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Very extensive notes on power series
Notes by student from previous year

1 Defining Power Series

• What is a power series?

– an infinite series of the form:
∞∑
n=0

an(x− c)n

where:

∗ an are the coefficients of the power series

∗ c is the centre of the power series

• What are key questions regarding power series?

– when is a power series convergent (if at all)?

– if the power series is convergent, is its convergent function differentiable? How can we compute
the derivative?

– if the power series is convergent, is its convergent function integrable? How can we compute the
integral?

– if the power series is convergent, is its convergent function continuous?

2 The Radius of Convergence

2.1 Defining the Radius of Convergence

• What is the radius of convergence?

– let
∞∑
n=0

an(x− c)n

be a power series

– its radius of convergence is:

R = sup{r ≥ 0, anr
n is bounded}

• What values can the radius of convergence take?

– R = 0: if anr
n is never bounded, no matter the value of r

– R ∈ R+: if anr
n is always bounded for some r > 0

– R = ∞: if anr
n is always bounded, no matter the value of r

Page 2

https://www.math.ucdavis.edu/~hunter/m125a/intro_analysis_ch6.pdf
https://bettermathematics.github.io/resources/math3/hana/honours-analysis.pdf


2.2 Importance of the Radius of Convergence

Intuitively, the radius of convergence is a real number which tells us for which values of x a given power
series is convergent. We formalise this in the next theorem.

Consider the power series:

∞∑
n=0

an(x− c)n

Then, let R is the radius of convergence of the power series:

• if |x− c| < R, the power series converges absolutely

• if |x− c| > R, the power series diverges

• if |x− c| = R, the power series can converge or diverge

In other words:

• if R = 0, the power series can only converge at x = c

• if R =∞, the power series converges ∀x ∈ R
[Theorem 3.1]

Proof: Power Series and Radius of Convergence. Let:

∞∑
n=0

an(x− c)n

be a power series with radius of convergence R. Here we consider only 0 < R <∞, but the cases R = 0 or
R =∞ are easy to check by inspection.

Firstly, assume that |x− c| < R. We can then find some ρ ∈ R such that:

|x− c| < ρ < R

Moreover, by the definition of radius of convergence:

ρ ∈ {r ≥ 0, anr
n is bounded}

so in particular it follows that the sequence (anρ
n) is bounded, say:

∀n ∈ N |anρn| ≤M

for some M ∈ R. But then, consider the sequence |an||x− c|n:

|an||x− c|n = |an|ρn
(
|x− c|
ρ

)n
,

(
multiplying by

ρn

ρn

)
≤M

(
|x− c|
ρ

)n
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But then, if we take summations of both sides of the inequality:

∞∑
n=0

|an||x− c|n ≤
∞∑
n=0

M

(
|x− c|
ρ

)n
The RHS is a geometric series, with common ratio |x−c|ρ < 1 (by construction), so it must converge. Thus,

by the comparison test
∑∞
n=0 |an||x − c|n converges as well, and so, our original power series converges

absolutely.

Now assume that |x − c| > R. We can do a similar treatment as above, selecting some µ such that
|x − c| > µ > R, which implies that anµ

n is unbounded from the definition of the Radius of Convergence.
There are three cases: each an In other words, |anµn| ≥ K for some K ∈ R. Finally:

|an||x− c|n = |an|µn
(
|x− c|
µ

)n
,

(
multiplying by

µn

µn

)
≥ K

(
|x− c|
ρ

)n
Since |x−c| > µ, the RHS will be ever increasing, which implies that the term an(x−c)n will be unbounded,
so its series can’t converge.

2.3 Power Series at Limits of Radius of Convergence

We have said that if |x− c| = R, we don’t know whether a power series converges or diverges. We illustrate
by using an example.

2.3.1 Interval of Convergence Doesn’t Contain Radius of Convergence

Consider the power series:
∞∑
n=0

xn

It is quite easy to see that for convergence we required |x| < 1, as this is a geometric series. This means
that, since an = 1:

1 = sup{r ≥ 0, rn is bounded}

(again, easy to see, as rn is bounded if and only if r ≤ 1). If we let x = 1,
∑∞
n=0 x

n =
∑∞
n=0 1 which

diverges. Similarly, if x = −1 then
∑∞
n=0 x

n =
∑∞
n=0(−1)n which again diverges. Thus,

∑∞
n=0 x

n converges
on the interval (−1, 1).

2.3.2 Interval of Convergence Partially Contains Radius of Convergence

Consider the power series:
∞∑
n=0

xn

n

Using an = 1
n :

R = sup{r ≥ 0,
rn

n
is bounded}

Informally, we require r ≤ 1, as otherwise rn will grow exponentially, which is “faster” than the polynomial
growth of n. Thus, again, R = 1. If we let x = 1,

∑∞
n=0

xn

n =
∑∞
n=0

1
n which diverges (Harmonic Series).

