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1 Motivation

o seek to define integrals of real functions as to represent the notion of
“area under the curve”

e mainly focus on definite integrals (so that [ f is a real number
rather than a function)

e want it to have desirable features: linearity and positivity

e want usual rules (recognition of antiderivatives, product rule,
substitution etc...) to hold rigorously, validating the usual techniques
for calculating integrals

e also want to consider situations in which order of integration and
summation can be swapped

2 The Indicator/Characteristic Function

2.1 Defining the Characteristic Function

e How can bounded intervals be described?

— consider a,b e R,a < b
— if E is a bounded interval, it has one of the following forms:

[a,a] = a (interval containing only the element a)
[a,b

*
*
* [a,b
*
*

—

(a,b
(a,b

Nl

e What is the length of an interval?

— consider a bounded interval E

— we denote its length via:
A(E)

— if F is defined by the bounds a,b € R, a < b, then, independent of whether E is open, closed or
half-open:
ME)Y=b—a

e What is a characteristic function?
— a function over a bounded interval E C R:

Xg:R—>R

— defined as:

1, rek
XE(x){o & E



e What is the integral of a characteristic function?

— using the principles outlined in the motivation pushes us to define:

/.XE = \(E)

3 The Step Function

3.1 Defining Step Function

e What is a step function?

— a function ¢ : R — R which is constant on discrete intervals of the real line

— its value on different intervals can vary.
¢ How can we formally describe a step function?

— more formally consider the real numbers:

To < a1 < .ho < Xy, néeN
— can define a step function with respect to {zg,x1,...,2,} via:
0 T < X9 OT T > Ty
o) =14~
Cjs T € (xjamj-l‘l)

where 0 <j <n—1andc; €R.

— alternatively, ¢ is a step function if and only if it can be defined as:
$lx) =Y X (@), I = (z5-1,2;)
j=1

e Are step functions defined at the endpoints of the intervals (z;,z;41)7

— these can be defined, but we don’t formally define the value of ¢(x;)
— in particular ¢ is continuous on all of R, except possibly at {zg,z1,...,Zn}

— each of {zg,21,...,2,} is called a potential jump point of ¢
e Are step functions bounded?

— from their definition, step functions must be bounded

— in particular, there always exists a bounded interval I C R, such that if & I, we have ¢(z) =0
(this I can be defined by ¢ or z,)
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3.2 Theorem: Sum of Step Functions is a Step Function

Let ¢ and 1) be step functions. Then, ¢+ is also a step function. [Ex-
ample 4.1]

Proof: Sum of Step Functions. Since ¢ and v are step functions, in particular:
e ¢ is a step function with respect to a set {xg,z1,...,2,}
e ¢ is a step function with respect to a set {yo,y1,...,Ym}

Then, consider the bounded, finite set:

{2:07213"'7216}:{:L'O;xla"'vxn}U{y03y17~~-,ym}

where k < m +n (it can be the case that there are elements in common in both sets).

Notice, it must be the case that:

e ¢ is constant on any interval (z;, zj+1), since in particular, each (z;, 2,41 must be a subinterval (either
the same size or smaller) than any interval defined by {z¢,21,...,2n}

e 1) is constant on any interval (z;, zj41), since in particular, each (z;, 241 must be a subinterval (either
the same size or smaller) than any interval defined by {yo,¥1,- .-, Ym}

In particular, since ¢ and 1 are both constant on any interval (z;, zj+1) defined by {20, 21,...,2x}, it must
be the case that ¢ + ¢ must also be constant on any interval (z;, zj41).

In particular if « € (2;,2;41), and ¢(z) = ¢;, ¥(x) = d;, then:

(@ +¢)(2) = ¢ +d;
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Lastly, assuming that {zo,21,..., 2k} {0, 21, s Zn}, {Y0, Y1, - - -, Ym} are all ordered, it is easy to see
that that ¢(x) = 0,Vx < zp|z > 2z and Y(x) = 0,Vx < zp|z > 2. In other words, ¢ + 1 is also zero outside
of [zo, zk].

Thus, we have shown that ¢ + 1) is a step function with respect to {zo, 21, ..., 2k}, as required.

3.3 Theorem: Constructing Step Functions from Other Step Functions

These are all part of Exercise 4.1.

