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1 The Bolzano-Weirstrass Theorem

1.1 Defining Subsequences

• What is a subsequence?

– let (xn)n∈N be a sequence

– a subsequence of this is a sequence (xnk
)k∈N, where we require:

n1 < n2 < n3 < . . . < nk < . . .

1.2 Theorem: Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subse-
quence. [Theorem 1.5]

Proof: Bolzano-Weierstrass Theorem. The idea of the proof is the following.

1. A sequence is bounded, so all its terms are bounded in an interval of the reals

2. We can create subintervals, each with infinitely many terms

3. The infinite intersection of these subintervals will have a single term x (by the Compactness of a Closed
Interval, Week 1)

4. We claim that x will be the limit of some subsequence

5. To construct the subsequence, we take an element from each subinterval, and show that the terms in
the subsequence get arbitrarily close to x

Let (xn)n∈N be a bounded sequence of real numbers. In particular, define the interval of finite length:

I0 = [a, b]

where a is a lower bound of xn, and b is an upper bound of xn.

We now claim that given some non-empty, closed, bounded interval of the reals (with infinitely
many terms of xn), we can always find a sub-interval which is also non-empty, closed and bounded, and also
contains infinitely many xn. We can do so by induction: given our interval I0 satisfying the above properties,
we can construct n sub-intervals I1, I2, . . . , In, such that I1 ⊃ I2 ⊃ . . . ⊃ In and each is non-empty, closed
and bounded, and contains infinitely many terms from xn.

1 Base Case: n = 1

We begin with our initial interval, I0. Then, we can split it into 2 subintervals:

I ′ =

[
a,
a+ b

2

]
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I ′ =

[
a+ b

2
, b

]
But since I0 contains infinitely many terms, at least one of I ′ or I ′′ must also contain infinitely many terms.
Call whichever it is I1. Notice that I1 is non-empty, closed and bounded, so the case n = 1 is true.

2 Inductive Hypothesis: n = k

Assume the claim is true for n = k: we have constructed k intervals, such that I1 ⊃ I2 ⊃ . . . ⊃ Ik, and
each of them are non-empty, closed and bounded.

3 Inductive Step: n = k+1

By the inductive hypothesis, in particular we have a non-empty, closed and bounded Ik. Now, we can
construct the interval Ik+1, such that it is also non-empty, closed and bounded. Since it has infinitely many
terms of xn, splitting Ik into 2 subintervals at the middle guarantees that at least one of them has infinitely
many terms. Call this Ik+1. Certainly, Ik+1 has infinitely may terms, it is non-empty, closed and bounded.

Thus, we have constructed a sequence of intervals (In)n∈N which are closed, non-empty and bounded,
have infinitely many terms, and:

I1 ⊃ I2 ⊃ . . . ⊃ In ⊃ . . .
Moreover, since to get to Ik+1 we split Ik into 2, it follows that:

λ(Ik) =
b− a

2k

so in particular:
lim
n→∞

λ(In) = 0

But then, by the Nested Interval Property, it follows that ∃x ∈ I0 such that:

∞⋂
n=1

xn = x

In other words, x belongs to all sub-intervals. We claim that x is the limit of some subsequence.

To see how, consider the following. Pick x1 = xn1
∈ I0. For the next element, since I1 has infinitely

many terms, we can pick n2 > 1 = n1, such that xn2 ∈ I1. Since I2 has infinitely many terms, we know
there exists some n3 > n2, such that xn3 ∈ I2. Proceeding like this, at any interval Ik, we can always find
some nk+1 > nk such that xnk+1

∈ Ik.

Now, consider the distance between the elements in our subsequence (xnk
)k∈N and the number x. If

this difference goes to 0, then it clearly means that the subsequence converges to x. Now, xnk
∈ Ik−1, and

x ∈ Ik−1 aswell, since x is in the intersection of all sub-intervals. But then, it follows that:

|xnk
− x| ≤ b− a

2k−1

(this is the case in which x is at one endpoint of the interval, and xnk
is at the other endpoint).

But we know that

lim
k→∞

b− a
2k−1

= 0

which means that the terms xnk
can get arbitrarily close to x, so in particular:

lim
k→∞

xnk
= x

This proves that there must exist at least some subsequence xnk
of xn which converges, given that xn is

bounded.
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2 Cauchy Sequences

2.1 Defining Cauchy Sequences

• When is a sequence Cauchy?

