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This shows the power of uniform convergence. If fn → f pointwise, it is not always the case that the
sequence

∫
fndx converges to

∫
f . The same thing is true when taking derivatives. However, if fn → f

uniformly, this is no longer the case.

1 Uniform Convergence and Calculus

1.1 Theorem: The Mean Value Theorem

If f is continuous on [α, β] and differentiable on (α, β), then there
exists some γ ∈ (α, β), such that:

f(β)− f(α)

β − α
= f ′(γ)

1.2 Theorem: Integrability and Uniform Convergence

Suppose that fn → f uniformly on a closed interval [a, b]. If each fn is
integrable on [a, b], then so is f , and:

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx =

∫ b

a

f(x)dx

In fact, ∀x ∈ [a, b]:

lim
n→∞

∫ x

a

fn(t)dt =

∫ x

a

(
lim
n→∞

fn(t)
)
dt

[Theorem 2.2]

This is proved later on, when we properly define integration.
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1.3 Theorem: Differentiability and Uniform Convergence

Let (a, b) be an open, bounded interval. If fn : (a, b)→ R, and:

1. fn converges at some x0 ∈ (a, b) (so lim
n→∞

fn(x0) exists)

2. each fn is differentiable on (a, b) (so f ′n exists ∀x ∈ (a, b))

3. f ′n converges uniformly on (a, b)

then, it follows that fn also converges uniformly on (a, b), and more-
over, for each x ∈ (a, b):

lim
n→∞

f ′n(x) =
d

dx

(
lim
n→∞

fn(x)
)

[Theorem 2.3]

Notice that we have defined the differentiability condition on an open in-
terval (a, b). This is because this allows us to use 2 sided limits for deriva-
tives. If we had a closed interval, we would need to use one-sided limits. If
the intervals are unbounded, it is possible that fn might not converge uni-
formly.

Proof: Differentiability and Uniform Convergence. This proof has 2 parts. Firstly, we use the assumptions
to prove that fn converges uniformly on (a, b). Then, we prove that:

lim
n→∞

f ′n(x) =
d

dx

(
lim
n→∞

fn(x)
)

for any x ∈ (a, b)

We claim that fn converges uniformly on (a, b). For that, define a sequence of functions gn, such that:

gn(x) =

{
fn(x)−fn(c)

x−c , x 6= c

f ′n(c), x = c

where c ∈ (a, b). gn is always defined on (a, b), since f ′n is defined on all of (a, b).

Using the above definition, notice that, for any x ∈ (a, b):

fn(x) = fn(c) + (x− c)gn(x)

since if x = c, we get:
fn(c) = fn(c)
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and if x 6= c:

fn(x) = fn(c) + (x− c)gn(x) = fn(c) + (x− c)fn(x)− fn(c)

x− c
= fn(x)

Thus, it follows that if gn(x) is uniformly convergent on (a, b), so will fn(x). This is because we know
that fn converges at x0, so if we choose c = x0, we know then that:

fn(x) = fn(x0) + (x− x0)gn(x)

so the uniform convergence of gn implies the uniform convergence of fn.

To show that gn is uniformly convergent, we use the Mean Value Theorem. Now, let:

• x ∈ (a, b)

• n,m ∈ N

• some γ on the open interval defined x and c (so γ 6= x 6= c)

We can define a function Φ(x) = fn(x)− fm(x), defined on the open interval defined by x and c, such that,
by the Mean Value Theorem:

Φ(x)− Φ(c)

x− c
= Φ′(γ)

But then we get that:

Φ(x)− Φ(c)

x− c
= Φ′(γ)

=⇒ fn(x)− fm(x)− (fn(c)− fm(c))

x− c
= f ′n(γ)− f ′m(γ)

=⇒ (fn(x)− fn(c))− (fm(x)− fm(c))

x− c
= f ′n(γ)− f ′m(γ)

=⇒ gn(x)− gm(x) = f ′n(γ)− f ′m(γ)

Now, we use the assumption that f ′n converges uniformly on (a, b). In particular, this means that ∀ε > 0,
∃N ∈ N such that if n,m ≥ N :

|f ′n(x)− f ′m(x)| < ε

from which it follows that:
|gn(x)− gm(x)| < ε

too, given x ∈ (a, b), x 6= c. If x = c, from the definition of gn, we know that gn(c) = f ′n(c), so the above still
applies.

Thus, we have shown that gn is a Cauchy Sequence, and so it converges. Since the N is independent of
x, it follows that gn converges uniformly on (a, b). So from the above, fn also converges uniformly on (a, b).

We now show that:

lim
n→∞

f ′n(x) =
d

dx

(
lim
n→∞

fn(x)
)

Pick some c ∈ (a, b). Let:
lim
n→∞

fn(x) = f(x)

lim
n→∞

gn(x) = g(x)
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We claim that ∀c ∈ (a, b):
lim
n→∞

f ′n(c) = f ′(c)

If x = c, we know that gn(c) = f ′n(c). Thus:

lim
n→∞

f ′n(c) = lim
n→∞

gn(c) = g(c)

If x 6= c, we know that:

gn(x) =
fn(x)− fn(c)

x− c
so:

g(x) = lim
n→∞

gn(x) = lim
n→∞

fn(x)− fn(c)

x− c
=
f(x)− f(c)

x− c
But then recall that by the definition of the derivative:

f ′(c) = lim
x→c

f(x)− f(c)

x− c
so:

f ′(c) = lim
x→c

g(x) = g(c)

since each gn is continuous at c, and so g is also continuous there.