3.3.1 Theorem: Step Functions are a Vector Space

The class of step functions defines a vector space.
If ¢,% are step functions, and o, B € R, then:

ad + Bo
15 also a step function.
Proof. If
0 7
o) =% T < Ty or T > T
¢, T € (x5,T541)
then:
0 n
a¢(a:): s r < Tg Oor T >Ty
acy, x € (25, 241)

S0 a¢ is also a step function Since the sum of step functions is a step function, it follows that a¢ + Sv is a
step function. O

3.3.2 Theorem: Absolute Value of Step Function is a Step Function

If ¢ is a step function, then |¢| is a step function.

Proof. If
0, T<ToOrT>T
P(x) = "
Cjs UAS (x.'hxj-‘rl)
then:
0, T<TgoOrT>T
lo(x)| = "
lesl, @ € (@, @541)
so |¢| is also a step function. O
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3.3.3 Theorem: Maximum and Minimum of Step Functions is a Step Function

Let ¢, be step functions. Then, max{¢, ¥} and min{¢,} are step func-
tions.

Proof. We know that!:

which is a linear combination of step functions, and so is a step function.
Similarly, we know that:

which is a linear combination of step functions, and so is a step function.

3.3.4 Theorem: Product of Step Functions is a Step Function

If ¢, are step functions, then ¢ is a step function.

3.4 Theorem: Step Functions as Sums of Characteristic Functions

We formally prove the intuitive result which we presented intuitively above.

¢ is a step function if and only if it can be written in the form:

¢ = Z CjXJj
j=1

for some n, c;, and bounded intervals J;.

Proof: Step Function as Sum of Characteristic Functions. Intuitively, this makes a lot of sense. If we look
at the definition of a step function:

0 < >
o) =% T <xg Or T>IT,
¢y w € (), T541)

and of a characteristic function:
1, reFl

e() = {0 x¢ FE

Lhttp://caseychu.io/posts/minimum-and-maximum-of-two-functions/
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Then if we let J; = (j,2j41) (or (zj—1,;) as in the formulation of the theorem), we can see that:

b(x) = {07 T < T OT T > Ty — ¢(x){0(: Xy, (x)), Vj,x & J;

Cj, x e (.’Ej,.’l?jJrl) CjXJj (J?), HANSS Jj

We argue more formally, however.

Firstly, we show that if
0= e,
j=1

then ¢ is a step function.

(This can be proven by the fact that the sum of 2 step functions is a step function, and then arguing
that each c;X;; is a step function with respect to the end points of J;. This is what is said in the notes
(basically). In the videos they go from first principles, which is the proof below.)

If ¢ is indeed a step function, then we should be able to define the set of points with respect to which ¢
is a step function.

Since each J; is a bounded intervals, and we are considering n such intervals, then the set of all endpoints
of each J; must be finite. Define this set as:

A=A{ag,a1,...,ax}
with ag < a1 < ... < ar. We claim ¢ is a step function with respect to A, as:

e if x < ag or x > ag, we know by construction that for any j, X, (x) = 0, since any such = is beyond
any of the endpoints of any J;

e if 2 € [ap,ax], there must exist at least one interval (a;_1,a;), such that ¢; X, (z) = ¢;. Consider
any interval (a;_1,a;). Then either (a;_1,a;) C J;, in which case X, (z) = 1 so ¢; &, (z) = ¢;; or
(aj—1,a5) N J; =0, in which case Xy, (z) = 0 so ¢; X, (z) =0

Thus, ¢ satisfies all the properties of a step function, with respect to A.

Now, we show that if ¢ is a step function, it must have the form:

¢= Z ;X
j=1

Since ¢ is a step function, it must be so with respect to some set:
X ={xo,x1,...,2n}

Then, it is easy to see that, Vo ¢ X:

n

o(x) =) i, (@)

j=1

where ¢; is a constant, and J; = (zj_1,2;). In order to fix the fact that Z?zl ¢j X, doesn’t equal ¢ on X,
we introduce an additional term:
n n

$(x) =Y ;X (@) + ) dlwi)Xpay (2)

=1 i=0



Notice, with this new formulation, we are able to account for whichever value ¢ takes at each value in X,
since Xy,,1(x) is 1 only if 2 = =;.