– let (xn)n∈N be a sequence of real numbers

– xn is a Cauchy Sequence if ∀ε > 0, ∃N ∈ N : ∀n,m ≥ N we have that:

|xn − xm| < ε

2.2 Theorem: Cauchy If and Only If Convergent

Let (xn) be a convergent sequence of real numbers.
Then, (xn) is a Cauchy Sequence if and only if (xn) is convergent.
[Theorem 1.3, 1.4]

Proof: If Convergent, Then Cauchy. Assume (xn)n∈N is convergent. Then, ∃x ∈ R, such that ∀ε > 0, ∃N ∈
N : ∀n > N we have that:

|xn − x| <
ε

2

But then, letting n,m > N , and using the triangle inequality:

|xn − xm| = |xn − x+ x− xm|
≤ |xn − x|+ |x− xm|

<
ε

2
+
ε

2
= ε

So it follows that xn is Cauchy.

Proof: If Cauchy, Then Convergent. Assume (xn)n∈N is Cauchy. Firstly, (xn) is bounded. We know that
∃N ∈ N such that ∀n,m ≥ N :

|xn − xm| < ε

In particular, by the Reverse Triangle Inequality:

|xn| − |xm| ≤ |xn − xm| < ε =⇒ |xn| − |xm| < ε

But then, letting m = N , we know that xN is a constant, and moreover,

|xn| < ε+ |xN |

Since ε is an arbitrary, positive constant, setting ε = 1 shows that each xn is bounded:

|xn| ≤ max{x1, x2, . . . , xN−1, 1 + |xN |}
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But then, the Bolzano-Weierstrass Theorem applies to (xn), so there exists some subsequence xnk
, such

that, for some a ∈ R, xnk
→ a.

We now recall the definitions of Cauchy and Convergent Sequences. Let ε > 0. Then:

• since (xn) is Cauchy, we can pick N1 ∈ N such that ∀n,m ≥ N1:

|xn − xm| <
ε

2

• since xnk
→ a, ∃N2 ∈ N such that ∀k ≥ N2:

|xnk
− a| < ε

2

Then, pick nk, such that k ≥ N2 and nk ≥ N1. If n ≥ N1:

|xn − a| = |xn − xnk
+ xnk

− a|
≤ |xn − xnk

|+ |xnk
− a|

Now, since n, nk ≥ N1, it follows that |xn − xnk
| < ε

2 by the first bullet point. Moreover, since k ≥ N2,
by the second bullet point |xnk

− a| < ε
2 . Thus:

|xn − a| <
ε

2
+
ε

2
= ε

so it follows that xn converges, and xn → a.

3 Limit Superior and Limit Inferior

3.1 Defining the Limit Superior and Limit Inferior

• What is the intuitive idea of a limit superior? And a limit inferior?

– there are sequences which don’t converge, but still have a convergent flavour

– we know from Bolzano-Weierstrass that any bounded sequence has a convergence subsequence

– for example, an = (−1)n oscillates permanently between 1 and -1, so there is some notion that 1
and -1 are “pseudo-limits” of the sequence

– in particular, the limit superior refers to the largest possible limit that a sequence can have, so:

lim sup
n→∞

an = 1

(i.e out of all the convergent subsequences, what is the largest possible limit)

– the limit inferior refers to the smallest possible limit that a sequence can have, so:

lim inf
n→∞

an = −1

• How are the limit inferior and limit superior defined?

– let (xn)n∈N is a bounded sequence of real numbers

– the limit superior is:

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk

)
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– the limit inferior is:

lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n

xk

)
• What are the limit superior and limit inferior of an unbounded sequence?

– if (xn) is unbounded above, then by convention:

lim sup
n→∞

xn = +∞

– if (xn) is unbounded below, then by convention:

lim inf
n→∞

xn = −∞

3.2 Intuition of Existence for the Limit Superior and Limit Inferior

Lets consider the definition of limit superior, in particular the sequence sup
k≥n

xk:

k = 1 −→ sup{x1, x2, . . .}
k = 2 −→ sup{x2, x3, . . .}
k = 3 −→ sup{x3, x4, . . .}

...

