Indeed, assume that f is continuous, but not uniformly continuous. Since f is not uniformly continuous, $\exists \varepsilon$ such that $\forall \delta = \frac{1}{n}$ we have that:

$$|s_n - t_n| < \delta \implies |f(s_n) - f(t_n)| \ge \varepsilon$$

But then,

$$|s_n - t_n| \to 0 \implies |f(s_n) - f(t_n)| \not\to 0$$

as required.

I proceeded by contradiction. Assume we have sequences $s_n, t_n \in I$ such that:

$$|s_n - t_n| \to 0 \implies |f(s_n) - f(t_n)| \to 0$$

but f is not uniformly continuous.

Then, $\exists \varepsilon > 0$ such that $\forall \delta > 0$ if $|x - y| < \delta$ then $|f(x) - f(y)| \ge \varepsilon$.

Now, this means that we can find $\varepsilon > 0$ such that $\forall \delta > 0$:

$$|s_n - t_n| < \delta \implies |f(s_n) - f(t_n)| \ge \varepsilon$$

which in particular means that:

$$|s_n - t_n| \to 0 \implies |f(s_n) - f(t_n)| \not\to 0$$

since $\varepsilon > 0$ (here we could have also used $\delta = \frac{1}{n}$ in the proof). This is a contradiction, and so, sequence definition implies uniform convergence.

Suppose $f:[a,b] \to \mathbb{R}$ is **continuous**. Then it is **uniformly continuous**.

That is, any continuous function defined over a closed, bounded interval is automatically uniformly continuous.

8. Prove this theorem by arguing by contradiction, using the previous question, and the Bolzano-Weierstrass theorem.

Assume that this is false: assume that f is continuous over a closed interval, but that f is not uniformly continuous over said interval.

Since f is not uniformly continuous, this means that, by the question above, there are sequences $s_n, t_n \in I$ such that:

$$|s_n - t_n| \to 0 \implies |f(s_n) - f(t_n)| \not\to 0$$

Now, since s_n, t_n are sequences over I, in particular they are bounded, so by Bolzano-Weierstrass, it follows that they have convergent subsequences, which converge on the interval:

$$s_{n_k} \to s \in [a, b]$$

$$t_{n_k} \to t \in [a,b]$$

Now:

$$|s_n - t_n| \to 0 \implies |s_{n_k} - t_{n_k}| \to 0$$

In particular, this means that s_{n_k} and t_{n_k} must converge to the same value, and so s=t.

Now, by continuity we have that:

$$f(s_{n_k}) \to s$$
 $f(t_{n_k}) \to t = s$

Hence, this means that:

$$|f(s_{n_h}) - f(t_{n_h})| \to 0$$

which is a contradiction.

Hence, if f is continuous ove r abounded interval, f is uniformly continuous.

9. Find an example of an $f:(0,1)\to\mathbb{R}$ which is continuous, but not uniformly continuous. Where exactly did we use the fact that [a,b] was a closed and bounded interval in the proof of the theorem?

We already saw that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1). We use Bolzano-Weierstrass because it allows us to find a subsequence which converges on a point inside the interval. The issue might arise if there is convergence at a or b.