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1 Motivation

• seek to define integrals of real functions as to represent the notion of
“area under the curve”

• mainly focus on definite integrals (so that
∫
f is a real number

rather than a function)

• want it to have desirable features: linearity and positivity

• want usual rules (recognition of antiderivatives, product rule,
substitution etc...) to hold rigorously, validating the usual techniques
for calculating integrals

• also want to consider situations in which order of integration and
summation can be swapped

2 The Indicator/Characteristic Function

2.1 Defining the Characteristic Function

• How can bounded intervals be described?

– consider a, b ∈ R, a < b

– if E is a bounded interval, it has one of the following forms:

∗ [a, a] = a (interval containing only the element a)

∗ [a, b]

∗ [a, b)

∗ (a, b]

∗ (a, b)

• What is the length of an interval?

– consider a bounded interval E

– we denote its length via:
λ(E)

– if E is defined by the bounds a, b ∈ R, a ≤ b, then, independent of whether E is open, closed or
half-open:

λ(E) = b− a

• What is a characteristic function?

– a function over a bounded interval E ⊆ R:

XE : R→ R

– defined as:

XE(x) =

{
1, x ∈ E
0, x 6∈ E
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• What is the integral of a characteristic function?

– using the principles outlined in the motivation pushes us to define:∫
XE := λ(E)

3 The Step Function

3.1 Defining Step Function

• What is a step function?

– a function φ : R→ R which is constant on discrete intervals of the real line

– its value on different intervals can vary.

• How can we formally describe a step function?

– more formally consider the real numbers:

x0 < x1 < . . . < xn, n ∈ N

– can define a step function with respect to {x0, x1, . . . , xn} via:

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)

where 0 ≤ j ≤ n− 1 and cj ∈ R.

– alternatively, φ is a step function if and only if it can be defined as:

φ(x) =

n∑
j=1

cjXIj (x), Ij = (xj−1, xj)

• Are step functions defined at the endpoints of the intervals (xj , xj+1)?

– these can be defined, but we don’t formally define the value of φ(xj)

– in particular φ is continuous on all of R, except possibly at {x0, x1, . . . , xn}
– each of {x0, x1, . . . , xn} is called a potential jump point of φ

• Are step functions bounded?

– from their definition, step functions must be bounded

– in particular, there always exists a bounded interval I ⊂ R, such that if x 6∈ I, we have φ(x) = 0
(this I can be defined by x0 or xn)
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3.2 Theorem: Sum of Step Functions is a Step Function

Let φ and ψ be step functions. Then, φ+ψ is also a step function. [Ex-
ample 4.1]

Proof: Sum of Step Functions. Since φ and ψ are step functions, in particular:

• φ is a step function with respect to a set {x0, x1, . . . , xn}

• ψ is a step function with respect to a set {y0, y1, . . . , ym}

Then, consider the bounded, finite set:

{z0, z1, . . . , zk} = {x0, x1, . . . , xn} ∪ {y0, y1, . . . , ym}

where k ≤ m+ n (it can be the case that there are elements in common in both sets).

Notice, it must be the case that:

• φ is constant on any interval (zj , zj+1), since in particular, each (zj , zj+1 must be a subinterval (either
the same size or smaller) than any interval defined by {x0, x1, . . . , xn}

• ψ is constant on any interval (zj , zj+1), since in particular, each (zj , zj+1 must be a subinterval (either
the same size or smaller) than any interval defined by {y0, y1, . . . , ym}

In particular, since φ and ψ are both constant on any interval (zj , zj+1) defined by {z0, z1, . . . , zk}, it must
be the case that φ+ ψ must also be constant on any interval (zj , zj+1).

In particular if x ∈ (zj , zj+1), and φ(x) = cj , ψ(x) = dj , then:

(φ+ ψ)(x) = cj + dj
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Lastly, assuming that {z0, z1, . . . , zk}, {x0, x1, . . . , xn}, {y0, y1, . . . , ym} are all ordered, it is easy to see
that that φ(x) = 0,∀x < z0|x > zk and ψ(x) = 0,∀x < z0|x > zk. In other words, φ+ ψ is also zero outside
of [z0, zk].

