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Throughout this, we consider what is known as the trigonometric system on [0, 1]:

φn(x) = e2πinx, n ∈ Z

1 Trigonometric Polynomials

1.1 Defining Trigonometric Polynomials

• What is a trigonometric polynomial?

– a function of the form:

f(x) =

N∑
n=−N

cne
2πinx

where:

∗ x ∈ R
∗ N ∈ N
∗ cn ∈ C

– since e2πinx is continuous ∀x ∈ R, so is f(x)

• What is the degeree of a trigonometric polynomial?

– the highest index in the summation (N) (given that cN 6= 0 or c−N 6= 0)

• What is an alternative way of writing a trigonometric polynomial?

– applying Euler’s Identity:
eix = cos(x) + i sin(x)

then ∃an, bn ∈ C such that:

f(x) = a0 +

N∑
n=1

(an cos(2πnx) + bn sin(2πnx))

– we can define an, bn explicitly in terms of cn:

f(x) =

N∑
n=−N

cne
2πinx

= c0 +

N∑
n=1

cne
2πinx + c−ne

−2πinx

= c0 +

N∑
n=1

cn(cos(2πnx) + i sin(2πnx) + c−n(cos(−2πnx) + i sin(−2πnx)

= c0 +

N∑
n=1

(cn + c−n) cos(2πnx) + i(cn − c−n) sin(2πnx)

so that:

an =

{
c0, n = 0

cn + c−n, n ≥ 1
bn = i(cn − c−n)

• Are trigonometric polynomials periodic?
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– they are 1-periodic, since:

f(x+ 1) =

N∑
n=−N

cne
2πin(x+1) =

N∑
n=−N

cne
2πinxe2πin =

N∑
n=−N

cne
2πinx = f(x)

where we use the fact that:
e2πin = ei0n = 1

Because of the 1-periodic nature of f(x), throughout we will use L2 to
refer to the L2 space of 1-periodic functions f : R→ C.
The L2-norm can be simplified to be:

‖f‖2 =

√∫ 1

0

|f(x)|2 dx

Notice, periodicity ensures that integration gives the same result, inde-
pendently of the interval of length 1 which we use to integrate such that,
for example: ∫ 1

0

|f(x)|2 dx =

∫ 1
2

− 1
2

|f(x)|2 dx

Explicitly, if we have a L periodic function g(x), and using y = x− L:∫ c+L

c

g(x) dx =

∫ L

c

g(x) dx+

∫ c+L

L

g(x) dx

=

∫ L

c

g(x) dx+

∫ y=(c+L)−L

y=L−L
g(y) dy

=

∫ L

c

g(x) dx+

∫ c

0

g(x) dx

=

∫ L

0

g(x) dx

Any theory developed for 1 periodic functions can be adapted for L-periodic
functions. For instance, the trigonometric system can be adapted:

1√
L
e

2πinx
L

to yield L-periodic functions

Page 3



1.2 Lemma: Trigonometric Polynomials as an Orthonormal System

The set:
{e2πinx | n∈Z}

forms an orthonormal system on [0, 1].
In particular:

1. ∫ 1

0

e2πinx dx =

{
0, n 6= 0

1, n = 0
∀n ∈ Z

2. if

f(x) =
N∑

n=−N

cne
2πinx

is a trigonometric polynomial, then:

cn = 〈f, φn〉 =

∫ 1

0

f(t)e−2πint

[Lemma 5.1]

The key aim of this whole week is to show that the orthonormal system {e2πinx | n∈Z} is in fact complete:

An orthonormal system (φn)n is called complete if:∑
n

|〈f, φn〉|2 = ‖f‖22

[Definition 5.5]
This is of particular importance, since: if (φn) is an orthonormal system
in [a, b], define sN =

∑
n cnφn. We say the orthonormal system (φn) is

complete, if and only if sN → f on L2 for any f ∈ L2. [Theorem 5.4]
That is, showing that this system is complete then tell us that we can use
{e2πinx | n∈Z} to construct series which converge to given functions f on
L2.

Proof. The first property relies on standard integration, by noting we can use the substitution y = 2πinx
and further using the fact that ei2πn = e0 = 1.
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The second property uses the orthonormality of the system: just take the inner product of f with φn;
orthonormality ensures that cn = 〈f, φn〉.

1.3 Fourier Series

• What is a Fourier Coefficient?

– consider a 1-periodic and integrable function f

– if n ∈ Z the nth Fourier Coefficient is:

f̂(n) = 〈f, φn〉 =

∫ 1

0

f(t)e−2πint dt

– this exists, since f is integrable

• What is a Fourier Series?

– consider a 1-periodic and integrable function f

– its Fourier Series is:
∞∑

n=−∞
f̂(n)φn(x) =

∞∑
n=−∞

f̂(n)e2πinx

– currently, we haven’t established any property of this Fourier Series: we don’t know if it even
converges, or is representative of anything

• When is a doubly infinite series convergent?