Similarly, if x = −1 then
∑∞
n=0

xn

n =
∑∞
n=0

(−1)n
n which converges (Alternating Series Test). Thus,

∑∞
n=0

xn

n
converges on the interval [−1, 1).
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2.3.3 Interval of Convergence Contains Radius of Convergence

Consider the power series:
∞∑
n=0

xn

n2

Using an = 1
n2 :

R = sup{r ≥ 0,
rn

n2
is bounded}

Informally, we require r ≤ 1, as otherwise rn will grow exponentially, which is “faster” than the polynomial
growth of n2. Thus, again, R = 1. If we let x = 1,

∑∞
n=0

xn

n2 =
∑∞
n=0

1
n2 which converges (p-Series Test).

Similarly, if x = −1 then
∑∞
n=0

xn

n =
∑∞
n=0

(−1)n
n2 which converges (Alternating Series Test). Thus,

∑∞
n=0

xn

n
converges on the interval [−1, 1].

Indeed, we had 3 power series, with the exact same radius of convergence
(can be computed by the ratio test), but their interval of convergence
varied. We could’ve also found the radii of convergence by using the Ratio
Test, but this was an alternative way, direct from the definition.

2.4 Computing the Radius of Convergence

Let:
∞∑
n=0

an(x− c)n

be a power series with radius of convergence R. Then:

• if lim
n→∞

∣∣∣ an
an+1

∣∣∣ converges:

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = R

• if lim
n→∞

|an|−
1
n converges:

lim
n→∞

|an|−
1
n = R

In general, it is a fact that:

R = lim
n→∞

inf
k≥n
|ak|−

1
k

but this is less convenient to use than the formulations above.[Example
3.2]
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Proof 1: Using Convergence Tests. The above theorem is just a statement of the ratio and root tests for
convergence of series.

By the ratio test,
∑∞
n=0 an(x− c)n converges if and only if:

lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣ < 1

If we compute the limit:

lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1(x− c)
an

∣∣∣∣
= |x− c| lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
If we let L = lim

n→∞

∣∣∣an+1

an

∣∣∣, then for convergence we require:

L|x− c| < 1 =⇒ |x− c| < 1

L

(assuming L 6= 0; if L = 0, then we’d get that the power series converges for any x ∈ R)

In other words:

R =
1

L
=⇒ lim

n→∞

∣∣∣∣ anan+1

∣∣∣∣ = R

by the properties of limits.

A similar procedure can be done with the root test, which states that an converges if:

lim
n→∞

n
√
|an| < 1

Proof 2: First Principles. Let ρ = lim
n→∞

∣∣∣ an
an+1

∣∣∣. We want to show that, if:

R = sup{r ≥ 0, anr
n is bounded}

then R = ρ.

From ρ = lim
n→∞

∣∣∣ an
an+1

∣∣∣, it follows that ∀ε > 0, there exists some N ≥ N, such that if n ≥ N :∣∣∣∣∣∣∣∣ anan+1

∣∣∣∣− ρ∣∣∣∣ < ε

from which it follows that:
|an+1|(ρ− ε) < |an| < |an+1|(ρ+ ε)

If we consider |an+1|(ρ− ε) < |an|, we can multiply through by (r − ε)n, such that:

|an+1|(ρ− ε)n+1 < |an|(ρ− ε)n
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But then, it follows that the sequence |an|(ρ − ε)n is a decreasing sequence. Moreover, it must also be
bounded. From this it follows that it must be the case that:

R ≥ ρ− ε

since r = ρ− ε means that anr
n is bounded.

Similarly, if we consider |an+1|(ρ+ ε) > |an|, we can multiply through by (r − ε)n, such that:

|an+1|(ρ+ ε)n+1 > |an|(ρ+ ε)n

But then, it follows that the sequence |an|(ρ + ε)n is an increasing sequence. In particular, it must be
bounded from below, such that

|an|(ρ+ ε)n ≥M

for all n ∈ N. This does not really help us: it is an increasing sequence, but it could still be bounded from
above. Thus, consider:

|an|(ρ+ 2ε)n

In particular, notice that:

|an|(ρ+ 2ε)n = |an|(ρ+ ε)n
(
ρ+ 2ε

ρ+ ε

)n
≥M

(
ρ+ 2ε

ρ+ ε

)n
But then, ρ+2ε

ρ+ε > 1, so M
(
ρ+2ε
ρ+ε

)n
is an unbounded term, and thus, the sequence |an|(ρ + 2ε)n must also

be unbounded. In particular, it thus means that:

ρ+ 2ε 6∈ {r ≥ 0, anr
n is bounded}

and in particular, we must have R ≤ ρ+ 2ε.

But then it follows that:
ρ+ ε ≤ R ≤ ρ+ 2ε

But as ε is arbitrarily small, it must be the case that:

R = ρ = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
as required.