Thus, we have shown that φ+ ψ is a step function with respect to {z0, z1, . . . , zk}, as required.

3.3 Theorem: Constructing Step Functions from Other Step Functions

These are all part of Exercise 4.1.

3.3.1 Theorem: Step Functions are a Vector Space

The class of step functions defines a vector space.
If φ, ψ are step functions, and α, β ∈ R, then:

αφ+ βφ

is also a step function.

Proof. If

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)

then:

αφ(x) =

{
0, x < x0 or x > xn

αcj , x ∈ (xj , xj+1)

so αφ is also a step function Since the sum of step functions is a step function, it follows that αφ+ βψ is a
step function.

3.3.2 Theorem: Absolute Value of Step Function is a Step Function

If φ is a step function, then |φ| is a step function.

Proof. If

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)

then:

|φ(x)| =

{
0, x < x0 or x > xn

|cj |, x ∈ (xj , xj+1)

so |φ| is also a step function.
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3.3.3 Theorem: Maximum and Minimum of Step Functions is a Step Function

Let φ, ψ be step functions. Then, max{φ, ψ} and min{φ, ψ} are step func-
tions.

Proof. We know that1:

max{φ, ψ} =
φ+ ψ + |φ− ψ|

2

which is a linear combination of step functions, and so is a step function.
Similarly, we know that:

min{φ, ψ} =
φ+ ψ − |φ− ψ|

2

which is a linear combination of step functions, and so is a step function.

3.3.4 Theorem: Product of Step Functions is a Step Function

If φ, ψ are step functions, then φψ is a step function.

3.4 Theorem: Step Functions as Sums of Characteristic Functions

We formally prove the intuitive result which we presented intuitively above.

φ is a step function if and only if it can be written in the form:

φ =
n∑

j=1

cjXJj

for some n, cj, and bounded intervals Jj.

Proof: Step Function as Sum of Characteristic Functions. Intuitively, this makes a lot of sense. If we look
at the definition of a step function:

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)

and of a characteristic function:

XE(x) =

{
1, x ∈ E
0, x 6∈ E

1http://caseychu.io/posts/minimum-and-maximum-of-two-functions/
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Then if we let Jj = (xj , xj+1) (or (xj−1, xj) as in the formulation of the theorem), we can see that:

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)
⇐⇒ φ(x) =

{
0(= XJj (x)), ∀j, x 6∈ Jj
cjXJj

(x), x ∈ Jj

We argue more formally, however.

Firstly, we show that if

φ =

n∑
j=1

cjXJj

then φ is a step function.

(This can be proven by the fact that the sum of 2 step functions is a step function, and then arguing
that each cjXJj

is a step function with respect to the end points of Jj . This is what is said in the notes
(basically). In the videos they go from first principles, which is the proof below.)

If φ is indeed a step function, then we should be able to define the set of points with respect to which φ
is a step function.

Since each Jj is a bounded intervals, and we are considering n such intervals, then the set of all endpoints
of each Jj must be finite. Define this set as:

A = {a0, a1, . . . , ak}

with a0 < a1 < . . . < ak. We claim φ is a step function with respect to A, as:

• if x < a0 or x > ak, we know by construction that for any j, XJj (x) = 0, since any such x is beyond
any of the endpoints of any Jj

• if x ∈ [a0, ak], there must exist at least one interval (aj−1, aj), such that cjXJj (x) = cj . Consider
any interval (aj−1, aj). Then either (aj−1, aj) ⊂ Jj , in which case XJj

(x) = 1 so cjXJj
(x) = cj ; or

(aj−1, aj) ∩ Jj = ∅, in which case XJj
(x) = 0 so cjXJj

(x) = 0

Thus, φ satisfies all the properties of a step function, with respect to A.