In other words, as n increases, we are considering the supremum of a sequence with less terms. What this
means is that the sequence sup

k≥n
xk is monotonically decreasing (for example, if the sequence xn were
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increasing, x1 > x2 > . . ., then as n increases, the supremum is being computed over terms which are getting
smaller).

Similarly, it can be seen that inf
k≥n

xk is monotonically increasing (at each step we potentially remove

the smallest item of the sequence).

The key here is the Monotone Convergence Theorem: (xn) is bounded, so in particular both sup
k≥n

xk

and inf
k≥n

xk are bounded. Moreover, they are also monotone. Thus, it follows that the sequences are conver-

gent, and thus, we guarantee that the limit superior and the limit inferior of a bounded sequence always
exist.

3.3 LimSup and LimInf vs Limit of a Sequence

• Is the LimSup larger than the LimInf?

– Yes, we always have:
lim sup
n→∞

xn ≥ lim inf
n→∞

xn

• Under which conditions are the LimSup and LimInf equal?

– for this we have a theorem:

Let (xn) be a sequence of real numbers. Then, (xn) converges if and only
if:

lim sup
n→∞

xn = lim inf
n→∞

xn

and lim sup, lim inf ∈ R. [Theorem 1.6]

4 Infinite Series of Real Numbers

4.1 Convergence of a Series

• What does it mean for a series to converge?

– let (an) be a sequence, and let S =
∑∞
k=1 ak be an infinite series

– consider the partial sums of the series:

sn =

n∑
k=1

ak

– S converges if the sequence of partial sums converges:

∃s ∈ R : lim
n→∞

sn = s

– we then define:

S =

∞∑
k=1

ak = s
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4.2 Theorem: Cauchy Criterion for Series

Let S =
∑∞

k=1 ak be a series.
Then, S converges if and only if ∀ε > 0, ∃N ∈ N : ∀m ≥ n ≥ N ,∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ < ε

[Theorem 1.7]

Proof: Cauchy Criterion For Series. Notice that
∑m
k=n+1 ak = sm − sn, so the Cauchy Criterion is just

saying that S converges if and only if:
|sm − sn| < ε

This condition this implies that the sequence of partial sums is Cauchy, and thus, converges.

4.3 Defining Absolute Convergence

• When is a series absolutely convergent?

– let S =
∑∞
k=1 ak be a series

– S is absolutely convergence if:
∞∑
k=1

|ak|

is also a convergent sequence

• When is a series conditionally convergent?

– if S =
∑∞
k=1 ak but S =

∑∞
k=1 |ak| doesn’t

4.3.1 Theorem: Properties of Absolute Convergence - Convergence and Rearrangements

Let S =
∑∞

k=1 ak be an absolutely convergent series. Then:

1. The series S is convergent

2. Let z : N→ N be a bijection. Then
∑∞

k=1 az(k) is convergent, and:

∞∑
k=1

az(k) =
∞∑
k=1

ak

The series
∑∞

k=1 az(k) is known as a rearrangement, and it is
constructed by adding terms in the sequence in a different order than
the order of the sequence. [Theorem 1.8]
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Proof: Absolute Convergence Implies Convergence. If we can prove that sn =
∑n
k=1 ak is Cauchy, we will

have proven convergence.

Let A =
∑∞
k=1 |ak|. From absolute convergence, it thus follows that ∀ε > 0, ∃N ∈ N such that ∀n ≥ N :∣∣∣∣∣A−

n∑
k=1

|ak|

∣∣∣∣∣ = A−
n∑
k=1

|ak| =
∞∑

k=n+1

|ak| < ε

But then, without loss of generality, we can assume that for any m ∈ N such that n ≤ m:

|sn − sm| = |
n∑
k=1

ak −
m∑
k=1

ak|

= |
m∑

k=n+1

ak|

≤
m∑

k=n+1

|ak| (from triangle inequality)

≤
∞∑

k=n+1

|ak|

< ε

Thus, the sequence of partial sums is Cauchy, and thus,
∑∞
k=1 ak is convergent.