This proof comes from the videos. For the proof from the notes:
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3 Continuity, Differentiability and Integrability of Power Series

3.1 Theorem: Continuity of Power Series

Let R > 0, and 0 < r < R. Consider the power series:

∞∑
n=0

an(x− c)n

This series converges absolutely and uniformly for x ∈ [c − r, c + r]
to a function f(x).
Moreover, f is a continuous function for x ∈ (c − R, c + R). [Theorem
3.2]

Proof: Continuity of Power Series. We already showed in (2.2) that the power series will be absolutely
convergent if |x− c| < R, so in particular it is absolutely convergent if |x− c| ≤ r.

For uniform convergence we employ the Weirstress M-Test. Again from (2.2), recall that we showed that
if r < ρ < R, then:

|an||x− c|n ≤M
(
|x− c|
ρ

)n
From which it follows that:

|an||x− c|n ≤M
(
r

ρ

)n
If we define Mn = M

(
r
ρ

)n
, we notice that r < ρ =⇒ r

ρ < 1, and so it follows that
∑
Mn converges, as it

is a geometric series. By the Weierstrass M-Test, our power series must converge uniformly on [c− r, c+ r].

Since the power series converges uniformly, and each an(x− c)n is continuous on R, it then follows that
f(x) must also be continuous on (c−R, c+R) (since we picked arbitrary r).

3.2 Lemma: Conservation of Radius of Convergence Under Elementwise Dif-
ferentiation

The power series:
∞∑
n=1

an(x− c)n

and
∞∑
n=1

nan(x− c)n−1

have the same radius of convergence. [Lemma 3.1]
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Proof: Radius of Convergence - Elementwise Differentiation. We first notice that since (x−c) is independent
of n, we can simply consider the series:

∞∑
n=1

an(x− c)n

and
∞∑
n=1

nan(x− c)n

(we have added a factor of (x− c) to the second power series)

Let R1 and R2 be the respective radii of convergence for the series above. Now, it is easy to see that:

|anrn| ≤ |nanrn|

for any n ∈ N. But then, it follows (intuitively) from the definition of the radius of convergence that R2 ≤ R1

(the terms of the second series are “bigger”, there’s in principle a smaller chance that it’ll converge).

We proceed by contradiction, assuming that R2 < R1. If this is the case, then we can find ρ, r such that:

R2 < ρ < r < R1

We now consider the values of |nanρn|:

|nanρn| = n|an|ρn

= n|an|ρn ×
(
rn

rn

)
= |anrn| × n

(ρ
r

)n

But now we notice that:

• since r < R1, from the definition of the radius of convergence anr
n is bounded, so there exists some

M such that:
|anrn| ≤M

• since ρ
r < 1, it follows that n

(
ρ
r

)n → 0, so in particular n
(
ρ
r

)n
is eventually bounded

In other words, we have shown that nanρ
n is bounded, which contradicts the fact that R2 is the radius of

convergence of the second series, since we have found ρ > R2 such that nanρ
n is bounded. In other words,

it can’t be the case that R2 < R1, so it follows that R1 = R2 as required.
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3.3 Theorem: Differentiability of Power Series

Consider the power series:

∞∑
n=1

an(x− c)n

with radius of convergence R. If |x− c| < R, the power series converges:

f(x) =
∞∑
n=0

an(x− c)n

Then, f(x) is infinitely differentiable on x ∈ (c−R, c+R)(|x−c| < R),
and for any such x:

f ′(x) =
∞∑
n=0

nan(x− c)n−1

This power series also converges uniformly and absolutely on [c −
r, c+ r] for some 0 < r < R (so its radius of convergence is also R).
Moreover:

an =
f (n)(c)

n!

[Theorem 3.3]

Proof: Differentiability of Power Series. We recall from last weak the Theorem on Differentiability for Uni-
formly Convergent Series:

Suppose that E is an open, bounded interval. If:

• each fn is differentiable on E

•
∑∞

k=1 fk(x0) converges for some x0 ∈ E

• g =
∑∞

k=1 f
′
k converges uniformly on E

then f =
∑∞

k=1 fk converges uniformly on E, and is differentiable,
such that for any x ∈ E:

f ′(x) =

(
∞∑
k=1

fk(x)

)′
=
∞∑
k=1

f ′k(x) = g(x)

Notice that:
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• an(x− c)n is differentiable on R, so it is differentiable on (c−R, c+R)

•
∑∞
n=0 an(x− c)n converges at x = c, x ∈ (c−R, c+R)

• in the previous lemma, we showed that
∑∞
n=0 an(x − c)n−1 has the same radius of convergence as∑∞

n=0 an(x− c)n, so in particular it converges uniformly and absolutely given x ∈ (c−R, c+R)

Thus, we can apply the theorem, and it follows that:

f ′(x) =

∞∑
n=0

nan(x− c)n−1

Clearly, we can repeatedly apply this, as we will be differentiating an nth degree polynomial, so it must be
infinitely differentiable.

To prove the second part, we notice that (taking 00 = 1):

f(c) = a0

f ′(c) = a1

By repeatedly differentiating the power series, it is easy to see that indeed:

f (n)(c) = ann!

from which the result follows.