Now, we show that if φ is a step function, it must have the form:

φ =

n∑
j=1

cjXJj

Since φ is a step function, it must be so with respect to some set:

X = {x0, x1, . . . , xn}

Then, it is easy to see that, ∀x 6∈ X:

φ(x) =

n∑
j=1

cjX(Jj
(x)

where cj is a constant, and Jj = (xj−1, xj). In order to fix the fact that
∑n

j=1 cjX(Jj
doesn’t equal φ on X,

we introduce an additional term:

φ(x) =

n∑
j=1

cjX(Jj
(x) +

n∑
i=0

φ(xi)X{xi}(x)
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Notice, with this new formulation, we are able to account for whichever value φ takes at each value in X,
since X{xi}(x) is 1 only if x = xi.

We have shown that any step function φ can thus be expressed as in the form above, as required.

3.5 The Integral of the Step Function

• How can we define the integral of a step function?

– let φ(x) be a step function with respect to {x0, x1, . . . , xn}
– we can express φ(x) as:

φ(x) =

n∑
j=1

cjXJj (x)

where cj is a constant, and Jj = (xj−1, xj)

– under our desired property of linearity, and given the finite sum, we can define:∫
φ(x) =

∫ n∑
j=1

cjXJj
(x)

=

n∑
j=1

cj

∫
XJj

(x)

=

n∑
j=1

cjλ(Jj)

=

n∑
j=1

cj(xj − xj−1)

• Since a step function can be represented in many ways, is their integral always the same?

– yes, independent on the intervals with which we describe a step function, the integral always
evaluates to the same value

– this shows that the integral is well-defined: it only depend on the inherent function, and not
necessarily its representation

– this will be presented more formally when discussing Lebesgue integrals

4 Lebesgue Integrable Functions

4.1 Integrals: Intuition Using Step Functions

• Can you approximate non-negative, continuous functions by using step functions?

– yes. In fact as we add more and more infinitesimally small intervals, we can perfectly describe a
continuous function. Formally, for any continuous function f(x) on some interval I, there exists
some step function, such that::

f(x) =

∞∑
j=1

cjXJj

where each Jj ⊂ I, and cj ≥ 0.
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Figure 1: As the intervals Jj become smaller, we can better approximate the function.

• How can we use step functions to find the area under a non-negative continuous function?

– since we can express f(x) via a step function, and we can integrate step functions, it follows that:∫
f(x) =

n∑
j=1

cjλ(Jj)

– diagramatically, this can be thought of as filling the curve with non-overlapping rectangles of
height cj and width λ(Jj).

– this idea is due to Archimedes, but he used triangles
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• What if the continuous function is sometimes negative?

– then we modify the argument in 2 ways:

∗ we allow any cj (positive or negative)

∗ instead of considering area in terms of rectangles under the curve, we consider rectangles
above the curve, and find the area under the cruve by substracting rectangle areas

– to avoid the possibility that
∑n

j=1 cjλ(Jj) is conditionally convergent (and so, that adding areas
of rectangles in different orders affects the value of the series), we enforce that:

n∑
j=1

|cj |λ(Jj) <∞

4.2 Defining Lebesgue Integrable Functions

• What is a Lebesgue Integrable function?

– consider a function
f : I → R

– f is Lebesgue Integrable on an interval I if we can represent it as a convergent step function,
and said step function series has a defined integral

– more rigorously, f is Lebesgue Integrable if there exist:

∗ cj ∈ R
∗ bounded intervals Jj ⊂ I, j ∈ N

such that the series:
∞∑
j=1

cjλ(Jj)

is absolutely convergent (so
∑∞

j=1 |cj |λ(Jj) <∞), and for any x ∈ I for which:

∞∑
j=1

|cj |XJj
(x) <∞
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we have that:

f(x) =

∞∑
j=1

cjXJj
(x)

– we call the number
∫
I
f the integral of f over I, and we denote it by:∫

I

f =

∞∑
j=1

cjλ(Jj)

4.3 Theorem: Integral of Step Function Independent of Interval

We noted before that we can represent a step function using many different intervals and constants, but said
that different representations don’t affect the integral for the step function. This is formalised in the following
theorem:

Let cj, dj be real numbers. Let Jj, Kj be bounded intervals for any j ∈ N.
Assuming that the following series converge:

n∑
j=1

|cj|λ(Jj)
n∑

j=1

|dj|λ(Kj)

if we also have that:

n∑
j=1

cjXJj(x) =
n∑

j=1

djXKj
(x)

for any x for which:

n∑
j=1

|cj|XJj(x) <∞
n∑

j=1

|dj|XKj
(x) <∞

Then we have:
n∑

j=1

cjλ(Jj) =
n∑

j=1

djλ(Kj)

In other words, the integral of a step function defined in 2 distinct ways is
equal. [Theorem 4.1]

Proof is quite complicated, and left in the advanced section of the notes.