But then we have shown that:
lim
n→∞

f ′n(c) = g(c)

f ′(c) = g(c)

so it follows that:
lim
n→∞

f ′n(c) = f ′(c)

as required.

2 Uniform Convergence of Series of Functions

2.1 Defining Convergence of Series of Functions

Consider a sequence of functions fn defined on some set E. Consider the sequence of partial sums:

sn(x) =

n∑
k=1

fk(x)

for any x ∈ E,n ∈ N

• When does a series of functions converge pointwise?

– the series
∑∞
k=1 fk(x) converges pointwise on E if and only if sn(x) converges pointwise on

E as n→∞

• When does a series of functions converge uniformly?

– the series
∑∞
k=1 fk(x) converges uniformly on E if and only if sn(x) converges uniformly on

E as n→∞

• When does a series of functions converge absolutely (pointwise)?

– the series
∑∞
k=1 fk(x) converges absoluteley (pointwise) on E if and only if

∑∞
k=1 |fk(x)|

converges for each x ∈ E
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2.2 Properties of Uniformly Convergent Series of Functions

Convergence of series depends on convergence of sequences; thus, we can use the results about convergence
of function sequences to derive the following results about function series.

2.2.1 Theorem: Continuity of Series

Let E be a non-empty subset of R. and let fn be a sequence of real func-
tions defined on E.
Then, if each fn is continuous at some x0 ∈ E, and if

f =
∞∑
k=1

fk

converges uniformly on E, then f is also continuous at x0 ∈ E.
[Theorem 2.4]

2.2.2 Theorem: Term-by-Term Integration of Function Series

Let E be a non-empty subset of R. and let fn be a sequence of real func-
tions defined on E.
Then, suppose that E is a closed interval [a, b], and each fn is integrable
on [a, b]. If

f =
∞∑
k=1

fk

converges uniformly on E, then f is integrable on E and:∫ b

a

∞∑
k=1

fk(x)dx =
∞∑
k=1

∫ b

a

fk(x)dx

[Theorem 2.4]
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2.2.3 Theorem: Term-by-Term Differentiation of Function Series

Let E be a non-empty subset of R. and let fn be a sequence of real func-
tions defined on E.
Then, suppose that E is an open, bounded interval. If:

• each fn is differentiable on E

•
∑∞

k=1 fk(x0) converges for some x0 ∈ E

• g =
∑∞

k=1 f
′
k converges uniformly on E

then f =
∑∞

k=1 fk converges uniformly on E, and is differentiable,
such that for any x ∈ E:

f ′(x) =

(
∞∑
k=1

fk(x)

)′
=
∞∑
k=1

f ′k(x) = g(x)

2.3 Theorem: The Weierstrass M-Test

Sometimes it is inconvenient to have to derive convergence ofa series from the sequence of partial sums. We
can use the Weierstrass M-Test (the best convergence test alongside the ratio test).

Let E be a non-empty subset of R. Let

fk : E → R

and suppose that ∃Mk ≥ 0 such that:

∞∑
k=0

Mk <∞

If |fk(x)| ≤Mk for all k ∈ N, and x ∈ E, then:

f =
∞∑
k=0

fk

converges absolutely and uniformly on E.
This is a sufficient but not necessary condition for convergence: failing
the M-test doesn’t imply divergence. [Theorem 2.5]

Proof: Weierstrass M-Test. Since
∑∞
k=0Mk converges, it must follow the Cauchy Criterion. In other words

∀ε > 0, ∃N ∈ N : ∀m ≥ n ≥ N , such that: ∣∣∣∣∣
m∑
k=n

Mk

∣∣∣∣∣ < ε
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But then: ∣∣∣∣∣
m∑
k=n

fk(x)

∣∣∣∣∣ ≤
m∑
k=n

|fk(x)| ≤
m∑
k=n

Mk < ε

From which it follows that:

• the partial sums of
∑∞
k=0 fk(x) are uniformly Cauchy

• the partial sums of
∑m
k=n |fk(x)| are Cauchy

Thus, the series must converge absolutely and uniformly on E, as required.

3 Exercises

3.1 Uniform Convergence

1. Prove that the following limits exist, and evaluate them:

(a) lim
n→∞

∫ 3

1
nx99+5
x3+nx66 dx

We claim that nx99+5
x3+nx66 → x33 uniformly on [1, 3]. To see why, ∀ε > 0, let N = 5

ε . Then, if n ≥ N ,
and noticing that 1 ≤ x ≤ 3:∣∣∣∣ nx99 + 5

x3 + nx66
− x33

∣∣∣∣ < ∣∣∣∣nx99 + 5

nx66
− x33

∣∣∣∣ (since x3 + nx66 > nx66,∀x > 0)

=

∣∣∣∣nx99 + 5− nx99

nx66

∣∣∣∣
=

∣∣∣∣ 5

nx66

∣∣∣∣
=

5

nx66

≤ 5

n
(since 1 ≤ x so 1 ≤ x66)