3.4 Theorem: Integrability of Power Series

Consider the power series:

∞∑
n=1

an(x− c)n

with radius of convergence R. If |x− c| < R, the power series converges:

f(x) =
∞∑
n=0

an(x− c)n

Then, f(x) is Riemann Integrable ∀a, b ∈ (c−R, c+R)(|x− c| < R), such
that: ∫ b

a

f(x)dx = F (b)− F (a)

where:

F (x) =
∞∑
n=0

an
n+ 1

(x− c)n+1

This power series also converges uniformly and absolutely on [c −
r, c+ r] for some 0 < r < R (so its radius of convergence is also R).
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4 Analytic Functions

4.1 Defining Analytic Functions

• What is an analytic function?

– consider a function f for x ∈ (c− r, c+ r)

– f is analytic if there exists a power series which converges to f for x ∈ (c− r, c+ r)

– an analytic function thus satisfies:

∗ infinite differentiability

∗ having a power series with terms:

an =
f (n)(c)

n!

4.2 Taylor’s Theorem

Let f be a function which is k times differentiable, then:

f(x) =
k∑

n=0

f (n)(c)(x− c)n

n!
+Rn+1(f, x, c)

where Rn+1 is Taylor’s Remainder:

Rn+1(f, x, c) =
f (n+1)(ξ)(x− ξ)n+1

(n+ 1)!

where ξ is between c and x.

• Can we use Taylor’s Remainder to determine if a function is analytic?

– f will be analytic on |x− c| < r is:
lim
n→∞

Rn+1 = 0

• Are all functions analytic?
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5 Exercises

1. Suppose that:
∞∑
n=0

anx
n

has radius of convergence R.

(a) Determine the radius of convergence of:

∞∑
n=0

anx
2n

Since we know nothing about the value of each an, we proceed from the definition.

Since R is the radius of convergence fo the first series, we know that:

R = sup{r ≥ 0, anr
n is bounded}

Now, lets define a new variable y = x2, and consider the power series:

∞∑
n=0

any
n

Clearly, by the definition of radius of convergence, such a series also has radius of convergence R.
But then, it must be the case that if |y| < R then

∑∞
n=0 any

n must be convergent. But:

|y| = |x2| < R =⇒ |x| <
√
R

In other words,
∑∞
n=0 any

n =
∑∞
n=0 anx

2n must have radius of convergence
√
R.

(b) Determine the radius of convergence of:

∞∑
n=0

a2nx
n
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This could be done by simply applying the Ratio Test:

lim
n→∞

∣∣∣∣a2n+1x
n+1

a2nx
n

∣∣∣∣ = lim
n→∞

(
an+1

an

)2

|x|

We know lim
n→∞

an+1

an
must converge, since the original power series converges, say to L. Then:

lim
n→∞

(
an+1

an

)2

|x| = L2|x|

For convergence we require L2|x| < 1 so:

|x| < 1

L2

but R = 1
L , so |x| < R2 for convergence.

Alternatively, we can prove going from the definition. Let S be the radius of convergence of∑∞
n=0 a

2
nx

n. Then, from the definitions:

R = sup{r ≥ 0, anr
n is bounded}

S = sup{s ≥ 0, a2ns
n is bounded}

Now, what if we define s = m2. Then, we get that:

S = sup{m2 ≥ 0, (anm
n)2 is bounded}

But we know that anm
n is bounded whenever m < R. In other words, if m2 < R2, (anm

n)2 will
be bounded. But s = m2, so it follows that S = R2.

2. Suppose that |ak| ≤ |bk| for large k. Prove that if
∑∞
k=0 bkx

k converges on an open interval
I, then

∑∞
k=0 akx

k also converges on I. Is this true if I is a closed interval?

Let R be the radius of convergence of
∑∞
k=0 bkx

k. Then, it must be the case that:

I ⊂ (−R,R)

Recall the definition of radius of convergence:

R = sup{r ≥ 0, bkr
k is bounded}

But if bk is bounded, so is |bk| so:

R = sup{r ≥ 0, |bk|rk is bounded}

Since |ak| ≤ |bk|, and |bk|rk is bounded, it must be the case that |ak|rk is also bounded. In particular:

{r ≥ 0, |bk|rk is bounded} ⊆ {r ≥ 0, |ak|rk is bounded}

which follows by the fact that |ak| ≤ |bk| so any r which bounds |bk|rk must also bound |ak|rk, but there
might be r which bound |ak|rk and not |bk|rk. If we then take the supremum of the sets, we get that:

R ≤ sup{r ≥ 0, |ak|rk is bounded}
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Hence, the radius of convergence of
∑∞
k=0 akx

k is at least as large as R. In other words,
∑∞
k=0 akx

k,
must also converge on I, since I ⊂ (−R,R).