4.4 Corollary: Step Functions are Lebesgue Integrable

Let φ be a step function, such that φ : R→ R.
Then, φ is Lebesgue Integrable.
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Proof. Recall the definition of a step function:

φ(x) =

{
0, x < x0 or x > xn

cj , x ∈ (xj , xj+1)

Further, recall we could express the step function as:

φ(x) =

n∑
j=1

cjXJj
(x)

It is easy to see that for j > n, we will have φ(x) = 0. Since the sum is of finitely many terms, and each
interval Jj is bounded, we are guaranteed that:

∞∑
j=1

|cj |λ(Jj) <∞

and that for any x ∈ R:
∞∑
j=1

|cj |XJj (x) <∞

Lastly, since indeed

φ(x) =

∞∑
j=1

cjXJj
(x)

it must be the case that: ∫
φ(x) =

∞∑
j=1

cjλ(Jj) =

n∑
j=1

cjλ(Jj)

Thus, Lebesgue Integrability coincides with the definition of Integrability for Step Functions

4.5 Properties of Lebesgue Integrals

The following are all part of Theorem 4.2

4.5.1 Theorem: Linearity of Lebesgue Integral

Let α, β ∈ R. Moreover, let f, g be Lebesgue Integrable functions.
Then, αf + αg is also Lebesgue Integrable, and:∫

I

αf + βg = α

∫
I

f + β

∫
I

g
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Proof: Linearity of Lebesgue Integral. From the definition of Lebesgue Integrability, we know that for the
interval I, since f and g are Lebesgue Integrable, we can find cj , dj and Jj ,Kj ⊂ I such that:

∞∑
j=1

|cj |λ(Jj) <∞
∞∑
j=1

|dj |λ(Kj) <∞

and:

f(x) =

∞∑
j=1

cjXJj (x) g(x) =

∞∑
j=1

djXKj (x)

holds for all x ∈ I where both series are absolutely convergent.

Using this, we want to show that αf + βg are Lebesgue Integrable.

The first step is to show that there exist bj , Ij ⊂ I such that:

(αf + βg)(x) =

∞∑
j=1

bjXIj (x)

Doing this is fairly easy. We can use f for even j, and g for odd j. More specifically, we can define Ij and
bj such that:

Ij =

{
J j+1

2
, j is odd

K j
2
, j is even

bj =

{
αc j+1

2
, j is odd

βd j
2
, j is even

We can indeed show that:

(αf + βg)(x) =

∞∑
j=1

bjXIj (x)

since:

∞∑
j=1

bjXIj (x) =

∞∑
j=1

αcjXJj (x) +

∞∑
j=1

βdjXKj (x)

= α

∞∑
j=1

cjXJj (x) + β

∞∑
j=1

djXKj (x)

= αf(x) + βg(x)

= (αf + βg)(x)

and this holds for any x for which α
∑∞

j=1 cjXJj
(x) and β

∑∞
j=1 djXKj

(x) are absolutely convergent, by the
work at the start of the proof.

Lastly, we know that
∑∞

j=1 |bj |λ(Ij) <∞ since:

∞∑
j=1

|bj |λ(Ij) =

∞∑
j=1

|αcj |λ(Jj) +

∞∑
j=1

|βdj |λ(Kj)

= |α|
∞∑
j=1

|cj |λ(Jj) + |β|
∞∑
j=1

|dj |λ(Kj)

<∞
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by the work at the start of the proof.

Thus, by the definition of Lebesgue Integrability, αf + βg is Lebesgue Integrable.

4.5.2 Theorem: Positivity of Lebesgue Integral

If f ≥ 0 on I, then
∫
I
f ≥ 0.

If f ≥ g on I, then
∫
I
f ≥

∫
I
g.