<
5

N

=
5
5
ε

= ε

Thus, it follows that nx99+5
x3+nx66 → x3 uniformly on [1, 3]. But then:

lim
n→∞

∫ 3

1

nx99 + 5

x3 + nx66
dx =

∫ 3

1

x33dx =
1

34

(
334 − 1

)
(b) lim

n→∞

∫ 2

0
e
x2

n dx

We claim that e
x2

n → e0 = 1 uniformly on [0, 2]. To see why, ∀ε > 0, let N = 4
ln(ε+1) . Then, if
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n ≥ N , and noticing that 0 ≤ x ≤ 2:∣∣∣e x2n − 1
∣∣∣ ≤ |e 4

n − 1| (since 0 ≤ x ≤ 2:)

≤ |e 4
N − 1|

= |e
4
4

ln(ε+1) − 1|
= |eln(ε+1) − 1|
= |ε+ 1− 1|
= ε

Thus, it follows that e
x2

n → e0 = 1 uniformly on [0, 2]. But then:

lim
n→∞

∫ 2

0

e
x2

n dx =

∫ 2

0

1dx = 2

(c) lim
n→∞

∫ 3

0

√
sin
(
x
n

)
+ x+ 1dx

We claim that
√

sin
(
x
n

)
+ x+ 1 →

√
x+ 1 uniformly on [0, 3]. To see why, ∀ε > 0, let N = 3

2ε .

Then, if n ≥ N , and noticing that 0 ≤ x ≤ 3:

∣∣∣∣√sin
(x
n

)
+ x+ 1−

√
x+ 1

∣∣∣∣ =

∣∣∣∣∣∣ sin
(
x
n

)
+ x+ 1− (x+ 1)√

sin
(
x
n

)
+ x+ 1 +

√
x+ 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣ sin
(
x
n

)√
sin
(
x
n

)
+ x+ 1 +

√
x+ 1

∣∣∣∣∣∣
<

∣∣sin ( xn)∣∣
2

(since

√
sin
(x
n

)
+ x+ 1 +

√
x+ 1 ≥

√
1 +
√

1 = 2)

≤
∣∣ x
n

∣∣
2

(since | sin(x)| ≤ |x| by the Mean Value Theorem)

=
|x|
2n

≤ 3

2n
(since x ≤ 3)

≤ 3

2N

=
3

2
(

3
2ε

)
= ε

Thus, it follows that
√

sin
(
x
n

)
+ x+ 1→

√
x+ 1 uniformly on [0, 3]. But then:

lim
n→∞

∫ 3

0

√
sin
(x
n

)
+ x+ 1dx =

∫ 3

0

√
x+ 1dx =

14

3
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2. Suppose that b > a > 0. Prove that:

lim
n→∞

∫ b

a

(
1 +

x

n

)n
e−xdx = b− 1

The exponential function ex can be defined as:

ex = lim
n→∞

(
1 +

x

n

)n
To see why, we can take the logs of both sides:

lim
n→∞

n ln
(

1 +
x

n

)
If we use L’Hopital’s Rule or the Binomial Theorem, it can be shown that the limit above converges to
x (see here).

Thus, it follows that
(
1 + x

n

)n
e−x converges uniformly on [a, b] to 1, from which the result follows.

3. Let f, g be continuous on [a, b], with |g(x)| > 0 for x ∈ [a, b]. Suppose that fn → f, gn → g
uniformly on [a, b].

(a) Prove that 1
gn

is defined for large n, and show that fn
gn
→ f

g uniformly on [a, b]

Firstly, we prove that gn is always non-zero. To do so, notice that since g is continuous, by the
Extreme Value Theorem, it must attain its minimum on [a, b]. Moreover, since |g| > 0, this minimum
must be non-zero. Call it m. f, g must attain their maxima on the interval aswell. Call the largest
of the maxima M > 0. But then, since fn, gn converge uniformly, they must be uniformly bounded,
so for any n ∈ N and for all x ∈ [a, b]:

0 < m ≤ |g| ≤M

|f | ≤M

|gn| ≤M

|fn| ≤M

From the definition of uniform convergence, we know that for some N ∈ N, if n ≥ N :

|gn(x)− g(x)| < m

2

since m
2 . But then:

g(x)− m

2
< gn(x) < g(x) +

m

2

But notice that the minimum of g(x) is m, so g(x) − m
2 > 0. In other words, ∀n ≥ N and for all

x ∈ [a, b]:
0 < gn(x)

Thus, 1
gn

must be well defined, as required.
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Now, letting n ≥ N , we consider:∣∣∣∣fngn − f

g

∣∣∣∣ =

∣∣∣∣fng − fgngng

∣∣∣∣
=

∣∣∣∣fng − fg + fg − fgn
gng

∣∣∣∣
=

∣∣∣∣g(fn − f)− f(gn − g)

gng

∣∣∣∣
≤ 1

|gng|
(|g||fn − f |+ |f ||gn − g|)

≤ 2

m2

(
M |fn − f |+M

m

2

)

If we require 2
m2

(
M |fn − f |+M m

2

)
< ε, we just need to pick N2 ∈ N such that if n ≥ N2:

|fn − f | <
m2

2M
ε− m

2

(In the solutions, they use 2
m2 (M |fn − f |+M |gn − g|) < ε which leads to finding N2 ∈ N such

that if n ≥ N2:

|fn − f | <
εm2

4M

|gn − g| <
εm2

4M

The videos have a better proof, but I am currently very tired.