However, if the interval is closed, this might not be the case. In particular, we want to find bk such that
bk converges at an endpoint, but ak doesn’t. For example,

∑∞
k=0 bkx

k might converge on (−R,R], but∑∞
k=0 akx

k won’t. The key is to exploit the absolute values in the assumption that |ak| ≤ |bk|. It allows
us to define bk as an alternating sequence, which when summated is more likely to converge than its
non-alternating counterpart. For example:

bk =
(−1)k

k

ak =
1

k

These sequences do satisfy |ak| ≤ |bk|. If we consider their power series:

∞∑
k=0

(−1)k

k
xk

∞∑
k=0

1

k
xk

The first power series has R = 1, with interval of covergence (−1, 1], since if x = 1, we get the alternating
Harmonic Series, which converges. However, the second series does not converge at x = 1, since it is
just the Harmonic Series.

3. The notes have a set of very interesting exercises in 3.3, which formalise properties of ex,
defined as a power series

6 Workshop

1. What is the radius of convergence of the power series:

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

What is the interval of convergence I?

If we apply the ratio test:∣∣∣∣∣∣
(−1)k+1x2(k+1)+1

(2(k+1)+1)!

(−1)kx2k+1

(2k+1)!

∣∣∣∣∣∣ =

∣∣∣∣ (−1)k+1x2k+3(2k + 1)!

(−1)kx2k+1(2k + 3)!

∣∣∣∣ =

∣∣∣∣ (−1)x2

(2k + 2)(2k + 3)

∣∣∣∣ =
x2

(2k + 2)(2k + 3)

Hence:

lim
k→∞

x2

(2k + 2)(2k + 3)
= 0

and this is independent of x. Hence, R =∞ is the radius of convergence, and the interval of convergence
is R
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2. Define:

S(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, x ∈ I

Prove that S is differentiable on I and that for x ∈ I:

S′(x) =

∞∑
k=0

(−1)kx2k

(2k)!

S(x) is a power series which converges ∀x ∈ R, therefore it is infinitely differentiable on R, with the
resulting series being uniformly (and absolutely) convergent (Theorem 3.3). In particular, this means
that the derivative of S(x) can be obtained by term-by-term differentiation, and said derivative will also
be a convergent power series ∀x ∈ R.

We thus compute:

S′(x) =

∞∑
k=0

d

dx

(
(−1)kx2k+1

(2k + 1)!

)

=

∞∑
k=0

(−1)k(2k + 1)x2k

(2k + 1)!

=

∞∑
k=0

(−1)kx2k

(2k)!

3. Define C(x) := S′(x). Show that C ′(x) = −S(x). Prove that C(x)2 + S(x)2 = 1 for all x, and
deduce that for all x we have |S(x)| ≤ 1 and |C(x)| ≤ 1.

Again from Theorem 3.3, C(x) is infinitely differentiable on I = (−∞,∞), so can differentiate term-wise:

C ′(x) =

∞∑
k=0

(
(−1)kx2k

(2k)!

)′
=

∞∑
k=0

(−1)k(2k)x2k−1

(2k)!

Notice that for k = 0, (−1)k(2k)x2k

(2k)! = 0, so we can ignore the k = 0 index:

C ′(x) =

∞∑
k=0

(−1)k(2k)x2k−1

(2k)!

=

∞∑
k=1

(−1)k(2k)x2k−1

(2k)!

=

∞∑
k=1

(−1)kx2k−1

(2k − 1)!

If we set k = m+ 1, then:

C ′(x) =

∞∑
m=0

(−1)m+1x2m+1

(2m+ 1)!
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m is just a variable, so for coherence, set it back to k (this doesn’t change the sum):

C ′(x) =

∞∑
k=0

(−1)k+1x2k+1

(2k + 1)!

We can extract a factor of −1, which results in:

C ′(x) = −
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= −S(x)

as required.

We now show that C(x)2 + S(x)2 = 1 for all x.

Since C and S are infinitely differentiable on I, the function:

f(x) = C(x)2 + S(x)2

is also differentiable on I. If we differentiate using the chain rule:

f ′(x) =
d

dx

(
C(x)2 + S(x)2

)
= 2C(x)C ′(x) + 2S(x)S′(x)

= 2C(x)(−S(x)) + 2S(x)C(x)

= 0

where we have used the fact that C ′(x) = −S(x) and C(x) := S′(x).

Moreover, ∀x ∈ R, f ′(x) = 0. Consider any interval [a, b] (over which f is clearly continuous and
differentiable). By the mean value theorem ∃c ∈ (a, b):

f ′(c) = 0 =
f(b)− f(a)

b− a
=⇒ f(b) = f(a)

Hence, over any interval, f(x) is a constant function. Now, notice that C(0) = 1 and S(0) = 0. Hence:

f(0) = C(0)2 + S(0)2 = 1 + 0 = 1

Thus, it follows that C(x)2 + S(x)2 is constant ∀x ∈ R, and at x = 0 it is 1, so it follows that ∀x ∈ R,
C(x)2 + S(x)2 = 1 as required.

Lastly, we show that ∀x ∈ R, |S(x)| ≤ 1 and |C(x)| ≤ 1.