We have shown that any step function ¢ can thus be expressed as in the form above, as required.

3.5 The Integral of the Step Function

e How can we define the integral of a step function?

— let ¢(z) be a step function with respect to {xg,z1,...,2n}

— we can express ¢(z) as:

Ba) =3 ¢k, (a)

where ¢; is a constant, and J; = (z;_1, z;)

— under our desired property of linearity, and given the finite sum, we can define:

[ow =/ jzn;cjxlj ()
- Z o [ 2,
= Ei:l ciA(J;)

n
= el —w0)
j=1

e Since a step function can be represented in many ways, is their integral always the same?

— yes, independent on the intervals with which we describe a step function, the integral always
evaluates to the same value

— this shows that the integral is well-defined: it only depend on the inherent function, and not
necessarily its representation

— this will be presented more formally when discussing Lebesgue integrals

4 Lebesgue Integrable Functions
4.1 Integrals: Intuition Using Step Functions
e Can you approximate non-negative, continuous functions by using step functions?

— yes. In fact as we add more and more infinitesimally small intervals, we can perfectly describe a
continuous function. Formally, for any continuous function f(x) on some interval I, there exists
some step function, such that::

F@) =) ey,
j=1

where each J; C I, and ¢; > 0.
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Figure 1: As the intervals J; become smaller, we can better approximate the function.

e How can we use step functions to find the area under a non-negative continuous function?

— since we can express f(x) via a step function, and we can integrate step functions, it follows that:

/f(x) = ich(Jj)

— diagramatically, this can be thought of as filling the curve with non-overlapping rectangles of
height ¢; and width A(J;).

5#&

N

'

1

— this idea is due to Archimedes, but he used triangles
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e What if the continuous function is sometimes negative?

— then we modify the argument in 2 ways:

* we allow any c¢; (positive or negative)

* instead of considering area in terms of rectangles under the curve, we consider rectangles
above the curve, and find the area under the cruve by substracting rectangle areas

4 1

—
T b
— to avoid the possibility that 2?21 ¢;A(J;) is conditionally convergent (and so, that adding areas

of rectangles in different orders affects the value of the series), we enforce that:

D leiIAJy) < o0
j=1
4.2 Defining Lebesgue Integrable Functions

e What is a Lebesgue Integrable function?

— consider a function
f:I—-R

— fis Lebesgue Integrable on an interval I if we can represent it as a convergent step function,
and said step function series has a defined integral
— more rigorously, f is Lebesgue Integrable if there exist:
* c; €R
* bounded intervals J; C I,j € N

such that the series: -
> eA;)
j=1

is absolutely convergent (so Z;’;l le;|A(J;) < 00), and for any = € I for which:

Z |cj| Xy, (z) < oo
j=1
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we have that:

f(z) = ZCjXJj (z)

— we call the number |[ ; [ the integral of f over I, and we denote it by:
/ F=eAT)
I =

4.3 Theorem: Integral of Step Function Independent of Interval

We noted before that we can represent a step function using many different intervals and constants, but said

that different representations don’t affect the integral for the step function. This is formalised in the following
theorem:

Let cj, d; be real numbers. Let J;, K; be bounded intervals for any j € N.
Assuming that the following series converge:

Z ;[ A(J5) Z |d;|A(K;)

if we also have that:

3
3

for any x for which:
D el Xy (@) <oo ) 1dyl Xk, (x) < o0
i=1 j=1

Then we have: . .
D M) =) dMK;)
j=1 j=1

In other words, the integral of a step function defined in 2 distinct ways is
equal. [Theorem 4.1]

Proof is quite complicated, and left in the advanced section of the notes.