Proof: Positivity of Lebesgue Integrable Functions. The proof for the first part is a bit complex, and can be
found in the notes.

The second part follows directly from the first part. Since f ≥ g, then define:

h = f − g

Then, h ≥ 0, so from the first part: ∫
I

h ≥ 0

From linearity of Lebesgue Integrals: ∫
I

h ≥ 0 =⇒
∫
I

f −
∫
I

g ≥ 0

from which the result follows.

4.5.3 Theorem: Lebesgue Integral of Absolute Value

If f is integrable, then |f | is integrable on I, and:∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

|f |

Proof: Absolute Value of Lebesgue Integrable Function. Again, the proof that |f | is integrable is quite com-
plex, and can be found in the notes.

Once we know |f | is integrable, we note that:

−|f | ≤ f ≤ |f |
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These are all integrable, so by positivity:

−
∫
I

|f | ≤
∫
I

f ≤
∫
I

|f |

Which is precisely the definition of: ∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

|f |

as required.

4.5.4 Theorem: Lebesgue Integral of Max/Min

If f, g are integrable, then both max{f, g} and min{f, g} are integrable.

Proof: Lebesgue Integrability of Max/Min of Functions. Firstly, we know that:

max{f, 0} =
f + |f |

2

so max{f, 0} is integrable by linearity and by integrability of absolute value.

But then, notice that:
max{f, g} = max{f − g, 0}+ g

so from the above, max{f, g} is integrable.

But then, min{f, g} = −max{−f,−g}, so min{f, g} is also integrable.

4.5.5 Theorem: Lebesgue Integrability of Function Products

Let f, g be integrable.
If one of f, g is bounded then the product fg is integrable on I.

4.5.6 Theorem: Bounded Functions and Lebesgue Integrability

Let f, g be integrable.
If f ≥ 0 with

∫
I
f = 0 then any function h such that 0 ≤ h ≤ f on I is

integrable on I.
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5 Exercises

1. Let [x] denote the integer part of a number x ∈ R. Define

f(x) =
1

[x][x+ 1]

for x ≥ 1. Show that f is Lebesgue Integrable on the interval [1,∞).

We can write f using cj = 1
j(j+1) and X[j,j+1):

f(x) =

∞∑
j=1

1

j(j + 1)
X[j,j+1)(x)

and this is true for all x ≥ 1 (we don’t need to check for the absolute convergence of
∑∞

j=1
1

j(j+1)X[j,j+1)(x)

because each cj is positive, so if the series converges, it converges absolutley).

Moreover, we know that:

∞∑
j=1

∣∣∣∣ 1

j(j + 1)

∣∣∣∣λ([j, j + 1)) =

∞∑
j=1

1

j(j + 1)
= 1 <∞

Thus, it follows that on [1,∞), f(x) is Lebesgue Integrable, and:∫
I

f(x) =

∞∑
j=1

1

j(j + 1)
λ([j, j + 1)) =

∞∑
j=1

1

j(j + 1)
= 1

2. Let I be an interval, and E ⊂ I be a countable set. Show that XE is integrable, and that∫
I
XE = 0

Since E is countable, we can list each of its elements:

E = {e1, e2, e3, . . .}

We can then express XE as an infinite series:

XE(x) =

∞∑
j=1

X{ej}(x)
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where each X{ej}(x) = 1 whenever x = ej .

But then, from the integrability of the characteristic function:∫
I

XE =

∫
I

∞∑
j=1

X{ej}(x) =

∞∑
j=1

λ({ej}) = 0

3. The Cantor Set C is defined as the set resulting from extracting the middle third out of
[0, 1], and doing so iteratively

C is uncountable. Show that XC is integrable on [0, 1] or R?

We would like to write:

XC =

∞∑
j=1

cjXJj

Let Fj denote the set resulting from applying the iterative procedure j times. For example:

F0 = [0, 1]

F1 = [0, 1]− (1/3, 2/3) = F0 − (1/3, 2/3)

F2 = F1 − (1/9, 2/9)− (7, 9, 8/9)

Overall, we can see that at each Fj , we are removing 2j−1 intervals of length 3−j . In other words, Fj

must be made up 2j non-overlapping, closed intervals of length 3−j .