Since C(x)2 and S(x)2 are both non-negative for any x ∈ R, and we have that C(x)2 + S(x)2 = 1, it
must be the case that:

0 ≤ C(x)2 ≤ 1

0 ≤ S(x)2 ≤ 1

Further notice that the square of any number is equal to the square of the absolute value of said number,
so indeed:

0 ≤ |C(x)|2 ≤ 1

0 ≤ |S(x)|2 ≤ 1

Lastly, since we are dealing with non-zero quantities, taking square roots preserves the inequality so:

0 ≤ |C(x)| ≤ 1

0 ≤ |S(x)| ≤ 1

as required.
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4. Prove that for all real x, y we have:

S(x+ y) = S(x)C(y) + C(x)S(y)

and
C(x+ y) = C(x)C(y)− S(x)S(y)

Consider the function:

f(x) = (S(x+ y)− (S(x)C(y) + C(x)S(y)))2 + (C(x+ y)− (C(x)C(y)− S(x)S(y)))2

Since S,C are continuous and differentiable on R, so is f .

If we expand out f :

f(x) = (S(x+ y)− (S(x)C(y) + C(x)S(y)))2 + (C(x+ y)− (C(x)C(y)− S(x)S(y)))2

= (S(x+ y)− S(x)C(y)− C(x)S(y))2 + (C(x+ y)− C(x)C(y) + S(x)S(y))2

= S(x+ y)2 − 2S(x+ y)S(x)C(y)− 2S(x+ y)C(x)S(y) + (S(x)C(y))2

+ 2S(x)C(y)C(x)S(y) + (C(x)S(y))2

+ C(x+ y)2 − 2C(x+ y)C(x)C(y) + 2C(x+ y)S(x)S(y) + (C(x)C(y))2

− 2C(x)C(y)S(x)S(y) + (S(x)S(y))2

= 1− 2S(x+ y)S(x)C(y)− 2S(x+ y)C(x)S(y)

− 2C(x+ y)C(x)C(y) + 2C(x+ y)S(x)S(y)

+ S(y)2(S(x)2 + C(x)2) + C(y)2(C(x)2 + S(x)2)

= 2− 2S(x+ y)S(x)C(y)− 2S(x+ y)C(x)S(y)

− 2C(x+ y)C(x)C(y) + 2C(x+ y)S(x)S(y)

If we take the derivative with respect to x, thinking of y as a constant, and recalling that S′ = C and
C ′ = −S:

f ′(x) = −2C(y)(C(x+ y)S(x) + C(x)S(x+ y))

− 2S(y)(C(x+ y)C(x)− S(x)S(x+ y))

− 2C(y)(−S(x+ y)C(x)− S(x)C(x+ y))

+ 2S(y)(S(x+ y)S(x) + C(x)C(x+ y))

= 0

By reasoning similar to above, using the Mean Value Theorem it follows that f(x) is a constant function
on R. In particular, consider:

f(0) = (S(y)−(S(0)C(y)+C(0)S(y)))2+(C(y)−(C(0)C(y)−S(0)S(y)))2 = (S(y)−S(y))2+(C(y)−C(y))2 = 0

Since f is the sum of 2 non-negative functions, it follows that:

(S(y)− (S(0)C(y) + C(0)S(y)))2 = 0 =⇒ S(x+ y) = S(x)C(y) + C(x)S(y)

(C(y)− (C(0)C(y)− S(0)S(y)))2 = 0 =⇒ C(x+ y) = C(x)C(y)− S(x)S(y)

as required.
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5. (a) Prove that S(x) > 0 for 0 < x ≤
√

6

We know that:

S(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . .

We can group terms into pairs of positive and negative terms:

S(x) =

(
x− x3

3!

)
+

(
x5

5!
− x7

7!

)
+ . . .

Now, consider one such general pair of terms (using k even):

x2k+1

(2k + 1)!
− x2k+3

(2k + 3)!

We can simplify:

x2k+1

(2k + 1)!
− x2k+3

(2k + 3)!

= x2k+1

(
1

(2k + 1)!
− x2

(2k + 3)!

)
= x2k+1

(
(2k + 2)(2k + 3)− x2

(2k + 3)!

)

Thus, we can rewrite S(x) as:

S(x) =

∞∑
k=0

x2k+1

(
(2k + 2)(2k + 3)− x2

(2k + 3)!

)
If each term in this series is non-negative when 0 < x ≤

√
6, and we have at least one positive term,

then it is easy to see that for 0 < x ≤
√

6, S(x) > 0.

Now, let 0 < x ≤
√

6. Consider the term:

x2k+1

(
(2k + 2)(2k + 3)− x2

(2k + 3)!