4.4 Corollary: Step Functions are Lebesgue Integrable

Let ¢ be a step function, such that ¢ : R — R.
Then, ¢ s Lebesgue Integrable.
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Proof. Recall the definition of a step function:

0, xr < x9 Or T > Ty
o(z) =
Cjs UAES (xjvxj-‘rl)

Further, recall we could express the step function as:
n
dlx) =Y ;X (x)
j=1

It is easy to see that for j > n, we will have ¢(x) = 0. Since the sum is of finitely many terms, and each
interval J; is bounded, we are guaranteed that:

D le|AJ)) < oo
i=1

and that for any z € R:
Z |cj| Xy, () < oo
=1

Lastly, since indeed

P(z) = Z cj Xy, (x)

it must be the case that: - N
/(i)(x) =Y A =D ¢A;)
j=1 j=1

Thus, Lebesgue Integrability coincides with the definition of Integrability for Step Functions

4.5 Properties of Lebesgue Integrals
The following are all part of Theorem 4.2

4.5.1 Theorem: Linearity of Lebesgue Integral

Let o, B € R. Moreover, let f, g be Lebesgue Integrable functions.
Then, af 4+ ag is also Lebesgue Integrable, and:

/Iaf+ﬁg=a/1f+ﬁ/19
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Proof: Linearity of Lebesgue Integral. From the definition of Lebesgue Integrability, we know that for the
interval I, since f and g are Lebesgue Integrable, we can find ¢;,d; and Jj;, K; C I such that:

D leIAy) < oo Y 1di|AK;) < o0
j=1 j=1

and:
oo

@) =3 esXy (@) glx) =3 diX, (@)

j=1

holds for all € I where both series are absolutely convergent.
Using this, we want to show that af + 8¢ are Lebesgue Integrable.

The first step is to show that there exist b;,I; C I such that:
(af + Bg) () =Y b;Xy, (x)
j=1

Doing this is fairly easy. We can use f for even j, and g for odd j. More specifically, we can define I; and
b; such that:

Jit1, 7 is odd
J— 2
’ K;, j is even

b QcCjt1, j is odd
7] Bd., j is even
2

We can indeed show that:

since:

ijxfj () = ZachJj (z) + ZﬁdeKj (x)
j=1 j=1

j=1

= aZCjXJj (JJ) + ﬁZdeKj (3?)
=1

= af(z) + By(x)
= (af + Bg)(x)

and this holds for any « for which a 3272, ¢; Xy, (z) and 83772, d; Xk, () are absolutely convergent, by the
work at the start of the proof.

Lastly, we know that 3772, [b;|A\(I;) < oo since:
SN =D lac A + D B IAK;)
j=1 j=1 j=1
= lal Y 1eiAC;) + 181D ld; [ A(K;)
j=1 j=1

< o0
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by the work at the start of the proof.

Thus, by the definition of Lebesgue Integrability, a.f + (g is Lebesgue Integrable.

4.5.2 Theorem: Positivity of Lebesgue Integral

Iff >0o0nl, then [, f > 0.
Iff >gonl, then [, f > [, 9.

Proof: Positivity of Lebesgue Integrable Functions. The proof for the first part is a bit complex, and can be
found in the notes.

The second part follows directly from the first part. Since f > g, then define:

h=f-g

/Ihzo
/Ihzo — /If—/IgZO

Then, h > 0, so from the first part:

From linearity of Lebesgue Integrals:

from which the result follows.

4.5.3 Theorem: Lebesgue Integral of Absolute Value

If f is integrable, then |f| is integrable on I, and:

/If'ﬁ/llfl

Proof: Absolute Value of Lebesque Integrable Function. Again, the proof that |f]| is integrable is quite com-
plex, and can be found in the notes.

Once we know |f| is integrable, we note that:

—lfl<f<Ifl
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These are all integrable, so by positivity:

ey R
‘/jf’g/llfl

Which is precisely the definition of:

as required.

4.5.4 Theorem: Lebesgue Integral of Max/Min

If f, g are integrable, then both max{f, g} and min{f, g} are integrable.

Proof: Lebesgue Integrability of Maxz/Min of Functions. Firstly, we know that:

f+1f]

max{ f,0} = L

so max{ f,0} is integrable by linearity and by integrability of absolute value.

But then, notice that:
max{f,g} = max{f —g,0} + g

so from the above, max{f, g} is integrable.

But then, min{f, g} = — max{—f, —g}, so min{f, g} is also integrable.

4.5.5 Theorem: Lebesgue Integrability of Function Products

Let f, g be integrable.
If one of f, g is bounded then the product fg is integrable on I.