Proof: Absolute Convergence Doesn’t Affect Rearrangement. Let A =
∑∞
k=1 |ak|. From absolute conver-

gence, it thus follows that ∀ε > 0, ∃N ∈ N such that ∀n ≥ N :∣∣∣∣∣A−
n∑
k=1

|ak|

∣∣∣∣∣ = A−
n∑
k=1

|ak| =
∞∑

k=n+1

|ak| < ε

Define the partial sums of the series of an and the rearrangement az(n):

sn =

n∑
k=1

ak

tn =

n∑
i=1

az(i)

Now, consider:

|sn − tn| =

∣∣∣∣∣
n∑
k=1

ak −
n∑
i=1

az(i)

∣∣∣∣∣
Finally, let M ≥ N be a natural number such that if n ≥M

Sn = {z(1), z(2), . . . , z(n)}
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contains the subset {1, 2, . . . , N}.

Then, ∀k ≤ N , each ak in
∑n
k=1 ak will cancel with some az(i) in

∑n
i=1 az(i). Thus:

|sn − tn| =

∣∣∣∣∣
n∑
k=1

ak −
n∑
i=1

az(i)

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

k=N+1

ak −
n∑

i∈Sn\{1,2,...,N}

az(i)

∣∣∣∣∣∣
≤

n∑
k=N+1

|ak| −
n∑

i∈Sn\{1,2,...,N}

|az(i)|

But notice, both sums must contain (non-repeated) elements with index greater than N + 1, so it follows
that:

|sn − tn| ≤
n∑

k=N+1

|ak| −
n∑

i∈Sn\{1,2,...,N}

|az(i)| < 2

∞∑
k=N+1

|ak| < 2ε

Hence, since sn is convergent, it follows that tn is also convergent, and in fact, they converge to the same
value.

4.4 Conditionally Convergent Series

From the Properties of Absolute Convergence, Part 2, we might think that it is not anything important: after
all, addition is commutative, so the order in which we add terms shouldn’t matter. However, if we have an
infinite sum, this is not the case. In fact:

Let S =
∑∞

k=1 ak be a conditionally convergent series. Then, there exists
a bijection z : N→ N such that:

1. ∀r ∈ R,
∑∞

k=1 ak is conditionally convergent, and its sum is r

2. the series
∑∞

k=1 az(k) diverges to +∞

3. the series
∑∞

k=1 az(k) diverges to −∞

4. the partial sums of
∑∞

k=1 az(k) oscillate between any 2 real numbers

[Theorem 1.9]

To see a nice example, see this video by patrickJMT. Moreover, the reason is the Riemann Series Theorem.

5 Exercises

1. (a) Let an =
√
n. Show that |an − an−1| → 0
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√
n−
√
n− 1 =

(
√
n−
√
n− 1)(

√
n+
√
n− 1)

√
n+
√
n− 1

=
n− (n− 1)
√
n+
√
n− 1

=
1

√
n+
√
n− 1

∴ lim
n→∞

|an − an−1| = lim
n→∞

1
√
n+
√
n− 1

= 0

(b) Is (an) Cauchy?

Clearly not, as lim
n→∞

√
n =∞

(c) If bn is such that:

|bn − bn−1| <
1

2n

show that bn is a Cauchy sequence.

Let n < m. Then:

|am − an| = |am − am−1 + am−1 − . . .− an+1 + an+1 − an|
≤ |am − am−1|+ |am−1 − am−2|+ . . .+ |an+1 − an|

≤ 1

2m
+

1

2m−1
+ . . .+

1

2n+1

≤
∞∑

i=n+1

1

2i

=
1

2n+1

1
2

=
1

2n

Now, pick N such that ∀n ≥ N, 1
2n < ε, and thus, we have shown that |am − an| < ε, ∀m,n ∈ N,

so an must be Cauchy.

2. Let (an) be a sequence of real numbers. If
∑
n a

2
n converges, show that

∑
n
an
n converges. Is

the converse true?

Recall the Cauchy-Schwarz inequality:(
n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)

Using bn = 1
n , it follows that:

∑
n

∣∣∣an
n

∣∣∣ ≤
√√√√( n∑

i=1

a2n

)√√√√( n∑
i=1

1

n2

)
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Since the product to the right is finite, it follows that an
n gives an absolutely convergent series, so in

particular
∑
n
an
n converges.