)
For any k ≥ 0 and since x > 0, x2k+1 and (2k + 3)! will always be positive. Thus, the sign of the
term above is solely dependent on the value of:

(2k + 2)(2k + 3)− x2

Notice that, if k ≥ 0, (2k + 2)(2k + 3) ≥ 6. Moreover, since 0 < x ≤
√

6, 0 < x2 ≤ 6. Using this,
we get the following inequality:

(2k + 2)(2k + 3)− 6 ≤ (2k + 2)(2k + 3)− x2 < (2k + 2)(2k + 3)− 0

But since (2k + 2)(2k + 3) ≥ 6, it follows that (2k + 2)(2k + 3)− 6 ≥ 0, so:

0 ≤ (2k + 2)(2k + 3)− x2

for k ≥ 0, 0 < x ≤
√

6. In fact, (2k + 2)(2k + 3) − 6 = 0 if and only if k = 0; for k > 0,
(2k + 2)(2k + 3)− 6 > 0. Overall, it follows that if k = 0:

(2k + 2)(2k + 3)− x2 ≥ 0 =⇒ x2k+1

(
(2k + 2)(2k + 3)− x2

(2k + 3)!

)
≥ 0
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and if k > 0:

(2k + 2)(2k + 3)− x2 > 0 =⇒ x2k+1

(
(2k + 2)(2k + 3)− x2

(2k + 3)!

)
> 0

for any 0 < x ≤
√

6. But then it follows that if 0 < x ≤
√

6, each term being added in our modified
S(x) will be strictly positive, except possibly for the first term (if x =

√
6, the term at k = 0 will

be 0, but this will be the only such term to be 0), so it follows that:

S(x) > 0

as required.

(b) Prove that C(x) > 0 for 0 ≤ x ≤
√

2

We know that:

C(x) =

∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

We can group terms into pairs of positive and negative terms:

C(x) =

(
1− x2

2!

)
+

(
x4

4!
− x6

6!

)
+ . . .

Now, consider one such general pair of terms (using k even):

x2k

(2k)!
− x2k+2

(2k + 2)!

We can simplify:

x2k

(2k)!
− x2k+2

(2k + 2)!

= x2k
(

1

(2k)!
− x2

(2k + 2)!

)
= x2k

(
(2k + 1)(2k + 2)− x2

(2k + 2)!

)

Thus, we can rewrite C(x) as:

C(x) =

∞∑
k=0

x2k
(

(2k + 1)(2k + 2)− x2

(2k + 2)!

)
If each term in this series is non-negative when 0 ≤ x ≤

√
2, and we have at least one positive term,

then it is easy to see that for 0 ≤ x ≤
√

2, C(x) > 0.

Now, let 0 ≤ x ≤
√

2. Consider the term:

x2k
(

(2k + 1)(2k + 2)− x2

(2k + 2)!

)
For any k ≥ 0 and since x ≥ 0, x2k and (2k+ 2)! will always be non-negative. Thus, the sign of the
term above is solely dependent on the value of:

(2k + 1)(2k + 2)− x2
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Notice that, if k ≥ 0, (2k + 1)(2k + 2) ≥ 2. Moreover, since 0 ≤ x ≤
√

2, 0 ≤ x2 ≤ 2. Using this,
we get the following inequality:

(2k + 1)(2k + 2)− 2 ≤ (2k + 1)(2k + 2)− x2 ≤ (2k + 1)(2k + 2)− 0

But since (2k + 1)(2k + 2) ≥ 2, it follows that (2k + 1)(2k + 2)− 2 ≥ 0, so:

0 ≤ (2k + 1)(2k + 2)− x2

for k ≥ 0, 0 ≤ x ≤
√

2. In fact, (2k + 1)(2k + 2) − 2 = 0 if and only if k = 0; for k > 0,
(2k + 1)(2k + 2)− 2 > 0. Overall, it follows that if k = 0:

(2k + 1)(2k + 2)− x2 ≥ 0 =⇒ x2k
(

(2k + 1)(2k + 2)− x2

(2k + 2)!

)
≥ 0

and if k > 0:

(2k + 1)(2k + 2)− x2 > 0 =⇒ x2k
(

(2k + 1)(2k + 2)− x2

(2k + 2)!

)
> 0

for any 0 ≤ x ≤
√

2. But then it follows that if 0 ≤ x ≤
√

2, each term being added in our modified
C(x) will be strictly positive, except possibly for the first term (if x =

√
2, the term at k = 0 will

be 0, but this will be the only such term to be 0), so it follows that:

C(x) > 0

as required.

(c) Prove that for 0 ≤ x ≤
√

56, if:

1− x2

2!
+
x4

4!
< 0

then C(x) < 0, and deduce that C( 8
5 ) < 0.

We know that:

C(x) =

∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

Lets consider the terms in the summation for which k ≥ 3:

−x
6

6!
+
x8

8!
− x10

10!
+
x12

12!
− . . .

As we have done before, we can group these in negative-positive term pairs, like so:(
x8

8!
− x6

6!

)
+

(
x12

12!
− x10

10!

)
+ . . .

If we consider a general term of this summation, for k ≥ 3 (and k odd):

x2k+2

(2k + 2)!
− x2k

(2k)!

We can simplify:

x2k+2

(2k + 2)!
− x2k

(2k)!

= x2k
(

x2

(2k + 2)!
− 1

(2k)!