4.5.6 Theorem: Bounded Functions and Lebesgue Integrability

Let f, g be integrable.
If f > 0 with fIf = 0 then any function h such that0 < h < f on [ is
integrable on I.
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5 Exercises

1. Let [z] denote the integer part of a number z € R. Define

1

@)= e+

for x > 1. Show that f is Lebesgue Integrable on the interval [1,00).

We can write f using ¢; = m and X[j ;1)
S |
x) = A +1 ()

;](] +1) [7,5+1)
06
04
0.2

-ﬁ -5 -4 -3 -2 -1 0 1 2 3 4 5 6_

and this is true for all z > 1 (we don’t need to check for the absolute convergence of 2;11 ﬁ)\,’[mﬂ) (x)
because each ¢; is positive, so if the series converges, it converges absolutley).

Moreover, we know that:

oo

1
J+1‘ ) ;J(JJFU

=1
Thus, it follows that on [1,00), f(x) is Lebesgue Integrable, and:

oo 1 . _
J 10 =3 st + 10 =

1

(oo}

253G+

2. Let I be an interval, and E C I be a countable set. Show that Xy is integrable, and that
J; Xe=0

Since F is countable, we can list each of its elements:
FE= {61,62,63, .. }

We can then express Xg as an infinite series:

= Xy (@)
j=1
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where each X, y(7) = 1 whenever x = e;.

But then, from the integrability of the characteristic function:

/IXE - /Ii’f{ej}(x) - iA({ej}) —0

. The Cantor Set C is defined as the set resulting from extracting the middle third out of
[0,1], and doing so iteratively

1

1/3
1/9
ﬁ — — — —— — — —

C is uncountable. Show that X is integrable on [0,1] or R?

‘We would like to write: -

XC = ZC]‘XJ]

j=1
Let F}; denote the set resulting from applying the iterative procedure j times. For example:
Fy =1[0,1]
F, =[0,1] —(1/3,2/3) = Fo — (1/3,2/3)
F,=F —(1/9,2/9) — (7,9,8/9)

Overall, we can see that at each F}, we are removing 29=1 intervals of length 377. In other words, F;
must be made up 2/ non-overlapping, closed intervals of length 377,

Using all this, we notice that:
Xp, = X1

0
Xp, = Xo,1) — X1/3,2/3)
(think that if « is in both [0, 1] and (1/3,2/3), Xr, =0, and 1 otherwise, as expected)

If we continuously apply this, we get:

Xo(x) = Xjo,qy(z) — Z Xy, ()

where:
J2=(1/3,2/3)
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Js = (1/9,2/9)
Ju = (7/9,8/9)

and inductively Js, Jg, J7, Jg will be four open intervals of length 3%

We expect that if the integral exists, then:

/ Xo = A([0,1]) — iwj)

Jj=1

If we consider the absolute convergence of the above, this depends on the absolute convergence of the
series. In other words, we consider:

which is a convergent geometric series.

All of the above implies that X is integrable, and:

/Xczl—;§<§)j_1:1—é(3):0

and this is true for any z € R

If f Xg is 0, then F is said to be a set of measure zero. Thus, all countable sets have measure zero,
and the Cantor Set is an example of an uncountable set with measure zero.

. Let f(z) = [z] for all x € R. Compute the following integrals:

(a)
/<0,5) d

It is easy to see that Vz € (0, 5):
4
fz) = Z iXi,i41) ()
i=1
(we don’t need to consider [0, 1), since in that case &[; ;41)(x) is just 0).

We can then compute the integral by using linearity:

4 4

4
f= /Zi}({i,i+1)(x) = iXlii+ 1))=Y i=10
i=1

(0,5) i=1 i=1
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Notice that:

7 )
——=-23
3
and 19
— =24
5

So we can express f as (using [z] as the floor function):

1
f@) = =3X Xz o)+ > iy (@) +2 % X 12
i=—2

So:
11

A—;”»f:_3<;)*4_”+%—D+0+1+2(§): .