(b) Show that a) is false if we have an open interval (a, b)

Consider the interval (0, 1). Let fn(x) = 1
n , gn(x) = x. It is easy to see that fn → 0 and gn → x

uniformly. However,
fn
gn

=
1

nx

which we showed converges pointwise to 0 on (0, 1).

As a reminder:

Pick x ∈ (0, 1). Clearly, 1
nx → 0: for any x, if n gets sufficiently larger than N(x, ε), fn will converge

to 0, so it is pointwise convergent.

However, it is not uniformly convergent. For that, we require that ∀ε > 0, we can find some N ∈ N
such that for any n ≥ N : ∣∣∣∣ 1

nx
− 0

∣∣∣∣ < ε

If fn were uniformly convergent, the above should apply to any ε, so pick ε = 1. Then, we should
have that if n ≥ N , for all x: ∣∣∣∣ 1

nx

∣∣∣∣ < 1

But this is clearly false, as ∀n ∈ N we can pick x = 1
n , and the above won’t be satisfied.

Thus, fn is pointwise convergent, but not uniformly convergent.

Page 11



3.2 Series Convergence

1. (a) Prove that
∑∞
k=1 sin

(
x
k2

)
converges uniformly on any bounded interval of R

We can use the M-Test. Consider: ∣∣∣sin( x
k2

)∣∣∣
Recall, for any y ∈ R:

|sin(y)| ≤ |y|

So it follows that ∀k ∈ R: ∣∣∣sin( x
k2

)∣∣∣ < |x|
k2

Moreover, since x is in a bounded interval (say [a, b]):

|x|
k2

<
max{|a|, |b|}

k2

If we let Mk = max{|a|,|b|}
k2 , and consider:

∞∑
k=1

Mk

clearly it must converge by the p-series test, with p = 2.

Thus, by the Weierstrass M-Test, sin
(
x
k2

)
converges absolutely and uniformly on any bounded

interval [a, b].

(b) Prove that
∑∞
k=1 e

−kx converges uniformly on any closed subinterval of (0,∞)

Consider some interval [a,∞). with a > 0. It is easy to see that:

0 ≤ e−kx ≤ e−ka

Letting Mk = e−ka, we can see that
∑∞
k=1Mk converges (we can use the ratio test to see that∣∣∣Mk+1

Mk

∣∣∣ = e−a < 1,∀a > 0). Thus, the series converges absolutely and uniformly on any interval

[a,∞) for a > 0.

2. Let

f(x) =

∞∑
k=1

cos(kx)

k2

Prove that ∫ π/2

0

f(x)dx =

∞∑
k=0

(−1)k

(2k + 1)3

The key is to be able to show that cos(kx)
k2 converges uniformly. Using that, we can easily integrate f(x),

by using the infinite series.

Notice that: ∣∣∣∣cos(kx)

k2

∣∣∣∣ < 1

k2

If Mk = 1
k2 ,
∑∞
k=1Mk converges by the p-series test, so by Weierstrass M-Test,

∑∞
k=1

cos(kx)
k2 converges

uniformly and absolutely on R.
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Thus, we can integrate the series term by term:∫ π/2

0

f(x)dx =

∫ π/2

0

∞∑
k=1

cos(kx)

k2

=

∞∑
k=1

∫ π/2

0

cos(kx)

k2

=

∞∑
k=1

[
sin(kx)

k3

]π
2

0

=

∞∑
k=1

sin
(
kπ
2

)
k3

Now,consider the first terms of the summand (ignoring k = 0):

k = 1 −→
sin
(
π
2

)
13

=
1

13

k = 2 −→ sin(π)

23
= 0

k = 3 −→
sin
(
3π
2

)
33

= − 1

33

k = 4 −→ sin(2π)

43
= 0

k = 5 −→
sin
(
5π
2

)
53

=
1

53

In other words:
∞∑
k=1

sin
(
kπ
2

)
k3

=

∞∑
k=0

(−1)3

(2k + 1)3

as required.

3. Show that
∞∑
k=1

1

k
sin

(
x

k + 1

)
converges uniformly on each bounded interval in R to a differentiable function which sat-
isfies:

|f(x)| ≤ |x| |f ′(x)| ≤ 1

Firstly, we show that the series converges uniformly on any bounded interval [a, b] of the reals.

Let c = max{|a|, |b|}. Consider:∣∣∣∣1k sin

(
x

k + 1

)∣∣∣∣ =
1

k

∣∣∣∣sin( x

k + 1

)∣∣∣∣ ≤ |x|
k(k + 1)

≤ c

k(k + 1)
=

c

k2 + k
<

c

k2
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Letting Mk = c
k2 ,

∑∞
k=1Mk converges by the p-series test, so by the Weierstrass M-Test, 1

k sin
(

x
k+1

)
converes uniformly and absolutely on [a, b].

We now determine whether f(x) = 1
k sin

(
x
k+1

)
is a differentiable function.

Each term is differentiable, since sin is differentiable on all the reals.

We know that on any closed interval
∑∞
k=1

1
k sin

(
x
k+1

)
converges uniformly.