)
= x2k

(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
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Thus, we can rewrite C(x) as:

C(x) = 1− x2

2!
+
x4

4!
+

∞∑
k=3

x2k
(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
If each term in the series is non-positive when 0 ≤ x ≤

√
56, and we have at least one negative term,

then it is easy to see that for 0 ≤ x ≤
√

56, C(x) < 0, since we are assuming that 1− x2

2! + x4

4! < 0.

Now, let 0 ≤ x ≤
√

56. Consider the term:

x2k
(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
For any k ≥ 3 and since x ≥ 0, x2k and (2k+ 2)! will always be non-negative. Thus, the sign of the
term above is solely dependent on the value of:

x2 − (2k + 1)(2k + 2)

Notice that, if k ≥ 3, (2k+ 1)(2k+ 2) ≥ 56. Moreover, since 0 ≤ x ≤
√

56, 0 ≤ x2 ≤ 56. Using this,
we get the following inequality:

0− (2k + 1)(2k + 2) ≤ x2 − (2k + 1)(2k + 2) ≤ 56− (2k + 1)(2k + 2)

But since (2k + 1)(2k + 2) ≥ 56, it follows that 56− (2k + 1)(2k + 2) ≤ 0, so:

x2 − (2k + 1)(2k + 2) ≤ 0

for k ≥ 3, 0 < x ≤
√

56. In fact, 56 − (2k + 1)(2k + 2) = 0 if and only if k = 3; for k > 3,
56− (2k + 1)(2k + 2) < 0. Overall, it follows that if k = 3:

x2 − (2k + 1)(2k + 2) ≤ 0 =⇒ x2k
(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
≤ 0

and if k > 3:

x2 − (2k + 1)(2k + 2) < 0 =⇒ x2k
(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
< 0

for any 0 ≤ x ≤
√

56. But then it follows that if 0 ≤ x ≤
√

56, each term being added in our
modified C(x) will be stricly negative, except possibly for the first term (if x =

√
56, the term at

k = 3 will be 0, but this will be the only such term to be 0), so it follows that:

∞∑
k=3

x2k
(
x2 − (2k + 1)(2k + 2)

(2k + 2)!

)
< 0

Moreover, since:

1− x2

2!
+
x4

4!
< 0

So it follows that:
C(x) < 0

as required.

Finally, notice that:

0 <
8

5
<

10

5
= 2
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Moreover,
72 < 56 =⇒ 7 <

√
56

Thus, it follows that:

0 <
8

5
< 2 < 7 <

√
56

so in particular:

0 ≤ 8

5
≤
√

56

Now, we compute:

1− x2

2!
+
x4

4!

using x = 8
5 :

1− 82

52 × 2
+

84

54 × 24
= − 13

1875

Hence, from the work above, it follows that:

C

(
8

5

)
< 0

as required.

6. Deduce that there is a unique number ω
2 satisfying

√
2 < ω

2 <
8
5 such that:

C
(ω

2

)
= 0

Further show that:
S
(ω

2

)
= 1

Notice above we have shown that C(
√

2) < 0 and C
(
8
5

)
> 0. C is continuous on R, so in particular it is

continuous on the closed, bounded interval
[√

2, 85
]
. Thus, we can apply Bolzano’s Theorem (intermediate

value theorem in the notes) to see that ∃α ∈
(√

2, 85
)

such that:

C(α) = 0

Moreover, we have that:
C(α)2 + S(α)2 = 1 =⇒ S(α)2 = 1

Notice, since
√

2 < α < 8
5 we have that:

α <
√

6

So that S(α) > 0. Hence, we must have that S(α) = 1.

Here α = ω
2 .

7. Prove that for all x:
S
(
x+

ω

2

)
= C(x)

S (x+ ω) = −S(x)

S

(
x+

3ω

2

)
= −C(x)

S(x+ 2ω) = S(x)
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We just need to apply the identities which we saw above:

S(x+ y) = S(x)C(y) + C(x)S(y)

C(x+ y) = C(x)C(y)− S(x)S(y)

Indeed:
S
(
x+

ω

2

)
= S(x)C(α) + C(x)S(α) = C(x)

S (x+ ω) = S(x)C(2α) + C(x)S(2α)

= S(x)C(α+ α) + C(x)S(α+ α)

= S(x)C(α+ α) + C(x)C(α)

= S(x)(C(α)C(α)− S(α)S(α))

= −S(x)

S

(
x+

3ω

2

)
= S(x)C(3α) + C(x)S(3α)

= S(x)C(α+ 2α) + C(x)S(α+ 2α)

= S(x)(C(α)C(2α)− S(α)S(2α))− C(x)S(α)

= S(x)(−C(α))− C(x)S(α)

= −C(x)

S (x+ 2ω) = S(x)C(4α) + C(x)S(4α)

= S(x)C(2α+ 2α)− C(x)S(2α)

= S(x)(C(2α)C(2α)− S(2α)S(2α))− C(x)C(α)

= S(x)(C(2α))2

= S(x)(C(α)C(α)− S(α)S(α))2

= S(x)(−1)2

= S(x)
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