Using all this, we notice that:
XF0 = X[0,1]

XF1
= X[0,1] −X(1/3,2/3)

(think that if x is in both [0, 1] and (1/3, 2/3), XF1 = 0, and 1 otherwise, as expected)

If we continuously apply this, we get:

XC(x) = X[0,1](x)−
∞∑
j=1

XJj (x)

where:
J2 = (1/3, 2/3)
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J3 = (1/9, 2/9)

J4 = (7/9, 8/9)

and inductively J5, J6, J7, J8 will be four open intervals of length 1
33 .

We expect that if the integral exists, then:∫
XC = λ([0, 1])−

∞∑
j=1

λ(Jj)

If we consider the absolute convergence of the above, this depends on the absolute convergence of the
series. In other words, we consider:

∞∑
j=1

|cj |λ(Jj) =

∞∑
j=1

λ(Jj)

=
1

3
+ 2

(
1

32

)
+ 22

(
1

33

)
+ . . .

=

∞∑
j=1

2j−1
1

3j

=
1

3

∞∑
j=1

(
2

3

)j−1

which is a convergent geometric series.

All of the above implies that XC is integrable, and:∫
XC = 1− 1

3

∞∑
j=1

(
2

3

)j−1

= 1− 1

3
(3) = 0

and this is true for any x ∈ R

If
∫
XE is 0, then E is said to be a set of measure zero. Thus, all countable sets have measure zero,

and the Cantor Set is an example of an uncountable set with measure zero.

4. Let f(x) = [x] for all x ∈ R. Compute the following integrals:

(a) ∫
(0,5)

f

It is easy to see that ∀x ∈ (0, 5):

f(x) =

4∑
i=1

iX[i,i+1)(x)

(we don’t need to consider [0, 1), since in that case X[i,i+1)(x) is just 0).

We can then compute the integral by using linearity:∫
(0,5)

f =

∫ 4∑
i=1

iX[i,i+1)(x) =

4∑
i=1

iλ([i, i+ 1)) =

4∑
i=1

i = 10
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(b) ∫
(− 7

3 ,
12
5 ))

f

Notice that:

−7

3
= −2.3̇

and
12

5
= 2.4

So we can express f as (using [x] as the floor function):

f(x) = −3×X(− 7
3 ,−2)

+

1∑
i=−2

iX(i,i+1](x) + 2×X(2, 125 )

So: ∫
(− 7

3 ,
12
5 ))

f = −3

(
1

3

)
+ (−2) + (−1) + 0 + 1 + 2

(
2

5

)
= −11

5

5. Show that if n ∈ Z and f(x) = [nx]2, for all x ∈ R then:∫
(0,1)

f =
1

n

n−1∑
j=1

j2

We want to express f in the form:

f(x) =

∞∑
j=1

cjXJj

Lets consider how the function looks like for different values of n on the interval (0, 1):

• if n = 0, f(x) = 0

• if n = 1, f(x) = [x]2 = 0

• if n = 2, f(x) = [2x]2 so notice that we have:

f(x) =

{
0, x < 1

2

1, x ≥ 1
2

• if n = 3, f(x) = [3x]2 so notice that we have:

f(x) =


0, x < 1

3

1, 1
3 ≤ x <

2
3

4, 2
3 ≥ x

This means that, if we consider n > 0, we must have:

f(x) =

n−1∑
j=1

j2 ×X( j
n , j+1

n ]
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This is a finite sum, so we can compute the integral directly:∫
(0,1)

f =

n−1∑
j=1

j2 × λ
((

j

n
,
j + 1

n

])
=

1

n

n−1∑
j=1

j2

6 Workshop

This workshop covered an auxiliary topic: Uniform Continuity

1. Consider the function f : R→ R given by f(x) = x2.
We know that it is continuous at a for all a ∈ R.
So, for every a, for every ε > 0, there is a δ > 0 such that |x− a| < δ implies |f(x)− f(a)| < ε.
For a > 1 and ε = 1, find the best possible δ. Is this best possible δ independent of a?
As a hint, draw the graph of the function, and include the horizontal lines y = a2 ± 1.