Lastly, we consider the convergence of:

∞∑
k=1

(
1

k
sin

(
x

k + 1

))′
=

∞∑
k=1

cos
(

x
k+1

)
k(k + 1)

Again, by the M-Test, this converges, since:∣∣∣∣∣∣
cos
(

x
k+1

)
k(k + 1)

∣∣∣∣∣∣ ≤ 1

k(k + 1)

and
∑∞
k=1Mk =

∑∞
k=1

1
k(k+1) converges, since it is a telescoping series:

n∑
k=1

1

k(k + 1)
=

∞∑
k=1

1

k
− 1

k + 1

= 1− 1

2
+

1

2
− 1

3
+ . . .+

1

n− 1
− 1

n
+

1

n
− 1

n+ 1

= 1− 1

n+ 1

So the limit of partial sums goes to 1. In other words:

∞∑
k=1

Mk = 1

Thus, it follows that, from all the above, f is differentaible, and moreover:

f ′(x) =

∞∑
k=1

cos
(

x
k+1

)
k(k + 1)

Moreover:

|f ′(x)| ≤
∞∑
k=1

∣∣∣∣∣∣
cos
(

x
k+1

)
k(k + 1)

∣∣∣∣∣∣ ≤
∞∑
k=1

Mk = 1

so:
|f ′(x)| ≤ 1

Now we need to establish that |f(x)| ≤ |x|. We employ the Mean Value Theorem, on some interval [0, x]:

|f(x)− f(0)| = |f ′(c)||x− 0| ≤ |x|

Since f(0) = 0, it follows that |f(x)| ≤ |x| as required.
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4. Prove that the geometric series:
∞∑
k=0

xk =
1

1− x

converges uniformly on any closed subinterval of (−1, 1)

Take [a, b] to be the closed subinterval of (−1, 1). Let c = max{|a|, |b|} Then, it follows that:

|xk| = |x|k ≤ ck

since by construction 0 ≤ c < 1, if Mk = ck, then
∑∞
k=0Mk must be convergent, since we have a

geometric series with common ratio less than 1.

To show that:
∞∑
k=0

xk =
1

1− x

we’d need to consider the sequence of partial sums. For example, here.

5. Let

E(x) =

∞∑
k=0

xk

k!

(a) Show that the series defining E(x) converges uniformly on any closed interval [a, b].

Again we apply the M-Test. Let c = max{|a|, |b|}∣∣∣∣xkk!

∣∣∣∣ =
|x|k

k!
≤ ck

k!

Letting Mk = ck

k! ,
∑∞
k=0Mk converges by the Ratio Test. By the M-Test, the series converges

absolutely and uniformly.

(b) Show that ∫ b

a

E(x)dx = E(b)− E(a)

for any a, b ∈ R.

Since the series converges uniformly, we can integrate term by term:∫ b

a

E(x)dx =

∫ b

a

∞∑
k=0

xk

k!
dx

=

∞∑
k=0

∫ b

a

xk

k!
dx

=

∞∑
k=0

[
xk+1

(k + 1)!

]b
a

=

∞∑
k=0

[
bk+1

(k + 1)!
− ak+1

(k + 1)!

]

=

∞∑
k=0

bk+1

(k + 1)!
−
∞∑
k=0

ak+1

(k + 1)!
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If we define m = k + 1: ∫ b

a

E(x)dx =

∞∑
m=1

bm

(m)!
−
∞∑
m=1

am

(m)!

Moreover, notice that if m = 0, the first term of the series goes to 0, so:∫ b

a

E(x)dx =

∞∑
m=0

bm

(m)!
−
∞∑
m=0

am

(m)!
= E(b)− E(a)

as required.

(c) Show that E satisfies:
E′(x)− E(x) = 0, E(0) = 1

Again, from uniform convergence, we can differentiate elementwise provided that certain conditions
are met.

Consider some open interval (−a, a), a > 0. Since xk

k! is a polynomial, it is differentiable on all R,
so in particular it is differentiable on (−a, a).

Now, pick x0 = 0. Clearly x0 ∈ (−a, a). Notice that:

E(x0) = E(0) = 1

so
∑∞
k=0

xk

k! converges at x0.

Finally, consider the series:
∞∑
k=0

(
xk

k!

)′
It converges uniformly, since:

∞∑
k=0

(
xk

k!

)′
=

∞∑
k=1

xk−1

(k − 1)!

=

∞∑
m=0

xm

m!

= E(x)

and E(x) converges uniformly.

But by the above, it then means that:

E′(x) =

∞∑
k=0

(
xk

k!

)′

However, we have shown that
∑∞
k=0

(
xk

k!

)′
= E(x), so indeed:

E′(x) = E(x) =⇒ E′(x)− E(x) = 0

Moreover, we have seen that:
E(0) = 1
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4 Workshop

1. Let

fn(x) =
xn

1
2

1 + nx2
, x ∈ R

Prove that fn converges pointwise to the zero function. Is the convergence uniform over
R? As a hint, fix n, and think about supx∈R |fn(x)|. Does this go to zero as n→∞?

We go from definition:

|fn(x)− 0| =

∣∣∣∣∣ xn
1
2

1 + nx2

∣∣∣∣∣
<

∣∣∣∣∣xn
1
2

nx2

∣∣∣∣∣
=

∣∣∣∣ 1

n
1
2x

∣∣∣∣
Hence, ∀ε > 0 let N = 1

x2ε2 . Then, if n ≥ N :

|fn(x)− 0| =
∣∣∣∣ 1

n
1
2x

∣∣∣∣ < ∣∣∣∣ 1

N
1
2x

∣∣∣∣ =

∣∣∣∣ 1
1
xεx

∣∣∣∣ = ε

and so fn(x)→ 0 pointwise.