5. Show that if n € Z and f(z) = [nz]?, for all x € R then:

We want to express f in the form:
o0
flx) = Z ¢ Xy,
j=1

Lets consider how the function looks like for different values of n on the interval (0, 1):
o ifn=0, f(x) =0
e ifn=1, f(z)=[2]>=0

=
o if n =2, f(x) = [22]? so notice that we have:

0, 3
xTr) =
f@=1, o1
e if n =3, f(z) = [3x]? so notice that we have:
0, z< %
fla)=41, +<z<?2
4, % >x
This means that, if we consider n > 0, we must have:
n—1
flw)=> 7*x X 1]
j=1
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This is a finite sum, so we can compute the integral directly:

fot - Er (5] -

3. Let f(z) =
[1,00) and

[,_%.3 for all x = 1. Show that f is integrable on the interval

Solution: We have

1
fla)=>" j—zxuﬂl]{z], Yz > 1.
j=1
Since N

}t{[J,JJrl}}—Z }t{[J,JJrl}} Z

s )

1
2[5

we see that f is integrable on [I-x} and its integral is

=1
/m] 35

6 Workshop

This workshop covered an auziliary topic: Uniform Continuity

1. Consider the function f: R — R given by f(z) = 22
We know that it is continuous at « for all a € R.
So, for every a, for every ¢ > 0, there is a § > 0 such that |z —a| < ¢ implies |f(z) — f(a)| <e.
For a > 1 and € = 1, find the best possible §. Is this best possible § independent of a?
As a hint, draw the graph of the function, and include the horizontal lines y = a® + 1.

[ still have no idea what “best possible” 6 means. As a course that takes
marks off for failing to mention a theorem when justifying that a function
1s continuous, I find this hilarious.

2. Consider the same function, but now on [0,1]. Prove that Ve > 0 if we take § = 5 we have
that |z —a| < § (where z,a € [0,1]) implies |f(z) — f(a)| < e. In this case, the “best” § can be
taken to be independent of a.
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This works. Assume that |z —a| < 5. Then:

[f(z) = f(a)| = |2* — |
= |z — al|z + a
< (|| + |al)
=26

=&

Let I be an interval in R and let f : I — R be a function. f is uniformly
continuous on I ifVe > 0,30 > 0 such thatif v,y € I and |x —y| < ¢
then | f(x) — f(y)| <e

Uniform continuity only makes sense when f is already continuous.

3. Let f(x) = n (0,00). Is f uniformly continuous?

x

If we negate the statement of uniform continuity, we get that f is not
uniformly continuous if 3¢ > 0 such that Vo > 0 we can find x,y € I
such that |x —y| < 6 but |f(x) — f(y)| > €.

This is false. ¥d > 0, pick 2 € (0,1) such that x < §, and define y = §. Then:

| | ‘ x ‘x’< <90
rT—yl=|lr—=|=|= =
Y 21 12152
Now, consider:
1 1 1 2 1
R e e

Now, since x € (0, 1), then % > 1. Thus, if we set ¢ = 1, we indeed have that:

[f(@) = fly)l =€

and so, f isn’t uniformly continuous.

In the solutions, they use sequences x,, = %, Yn = ¥ 1, to show that

|f(:1:n) f(yn)| = 1 so that no matter the o, |f(x) — f(y)| won’t be smaller
than e. However, the involvement of sequences makes me uneasy, since we
haven’t yet deﬁned uniform continuity in terms of sequences.

4. Let f(x) = % on [a,00), where a > 0. Is f uniformly continuous?

In this case, it works. Let § > 0, and assume that z,y € [a, c0) such that:

|z —yl <6
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Then:

y—x

i 2 1 1
Now, since z,y € [a,00), zy > a® = - < .3 so:

@) — f)l < =

a2
Thus, if Ve > 0 we set § = a~2¢ then:
w—yl <3 = |f(z) = fly)| < a5 =¢
so f will be uniformly continuous.

. Let I be an open interval in R. Suppose that f: I — R is differentiable, and its derivative
/' is bounded on I. Prove that f is uniformly continuous on I.

Let x,y € I. Then, [y,z] defines a closed interval, over which f is continuous, and (y,z) is an open
interval over which f is differentiable. Then, ¢ € (y, x) such that, by the Mean Value Theorem:

g 1) = fW)
flo=50—

Since the derivative is bounded, M such that:

[f(x) = f(y)] < Mz -y
Then, if Ve > 0 we have § = 7 if [z — y| < § we get that:

[f(x) = fly)l <e

so f will be uniformly continuous, as required.