I still have no idea what “best possible” δ means. As a course that takes
marks off for failing to mention a theorem when justifying that a function
is continuous, I find this hilarious.

2. Consider the same function, but now on [0, 1]. Prove that ∀ε > 0 if we take δ = ε
2 we have

that |x− a| < δ (where x, a ∈ [0, 1]) implies |f(x)− f(a)| < ε. In this case, the “best” δ can be
taken to be independent of a.
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This works. Assume that |x− a| < ε
2 . Then:

|f(x)− f(a)| = |x2 − a2|
= |x− a||x+ a|
< δ(|x|+ |a|)
= 2δ

= ε

Let I be an interval in R and let f : I → R be a function. f is uniformly
continuous on I if ∀ε > 0, ∃δ > 0 such that if x, y ∈ I and |x − y| < δ
then |f(x)− f(y)| < ε
Uniform continuity only makes sense when f is already continuous.

3. Let f(x) = 1
x on (0,∞). Is f uniformly continuous?

If we negate the statement of uniform continuity, we get that f is not
uniformly continuous if ∃ε > 0 such that ∀δ > 0 we can find x, y ∈ I
such that |x− y| < δ but |f(x)− f(y)| ≥ ε.

This is false. ∀δ > 0, pick x ∈ (0, 1) such that x < δ, and define y = x
2 . Then:

|x− y| =
∣∣∣x− x

2

∣∣∣ =
∣∣∣x
2

∣∣∣ < δ

2
< δ

Now, consider:

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

y

∣∣∣∣ =

∣∣∣∣ 1x − 2

x

∣∣∣∣ =
1

x

Now, since x ∈ (0, 1), then 1
x > 1. Thus, if we set ε = 1, we indeed have that:

|f(x)− f(y)| ≥ ε

and so, f isn’t uniformly continuous.

In the solutions, they use sequences xn = 1
n
, yn = 1

n+1
, to show that

|f(xn)− f(yn)| = 1 so that no matter the δ, |f(x)− f(y)| won’t be smaller
than ε. However, the involvement of sequences makes me uneasy, since we
haven’t yet defined uniform continuity in terms of sequences.

4. Let f(x) = 1
x on [a,∞), where a > 0. Is f uniformly continuous?

In this case, it works. Let δ > 0, and assume that x, y ∈ [a,∞) such that:

|x− y| < δ
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Then:

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

y

∣∣∣∣
=

∣∣∣∣y − xxy

∣∣∣∣
<

∣∣∣∣ δxy
∣∣∣∣

Now, since x, y ∈ [a,∞), xy ≥ a2 =⇒ 1
xy ≤

1
a2 so:

|f(x)− f(y)| < δ

a2

Thus, if ∀ε > 0 we set δ = a−2ε then:

|x− y| < δ =⇒ |f(x)− f(y)| < a2δ = ε

so f will be uniformly continuous.

5. Let I be an open interval in R. Suppose that f : I → R is differentiable, and its derivative
f ′ is bounded on I. Prove that f is uniformly continuous on I.

Let x, y ∈ I. Then, [y, x] defines a closed interval, over which f is continuous, and (y, x) is an open
interval over which f is differentiable. Then, ∃c ∈ (y, x) such that, by the Mean Value Theorem:

f ′(c) =
f(x)− f(y)

x− y
=⇒ |f(x)− f(y)| = |f ′(c)||x− y|

Since the derivative is bounded, ∃M such that:

|f(x)− f(y)| ≤M |x− y|

Then, if ∀ε > 0 we have δ = ε
M if |x− y| < δ we get that:

|f(x)− f(y)| < ε

so f will be uniformly continuous, as required.

6. Show that f(x) = sin(x) is uniformly continuous on R.

In the solutions they simply quote the result above, which is fine, but giv-
ing all the details is more fun.