As an alternative, in the solutions they simply note that:

|fn(x)| ≤

∣∣∣∣∣xn
1
2

nx2

∣∣∣∣∣ =
1

n
1
2x
→ 0

by thinking of x as a constant.

Now, recall that fn → f uniformly is equivalent to showing that:

sup
x∈R
|fn(x)− f(x)| → 0

The key is to notice that we can rewrite fn(x) as:

fn(x) =
n

1
2

1
x + nx

Using calculus, we know that fn achieves a local maximum when 1
x + nx is minimised, so we compute

when this expression is minimised, by differentiating and equation to 0:

n− 1

x2
= 0 =⇒ x =

1

n
1
2

Thus, ∀x ∈ R, if x = 1

n
1
2

, then fn(x) is maximised, so:

sup
x∈R
|fn(x)− 0| = fn(n−

1
2 ) =

√
n√

n+
√
n

=
1

2
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so that

sup
x∈R
|fn(x)− f(x)| → 1

2

Hence, fn doesn’t converge uniformly on R.

2. Let fn : [0, 1) → R be defined by fn(x) = nxn. Show that fn → 0 pointwise, but
∫ 1

0
fn → 1.

What does this demonstrate?

The solutions are rather unhelpful in this question, since they show that
nxn → 0 pointwise by citing FPM ... without citing any specific theorem
or nugget of knowledge.

To show that nxn → 0 pointwise, we will use the ratio test for sequences:

If (an) is a sequence of positive real numbers, such that:

lim
n→∞

an+1

n
= L

and if L < 1, then the sequence (an) converges, and:

lim
n→∞

an = 0

For more on this: The Ratio Test for Sequences

Now, since x ∈ [0, 1), for any x we have that nxn is non-negative, so we compute:

lim
n→∞

(n+ 1)xn+1

nxn
= x lim

n→∞

n+ 1

n
= x

Indeed, x < 1, so it follows that for any x ∈ [0, 1), we have nxn → 0 pointwise on [0, 1).

We now consider the integral: ∫ 1

0

nxn dx =

[
n

n+ 1
xn+1

]1
0

=
n

n+ 1

So it is easy to see that:

lim
n→∞

∫ 1

0

nxn dx = 1

Thus, we have shown that:

lim
n→∞

∫ 1

0

nxn dx 6=
∫ 1

0

(
lim
n→∞

nxn
)
dx

so it follows that fn doesn’t converge uniformly on [0, 1).

3. Consider the sequence of functions on R given by:

fn(x) =

(
x− 1

n

)2

Page 18

http://mathonline.wikidot.com/the-ratio-test-for-sequence-convergence


Prove that it converges pointwise, and find the limit function. Is the convergence uniform
on R? Is the convergence uniform on bounded intervals?

In the solutions it is argued that x − 1
n
→ x pointwise, so by properties of

limits:

lim
n→∞

(
x− 1

n

)2

=

(
lim
n→∞

x− 1

n

)2

= x2

I do prefer to use the rigorous way, particularly since we will have to use it
either way for uniform continuity.

We claim that fn → x2 pointwise:∣∣∣∣∣
(
x− 1

n

)2

− x2
∣∣∣∣∣ =

∣∣∣∣x2 − 2x

n
+

1

n2
− x2

∣∣∣∣
=

∣∣∣∣ 1

n2
− 2x

n

∣∣∣∣
=

∣∣2x− 1
n

∣∣
n

≤
2|x|+ 1

n

n

≤ 2|x|+ 1

n

So if we pick N > 2|x|+1
ε , we ensure that if n ≥ N :∣∣∣∣∣

(
x− 1

n

)2

− x2
∣∣∣∣∣ ≤ 2|x|+ 1

n
≤ 2|x|+ 1

N
<

2|x|+ 1
2|x|+1
ε

= ε

so fn(x)→ x2 pointwise.

However, it doesn’t converge uniformly on R. Indeed, consider the sequence:

sup
x∈R

∣∣∣∣∣
(
x− 1

n

)2

− x2
∣∣∣∣∣ = sup

x∈R

∣∣2x− 1
n

∣∣
n

But notice, as x ranges over R,
|2x− 1

n |
n keeps getting bigger and bigger, so the supremum is not even

defined, so certainly supx∈R

∣∣∣(x− 1
n

)2 − x2∣∣∣ 6→ 0, and so, fn(x) won’t converge uniformly to x2 on R.
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An alternative for the solutions is to consider:

|fn(n)− n2| =
∣∣2n− 1

n

∣∣
n

≥ 1

so |fn(n) − n2| 6→ 0 (this corresponds to the third equivalence of uniform
convergence, which states that a sequnece is uniformly convergent if we
can bound |fn(x) − f(x)| with a sequence (an) such that an → 0 for any
x ∈ R)

If however we consider a bounded interval I = [a, b], fn does converge uniformly on I. Indeed, let
M = max{|a|, |b|}. Then, ∀x ∈ I, |x| ≤M so it follows that:∣∣∣∣∣

(
x− 1

n

)2

− x2
∣∣∣∣∣ ≤ 2|x|+ 1

n
≤ 2M + 1

n

so for any x ∈ [a, b], if we pick N > 2M+1
ε then whenever n ≥ N :∣∣∣∣∣
(
x− 1

n

)2

− x2
∣∣∣∣∣ < ε

so fn(x)→ x2 uniformly on [a, b].