The converse is not true. For example, if an = 1√
n

.

3. Prove that the sequence:

an =

n−1∑
k=1

1

k
− log n

converges

Firstly, notice the sequence is monotone:

an+1 − an =

n∑
k=1

1

k
− log(n+ 1)−

n−1∑
k=1

1

k
+ log(n) =

1

n
− log

(
1 +

1

n

)
Using the MVT, it can be easily checked that x > log(1 + x), so it follows that an is monotonically
increasing.

We can also prove that the sequence is bounded. Firstly:

1

k
<

∫ k

k−1

1

x
dx = log k − log(k − 1)

Thus:

an < 1+(log 2− log 1)+(log 3− log 2)+ . . .+(log(n−1)− log(n−2))+log(n) = 1+log(n−1)− log(n) ≤ 1

So the sequence is both monotonically increasing and bounded. Thus, it is convergent.

6 Workshop

1. Prove that every convergent sequence is bounded.

Consider a convergent sequence (xn) such that xn → x. By definition ∀ε > 0 we can find a N ∈ N such
that if n ≥ N , then:

|xn − x| < ε

In particular, if we pick ε = 1, then:

|xn − x| < 1 ⇐⇒ −1− x < 1− x < xn < 1 + x

So letting M = |1 + x|, we have that if n ≥ N , |xn| < M .

Look out! Here I assumed that this was sufficient, but I ignored the possi-
bility of xn with n < N . It could be possible that such xn don’t satisfy this
inequality!

Hence, we can say that ∀n ∈ N, |xn| ≤ C, where:

C = max{|x1|, |x2|, . . . , |xN−1|,M}
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2. True or false?

(a) If a sequence (xn) converges, then the sequence
(
xn

n

)
is also convergent.

This is true.

To prove this, there are 2 possibilities:

• From the solutions: bound the sequence xn

n
by 2 convergent sequences,

and apply the squeeze theorem to show that xn

n
converges

• Self: intuitively, we should see that xn

n
→ 0, so we can try to prove

this from definition of the limit (and we can use the fact that xn

converges, so it is bounded)

Since xn converges, it is bounded, say that |xn| ≤M . Then, it follows that:

−M
n
≤ xn

n
≤ M

n

Since M is a constant:

lim
n→∞

M

n
= lim
n→∞

−M
n

= 0

So it follows that xn

n converges by the squeeze theorem, and:

xn
n
→ 0

(b) If a sequence (xn) does not converge, then the sequence
(
xn

n

)
does not converge.

False.

From the notes, xn = (−1)n diverges, but (−1)n
n → 0.

From self, xn = n diverges, but n
n = 1→ 1

(c) If the sequence (xn) is convergent and (yn) is bounded, then (xnyn) is convergent.

False. Consider xn = 1 and yn = (−1)n.

(d) If the sequence (xn) is convergent to zero, and (yn) is a sequence such that yn > 0,∀n ∈ N,
then (xnyn) is convergent.

False. Consider xn = 1
n and yn = n2.

3. If a > 0 show that a
1
n → 1 as n→∞

It is clear that proving this from definition can be quite hard. The Mono-
ton Convergence Theorem is our friend.
In my initial attempt, I tried to use the MCT, alongside the fact that such
sequences will converge to the infimum of their set. However, I couldn’t
find a way to show that 1 is the infimum of the set (admittedly, being quite
rusty).
The solutions exploit a much neater treat, by showing that the limit is
equal to its square.

We consider 2 cases.
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If a ≥ 1, then clearly:
a

1
n ≥ 1

1
n = 1

So if a ≥ 1, a
1
n is bounded below by 1. Now, consider:

a
1

n+1

a
1
n

= a
1

n(n+1)

Now, since a ≥ 1 and 1
n(n+1) < 1, it follows that a

1
n(n+1) ≤ 1, so in particular a

1
n+1 ≤ a

1
n . Hence, when

a ≤ 1, a
1
n is monotone decreasing and bounded below, so by the Monotone Convergence Theorem, it

converges.