= @) =W =1z -yl

. Show that f(z) = sin(z) is uniformly continuous on R.

In the solutions they simply quote the result above, which is fine, but giv-
ing all the details is more fun.

Notice, sin(z) is continuous and idfferentiable on R, so the MVT applies on any interval [y, z]. Indeed,
by MVT Hc € (y,x) such that:

o= 122w - sl = 1l -
Since f'(z) = cos(z) we know that |f'(¢)| <1 so:
|sin(z) — sin(y)| < |z —y|
Then, if |z — y| < § = ¢ we get that:
|sin(z) —sin(y)| < €

so sin(z) is uniformly continuous on R.
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7. Let I be an interval in R. Prove that a continuous function f : I — R is uniformly continuous
on I if and only if whenever s,,t, € I are such that |s, —t,| — 0, then |f(s,) — f(t,)| = 0

For the first part of the proof, we give identical proofs. For the second part,
I use contradiction, whilst the solutions give direct proof.

@ Uniform Continuity Implies Sequence Definition

Assume that f is uniformly continuous. Then, Ve > 0,30 > 0 such that if z,y € I then:
w—yl <6 = |f@)—f)l<e

Now, consider sequences s,,t, € I such that:

[$p, — tn| = 0
By definition of convergence, this means that V§ > 0 we can find a N € N such that if n > N then:

[$r, — tn| <&
Hence, uniform continuity, and so we must have that:

[f(sn) = f(tn)l <& = [f(sn) = f(tn)| = O

as required.

@ Sequence Definition Implies Uniform Continuity

The solutions go by direct proof, and show that if f is not uniformly continuous, then the sequence
definition doesn’t follow.

Indeed, assume that f is continuous, but not uniformly continuous. Since f is not uniformly continuous,
Je such that V§ = % we have that:

|sn —tn] <0 = [f(sn) = ftn)| 2 €

But then,
|80 —tn| =0 = [f(sn) = f(tn)] # 0

as required.

I proceeded by contradiction. Assume we have sequences s,,,t, € I such that:
[sn —tn| >0 = [f(sn) = f(ta)| = 0

but f is not uniformly continuous.
Then, e > 0 such that V§ > 0 if |z — y| < § then |f(z) — f(y)| > e.
Now, this means that we can find € > 0 such that V§ > 0:

|sn =t <0 = [f(sn) = f(tn)| =€
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which in particular means that:

[sn —tnl =0 = |f(sn) = f(ta)| /0

since € > 0 (here we could have also used 0 = % in the proof). This is a contradiction, and so, sequence
definition implies uniform convergence.

Suppose f : [a,b] — R is continuous. Then it is uniformly continu-
ous.

That is, any continuous function defined over a closed, bounded inter-
val is automatically uniformly continuous.

8. Prove this theorem by arguing by contradiction, using the previous question, and the
Bolzano-Weierstrass theorem.

Assume that this is false: assume that f is continuous over a closed interval, but that f is not uniformly
continuous over said interval.

Since f is not uniformly continuous, this means that, by the question above, there are sequences s, t,, € I
such that:

‘Sn*tn‘ -0 = |f(sn)7f(tn)| 7L>O

Now, since sp,t, are sequences over I, in particular they are bounded, so by Bolzano-Weierstrass, it
follows that they have convergent subsequences, which converge on the interval:

Sn, — S € [a, b

tn, =t € [a,b]
Now:
|$n —tn| =0 = |Sp, —tn,| =0
In particular, this means that s,, and ¢,,, must converge to the same value, and so s = t.

Now, by continuity we have that:

Hence, this means that:
|f(sni) = f(tn )] — 0
which is a contradiction.

Hence, if f is continuous ove r abounded interval, f is uniformly continuous.

9. Find an example of an f : (0,1) - R which is continuous, but not uniformly continuous.
Where exactly did we use the fact that [a,b] was a closed and bounded interval in the proof
of the theorem?

We already saw that f(z) = L is not uniformly continuous on (0,1). We use Bolzano-Weierstrass because
it allows us to find a subsequence which converges on a point inside the interval. The issue might arise

if there is convergence at a or b.
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