Otherwise just notice that:

0 ≤ sup
x∈I
|fn(x)− x2| ≤ sup

x∈I

2M + 1

n
=

2M + 1

n

So by squeeze theorem:

sup
x∈I
|fn(x)− x2| → 0

4. Let:
fn(x) = x− xn

Prove that fn converges pointwise on [0, 1], and find the limit function. Is the convergence
uniform on [0, 1]? Is the convergence uniform on [0, 1)?

Here we need to be careful: fn(x) tends to different values depending on
the value of x, and this determines how we think of its convergence.

We claim fn(x)→ f(x) pointwise on [0, 1], where:

f(x) =

{
x, x ∈ [0, 1)

0, x = 1]
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If x = 1, then:
x− xn = x− x = 0, ∀n ∈ N

so clearly x− xn → 0

Now consider x ∈ [0, 1)

In the solutions they just claim that since x ∈ [0, 1) then xn → 0, so
x− xn → x. I give a proof from first principles.

We claim that xn → x:
|x− xn − x| = |xn| = |x|n = xn

If ε > 0, then we pick N > logx(ε), and if n ≥ N then:

xn ≤ xN < xlogx(ε) = ε

so it follows that x− xn → x pointwise on [0, 1)

The convergence won’t be uniform on [0, 1]. This is because fn(x) is continuous over the whole interval
(since x and xn are continuous, but f(x) is not continuous at x = 1.

Even if we consider the interval [0, 1), fn(x) doesn’t converge uniformly to x. Consider:

sup
x∈[0,1)

|fn(x)− f(x)| = sup
x∈[0,1)

(xn) = 1

so the sequence supx∈[0,1) |fn(x)− f(x)| doesn’t converge to 0.

To see why, let A = {xn | x ∈ [0, 1)} where n ∈ N. Then, we claim
sup(A) = 1.
Since x < 1 then xn < 1n = 1 so 1 is an upper bound for A.
Now assume that sup(A) = t < 1. Then pick ε > 0 such that t + ε ∈ [0, 1)
(for example ε = 1−t

2
). Then, (t + ε)n ∈ A, but clearly t < (t + ε)n, which

contradicts the fact that t is a supremum.
Thus, no supremum can exist smaller than 1, and so, sup(A) = 1.

5. Consider the sequence of functions defined on [0,∞) defined by:

fn(x) =
xn

1 + xn

Prove that fn converges pointwise, and find the limit function. Is the convergence uniform
on [0,∞)? Is the convergence uniform on bounded intervals of the form [0, a)?

We claim that fn(x)→ f pointwise on [0,∞) where:

f(x) =


0, 0 ≤ x < 1
1
2 , x = 1

1, x > 1
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In the solutions this is dispatched in a fairly succint manner.
When x ∈ [0, 1), we have that xn → 0, so xn

1+xn → 0
1+0

= 0.

When x = 1, we have that xn

1+xn = 1
2
→ 1

2
.

Finally, when x ∈ (1,∞), we get that xn

1+xn = 1
x−n+1

→ 1 by using the fact

that x−n → 0.
Hence, ∀x ∈ [0,∞) we get that fn(x)→ f(x).
Below I’ll get into all the gory details, except for when x = 1, since that is
identically explained.

We can fix x ∈ [0, 1), such that:
f(x) = 0

Then, we consider:

|fn(x)− f(x)| =
∣∣∣∣ xn

1 + xn

∣∣∣∣
=

xn

1 + xn

≤ xn

where in the last step we have made use of the fact that:

x ≥ 0 =⇒ 1 + xn ≥ 1

If x = 0, then we get that |fn(x) − f(x)| ≤ 0 < ε for any ε > 0 and for any n ≥ N ∈ N, so fn(x)
converges pointwise to f(x) at x = 0.

We thus consider the remaining cases in which 0 < x < 1. But then, notice that since 0 < x < 1, there
exists a y ∈ R, y > 1 such that:

x =
1

y

But then, ∀ε > 0, if N is the smallest natural number larger than logy
(
1
ε

)
, if n ≥ N , then:

|fn(x)− f(x)| ≤ xn

=
1

yn

≤ 1

yN

=
1

ylogy(
1
ε )

= ε

So it follows that fn(x) is pointwise convergent to f(x), given that x ∈ [0, 1)

If we fix x ∈ (1,∞), then:
f(x) = 1

Page 22



Then, consider:

|fn(x)− f(x)| =
∣∣∣∣ xn

1 + xn
− 1

∣∣∣∣
=

∣∣∣∣ xn

1 + xn
− 1 + xn

1 + xn

∣∣∣∣
=

∣∣∣∣ −1

1 + xn

∣∣∣∣
=

1

1 + xn

<
1

xn

where in the last step we have made use of the fact that:

x > 1 =⇒ 1 + xn > xn

But then, ∀ε > 0, if N is the smallest natural number larger than logx
(
1
ε

)
, if n ≥ N , then:

|fn(x)− f(x)| < 1

xn

≤ 1

xN

=
1

xlogx(
1
ε )

= ε

So it follows that fn(x) is pointwise convergent to f(x), given that x ∈ (1,∞)

In other words, we have shown that, ∀x ∈ [0,∞), fn(x) converges pointwise to f(x)

However, by Theorem 2.1 of the notes, it is not the case that fn(x) converges uniformly to f(x) on
[0,∞), since on this interval each fn is continuous at all points, but f(x) is not continuous at all points
of the interval, as x = 1 is a point of discontinuity. This can be seen by the fact:

lim
x→1−

f(x) = 0 6= 1 = lim
x→1+

f(x)

Nonetheless, convergence will be uniform on bounded intervals of the form [0, a), provided that 0 < a < 1.