Alternatively, if 0 < a < 1, then:
a

1
n < 1

1
n = 1

So if 0 < a < 1, a
1
n is bounded above by 1. Now, consider:

a
1

n+1

a
1
n

= a
1

n(n+1)

Now, since a < 1 and 1
n(n+1) < 1, it follows that a

1
n(n+1) > 1, so in particular a

1
n+1 > a

1
n . Hence, when

a < 1, a
1
n is monotone increasing and bounded above, so by the Monotone Convergence Theorem, it

converges.

Thus, ∀a > 0, the sequence a
1
n converges. Say:

lim
n→∞

a
1
n = L

Then, by properties of limits: (
lim
n→∞

a
1
n

)2
= L2 =⇒ lim

n→∞
a

2
n = L2

But notice that:
lim
n→∞

a
2
n = lim

n→∞
(a2)

1
n

Since a is an arbitrary positive constant, and since a2 is also an arbitrary positive constant, so we must
have that:

L = L2

This is only positive if L = 0 or L = 1. Since we have shown that the sequence is bounded below/above
by 1, it must be the case that L = 1, as required.

For this I also thought that using logs would be very helpful, but I’m un-
sure whether we are allowed to use them.

4. Suppose that (xn) is a Cauchy sequence, such that xn is an integer ∀n ∈ N. Prove that (xn)
is eventually constant; that is, ∃a ∈ Z, N ∈ N such that xn = a for all n ≥ N
Since xn is Cauchy, then ∀ε > 0, we have N ∈ N such that with m > n and m,n ≥ N we have:

|xm − xn| < ε

In particular, the above is true with ε = 1:

|xm − xn| < 1
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But since xm, xn ∈ Z:
|xm − xn| < 1 =⇒ |xm − xn| = 0

(distance between integers is always an integer, and the only non-negative integer below 1 is 0)

Hence, it follows that ∀n ≥ N, xn = a ∈ Z, as required.

5. Let (xn) be a sequence of real numbers and suppose that there is a ∈ (0, 1) such that:

|xn+1 − xn| ≤ an, ∀n ∈ N

Prove that the sequence (xn) is convergent to some x ∈ R

The intuition here is to exploit the fact that if a sequence is Cauchy it is
convergent.

Consider m,n ∈ N with m > n. Then:

|xm − xn| = |xm − xm−1 + xm−1 + . . .− xn+1 + xn+1 − xn|

≤
m−1∑
k=n

|xk+1 − xk|

≤
m−1∑
k=n

ak

≤
∞∑
k=n

ak

This is an infinite geometric series, with first term an and common ratio 1. Hence, we have that:

|xm − xn| ≤
an

1− a

Notice, since a ∈ (0, 1), it is always possible ot pick an N such that ∀ε > 0, we have:

aN

1− a
< ε

Hence, we ensure that ∀ε > 0, we have said N , such that if m,n ≥ N , then:

|xm − xn| < ε

Therefore, xn is a Cauchy sequence, and so it converges, as required.

6. Let E ⊂ R. A point a ∈ R is called a cluster point of E if E ∩ (a− r, a+ r) contains infinitely
many points ∀r > 0. Prove that every bounded infinite subset of R has at least one cluster
point.

Notice, this hints at using the Bolzano-Weierstrass theorem; in fact, from
its prove, we already construct subsets of E of length b−a

2n
which have in-

finitely many elements.
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Consider a sequence en of points in E. Since all the points lie in E, and E is a bounded subset of R, it
follows by Bolzano-Weierstrass that en has a convergent subsequence enk

. Say that:

enk
→ a ∈ E

Now, let r ∈ R, and consider the interval (a−r, a+r). By the proof of the Bolzano Weierstrass Theorem,
enk

is constructed by taking points from infinite subintervals of E, with enk
∈ Ik, where Ik is an interval

of length b−a
2k

with infinitely many points. It is then easy to see that by making k large enough, we can
create an interval with infinitely many points Ik such that Ik ⊆ (a − r, a + r) . Thus, it means that
E ∩ (a− r, a+ r) will contain infinitely many points, so in particular, a must be a cluster point.

For the nitty-gritty details, I include the original proof I submitted as part of the assignment.

Let E ⊂ R be a bounded, infinite subset of R. Since E is bounded, define an interval I0 = [a, b], such
that a is a lower bound for E, and b is an upper bound for E.