Notice, sin(x) is continuous and idfferentiable on R, so the MVT applies on any interval [y, x]. Indeed,
by MVT ∃c ∈ (y, x) such that:

f ′(c) =
f(x)− f(y)

x− y
=⇒ |f(x)− f(y)| = |f ′(c)||x− y|

Since f ′(x) = cos(x) we know that |f ′(c)| ≤ 1 so:

| sin(x)− sin(y)| ≤ |x− y|

Then, if |x− y| < δ = ε we get that:
| sin(x)− sin(y)| < ε

so sin(x) is uniformly continuous on R.
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7. Let I be an interval in R. Prove that a continuous function f : I → R is uniformly continuous
on I if and only if whenever sn, tn ∈ I are such that |sn − tn| → 0, then |f(sn)− f(tn)| → 0

For the first part of the proof, we give identical proofs. For the second part,
I use contradiction, whilst the solutions give direct proof.

1 Uniform Continuity Implies Sequence Definition

Assume that f is uniformly continuous. Then, ∀ε > 0,∃δ > 0 such that if x, y ∈ I then:

|x− y| < δ =⇒ |f(x)− f(y)| < ε

Now, consider sequences sn, tn ∈ I such that:

|sn − tn| → 0

By definition of convergence, this means that ∀δ > 0 we can find a N ∈ N such that if n ≥ N then:

|sn − tn| < δ

Hence, uniform continuity, and so we must have that:

|f(sn)− f(tn)| < ε =⇒ |f(sn)− f(tn)| → 0

as required.

2 Sequence Definition Implies Uniform Continuity

The solutions go by direct proof, and show that if f is not uniformly continuous, then the sequence
definition doesn’t follow.

Indeed, assume that f is continuous, but not uniformly continuous. Since f is not uniformly continuous,
∃ε such that ∀δ = 1

n we have that:

|sn − tn| < δ =⇒ |f(sn)− f(tn)| ≥ ε

But then,
|sn − tn| → 0 =⇒ |f(sn)− f(tn)| 6→ 0

as required.

I proceeded by contradiction. Assume we have sequences sn, tn ∈ I such that:

|sn − tn| → 0 =⇒ |f(sn)− f(tn)| → 0

but f is not uniformly continuous.

Then, ∃ε > 0 such that ∀δ > 0 if |x− y| < δ then |f(x)− f(y)| ≥ ε.
Now, this means that we can find ε > 0 such that ∀δ > 0:

|sn − tn| < δ =⇒ |f(sn)− f(tn)| ≥ ε
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which in particular means that:

|sn − tn| → 0 =⇒ |f(sn)− f(tn)| 6→ 0

since ε > 0 (here we could have also used δ = 1
n in the proof). This is a contradiction, and so, sequence

definition implies uniform convergence.

Suppose f : [a, b] → R is continuous. Then it is uniformly continu-
ous.
That is, any continuous function defined over a closed, bounded inter-
val is automatically uniformly continuous.

8. Prove this theorem by arguing by contradiction, using the previous question, and the
Bolzano-Weierstrass theorem.

Assume that this is false: assume that f is continuous over a closed interval, but that f is not uniformly
continuous over said interval.

Since f is not uniformly continuous, this means that, by the question above, there are sequences sn, tn ∈ I
such that:

|sn − tn| → 0 =⇒ |f(sn)− f(tn)| 6→ 0

Now, since sn, tn are sequences over I, in particular they are bounded, so by Bolzano-Weierstrass, it
follows that they have convergent subsequences, which converge on the interval:

snk
→ s ∈ [a, b]

tnk
→ t ∈ [a, b]

Now:
|sn − tn| → 0 =⇒ |snk

− tnk
| → 0

In particular, this means that snk
and tnk

must converge to the same value, and so s = t.

Now, by continuity we have that:

f(snk
)→ s f(tnk

)→ t = s

Hence, this means that:
|f(snk

)− f(tnk
)| → 0

which is a contradiction.

Hence, if f is continuous ove r abounded interval, f is uniformly continuous.

9. Find an example of an f : (0, 1) → R which is continuous, but not uniformly continuous.
Where exactly did we use the fact that [a, b] was a closed and bounded interval in the proof
of the theorem?

We already saw that f(x) = 1
x is not uniformly continuous on (0, 1). We use Bolzano-Weierstrass because

it allows us to find a subsequence which converges on a point inside the interval. The issue might arise
if there is convergence at a or b.
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