Indeed, if a > 1, then fn(x) will converge pointwise to f(x), so we again have discontinuity. We thus
need to consider the case a ≤ 1. Notice, if x ∈ [0, a) then f(x) = 0.

Consider:

sup
x∈[0,a)

|fn(x)− f(x)| = sup
x∈[0,a)

∣∣∣∣ xn

1 + xn

∣∣∣∣ == sup
x∈[0,a)

∣∣∣∣ 1
1
xn + 1

∣∣∣∣
Now, on [0, a), 1

1
xn+1

is an increasing function (since as x increases, 1
xn gets smaller, so 1

1
xn+1

increases).

Thus:

sup
x∈[0,a)

|fn(x)− f(x)| = 1
1
an + 1
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If we allow for the possibility of a = 1, then:

1
1
an + 1

→ 1

2
6→ 0

so if a ≤ 1, convergence won’t be uniform.

However, if a < 1, we know that an → 0:
1

1
an + 1

→ 0

Thus, on the interval [0, a) with a < 1 we have that fn(x) is uniformly convergent.

6. Let:
fn(x) = nx(1− x2)n, x ∈ [0, 1]

Prove that fn converges pointwise on [0, 1] and find the limit function. Is the convergence

uniform on [0, 1]? As a hint, consider the integrals
∫ 1

0
fn. Is the convergence uniform on

[a, 1], where 0 < a < 1?

Notice, if x = 1, then fn(x) = 0. If x ∈ [0, 1), then 1 − x2 ∈ [0, 1), so
(1− x2)n → 0 and so fn(x)→ 0. Hence, fn(x)→ 0 pointwise on [0, 1].

We claim that fn(x)→ 0:

|nx(1− x2)n − 0| = nx(1− x2)n ≤ n(1− x2)n

But if we let y = 1−x2, this is just nyn, which we showed above converges pointwise to 0. Thus, ∀ε > 0,
if n ≥ N , we have nyn < ε and so:

|nx(1− x2)n − 0| < ε

so nx(1− x2)n → 0 pointwise on [0, 1].

To check if this convergence is uniform, we use integrals:∫ 1

0

nx(1− x2)n dx

if we apply the substitution y = 1− x2 then dy
dx = −2x so:∫ 1

0

nx(1− x2)n dx =
n

2

∫ 1

0

yn dy =
n

2(n+ 1)

[
yn+1

]1
0

=
n

2(n+ 1)

But then notice that:

lim
n→∞

∫ 1

0

nx(1− x2)n dx =
1

2

but: ∫ 1

0

lim
n→∞

(nx(1− x2)n) dx =

∫ 1

0

0 dx = 0

Thus, fn isn’t uniformly convergent on [0, 1].

We now consider the interval [a, 1] where 0 < a < 1.
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Important to note: up to now we have been using Theorem 2.2 of the
notes, whereby the assumption of uniform continuity implies the fact that
the limit of the integrals is the integral of the limits. However, this theorem
is not sufficient to prove uniform continuity, just to disprove it.
In this case, we would have:∫ 1

a

nx(1−x2)n dx =
n

2

∫ 1−a2

0

yn dy =
n

2(n+ 1)

[
yn+1

]1−a2
0

=
n

2(n+ 1)
(1−a2)n → 0

since 1− a2 < 1. Hence, Theorem 2.2 won’t help here.

For uniform continuity we go from definition. Notice, if x ∈ [a, 1], then 1− x2 ≤ 1− a2. Then, we have
that we can bound |fn(x)− 0| by the sequence:

n(1− a2)n

where we have used the fact that ∀x ∈ [a, 1], n(1− a2)n ≥ nx(1− a2).

Moreover, since n(1− a2)n → 0 for any x, it follows that fn(x) converges uniformly on [a, 1].

7. Let fn : R → R be a sequence of continuous functions which converges uniformly to a
function f : R → R. Let xn be a sequence of real numbers which converge to x ∈ R. Show
that fn(xn)→ f(x).

This one is direct from the solutions; I tried using only the sequence defi-
nition, but for some reason (not explained since the homework feedback is
trash) my method wasn’t correct. The proof is rather simple so it is quite
shameful that I could come up with it.

We first note that f will be continuous, since each fn is continuous, and fn → f uniformly.

By uniform continuity, we have that ∀ε > 0 and ∀y ∈ R we have that ∃N ∈ N such that if n ≥ N :

|fn(y)− f(y)| < ε

2

In particular, this must be true for y = xn:

|fn(xn)− f(xn)| < ε

2

Moreover, by continuity of f , since xn → x we know that f(xn)→ f(x) so in particular, ∃M ∈ N such
that if n ≥M :

|f(xn)− f(x)| < ε

2

Now, let n ≥ max{N,M}. Then:

|fn(xn)− f(x)| = |fn(xn)− f(xn) + f(xn)− f(x)| <≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

so indeed:
fn(xn)→ f(x)
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