Now consider the 2 following intervals:

I ′ =

[
a,
a+ b

2

]
I ′′ =

[
a+ b

2
, b

]
At least one of I and I ′′ must contain infinitely many terms from E (otherwise, E would be a finite
set). Let I1 be the set out of I ′ and I ′′ with infinitely many elements of E (if both have infinitely many
elements of I0, then just define I1 = I ′).

Notice, like I0, I1 is a closed, bounded interval, which contains infinitely many terms from E. Moreover,
it is also the case that I0 ⊃ I1. We can continue sub-dividing the interval I0 as to produce intervals
which are closed, bounded and contain infinitely many terms from E: if we have one such interval Ik,

then we know Ik is bounded, so Ik = [ak, bk], and bk − ak = λ(Ik−1)
2 , where λ denotes the length of the

interval. We can then split Ik into I ′k =
[
ak,

ak+bk
2

]
and I ′′k =

[
ak+bk

2 , bk
]
, and set Ik+1 to be the interval

out of I ′k and I ′′k which contains infinitely many terms from E. Thus, we are capable of constructing an
infinite sequence of nested, bounded, closed intervals with infinitely many terms from E:

(In)n∈N

which also satisfies:
I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ Ik+1 ⊃ . . .

Moreover, the length of some interval k is given by:

λ(Ik) =
b− a

2k

since at each step we are halving the length of I0.

Since we have nested, closed, bounded, non-empty intervals, and λ(In)→ 0, it then follows that ∃x ∈ R,
such that:

x =

∞⋂
kn=0

In

We claim that x is a cluster point for E. Indeed, pick any r ∈ R, and consider the open interval
(x−r, x+r). For any r, we can always find a k ∈ N such that b−a

2k
< r and in particular, Ik ⊂ (x−r, x+r).
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This is because b−a
2k

can be made arbitrarily small by increasing k, so the length of an interval Ik can
be made arbitrarily small. Moreover, x ∈ Ik, so we can always ensure that there exists a k such that
Ik ⊂ (x − r, x + r). Since Ik contains infinitely many elements from E by construction, it follows that
(x − r, x + r) contains infinitely many elements of E, and so, E ∩ (x − r, x + r) also contains infinitely
many elements of E, for any r > 0. Hence, by definition, it must be the case that x is a cluster point of
E. Overall, we have shown that for any arbitrary, bounded, infinte subset of the real numbers, we can
always find at least one cluster point.

7. A subset E of R is called sequentially compact if and only if every sequence (xn) ⊂ E has a
convergent subsequence whose limit belongs to E.

(a) Prove that every closed bounded interval is sequentially compact.

Consider a closed, bounded interval E = [a, b] where a, b ∈ R, a < b. Consider a sequence, such that
∀n ∈ N, xn ∈ E. Clearly, xn is bounded, since:

a ≤ xn ≤ b, ∀n ∈ N

Thus, Bolzano-Weierstrass applies, and xn has a convergent subsequence xnk
→ c. By construction:

a ≤ xnk
≤ b =⇒ lim

n→∞
a ≤ lim

n→∞
xnk
≤ lim
n→∞

b

So it follows that:
a ≤ c ≤ b

so the limit of xnk
belongs in E. Thus, E is sequentially compact.

(b) Prove that there exist bounded intervals that are not sequentially compact.

For example, consider xn = 1
n over the interval (0, 1). This is clearly bounded, and each term xn

belongs to the interval, but the subsequence xnk
= xn is such that:

1

n
→ 0 6∈ (0, 1)

(c) Prove that there are closed intervals that are not sequentially compact.

For example, consider xn = n over the interval [1,∞). This is a closed interval, and each element
of xn is in it, but any subsequence of xn will diverge.

8. Using the definition of lim supn→∞ xn and lim infn→∞ xn, find them for xn = 2 + (−1)n

Recall the definitions:

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk

)
lim inf n→∞xn = lim

n→∞

(
inf
k≥n

xk

)
Notice, the sequence only contains 2 terms:

xn = {1, 3}

So it is clear that:
sup
k≥n

xk = 3

sup
k≥n

xk = 1

So then:
lim sup

n→∞
xn = 3

lim inf
n→∞

xn = 1
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