– we consider a doubly infinite series:

S =

∞∑
n=−∞

an

– the convergence of S can be discussed in 2 ways:

∗ Convergent: if both
∑∞
n=1 an and

∑∞
n=0 a−n are convergent (in this case, S is the sum of

the composing series)

∗ Convergent in the Principle Value Sense: a weaker notion - only require that the
sequence of partial sums:

Sn =

N∑
n=−N

an

converges (we use this sense when discussing convergence)
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We now define the following sequence of partial sums:

SNf(x) =
N∑

n=−N

f̂(n)e2πinx

Recall, last week we defined the orthonormal projection of a function f
onto an orthonormal system via:

sN =
N∑
n=1

〈f, φn〉φn(x)

In particular, we showed that sN is the best possible approximation to f
(in L2). Notice, because of this, we can see that SNf(x) is precisely the
orthonormal projection of f onto the space of trigonometric polyno-
mials of degree at most N . This is the best possible approximation, in the
sense that:

‖f − SNf‖2 ≤ ‖f − g‖2
This is some intuitive evidence that a Fourier Series can be thought of
as an appropriate approximation of f (although we still don’t even know if
it converges!).
It is important to remark that this is not generally true for other norms
beyond L2.

1.3.1 Exercises (TODO)

1. Show that if a doubly infinite series converges, then it also converges in the principal value
sense.

2. Give an example of a doubly infinite series:

∞∑
n=−∞

an

which does not converge, but converges in the principal value sense.

3. Show that if an ≥ 0,∀n ∈ Z then:
∞∑

n=−∞
an

converges if and only if it converges in the principal value sense.

2 Introducing Convolutions

2.1 Defining Convolutions

• What is a convolution?

– an operation between functions

– consider 2 1-periodic functions f, g ∈ L2
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– their convolution is defined by:

f ∗ g(x) =

∫ 1

0

f(y)g(x− y) dy

– seems overly complex, but it has very nice properties

– think of it like addition or multiplication of functions: a way of combining functions to produce
other functions

2.1.1 Examples: Intuitive Meaning of Convolutions

Convolutions can be thought in 2 senses.

1. If
∫ 1

0
g = 1, g is used to compute a weighted average of f , centered at x

Figure 1: The convolution involves centering g(y) at y = x (so we get g(y − x)), and then multiplying f(y)
by this, effectively weighting f according to g. The integral then acts as taking an average.

In fact, if g = 1, we actually get the average of f .

If I =
[
− 1
N ,

1
N

]
, and g = N

2 XI , then f ∗ g(x) is the average value of f over the interval
[
x− 1

N , x+ 1
N

]
(the key here is that g is such that

∫ 1

0
g = 1, so it doesn’t add extra weight, it just redistributes it)

2. In this video, Dr. Peyam discusses how f ∗g(n) can be thought as a continuous case of multiplication;
in particular, f ∗g(n) can be thought of as the coefficient of xn in a polynomial expansion, where n ∈ R

2.2 Lemma: Properties of Convolutions

Let f, g, h ∈ L2 be 1-periodic. Then:

1. f ∗ g ∈ L2

2. f ∗ g = g ∗ f

3. (f + λg) ∗ h = f ∗ h+ λ(g ∗ h)

[Lemma 5.2]
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Proof. For the first one, I have a proof, but I am not too sure, so I won’t add it in case it causes confusion.

For commutativity, we note that:

f ∗ g(x) =

∫ 1

0

f(y)g(x− y) dy

= −
∫ z=x−(1)

z=x−(0)
f(x− z)g(z) dz

=

∫ x

x−1
g(z)f(x− z) dz

=

∫ 1

0

g(z)f(x− z) dz

= g ∗ f(x)

The last one follows directly from linearity of integration.

3 Dirichlet and Fejér Kernels

3.1 Lemma: The Dirichlet Kernel

• Why are convolutions important for the study of Fourier Analysis?

– we can use them to express the partial sum SNf of a Fourier Series:

SNf(x) =

N∑
n=−N

f̂(n)e2πinx

=

N∑
n=−N

(∫ 1

0

f(y)e−2πiny dy

)
e2πinx

=

∫ 1

0

f(y)

(
N∑

n=−N
e−2πinye2πinx

)
dy (since the sum is finite)

=

∫ 1

0

f(y)

(
N∑

n=−N
e2πin(x−y)

)
dy

Thus, if we define:

DN (x) =

N∑
n=−N

e2πinx

It follows that:

SNf(x) =

∫ 1

0

f(y)DN (x− y) dy = f ∗DN (x)
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The sequence of functions:

DN(x) =
N∑

n=−N

e2πinx

is called the Dirichlet kernel.
We can write the Dirichlet kernel as:

DN(x) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

[Lemma 5.3]

Proof. Just “follow your nose”.

Notice, we can rewrite:

DN (x) =

N∑
n=−N

e2πinx = e−2πiNx
2N∑
n=0

e2πinx

In this form, we can think of DN (x) as a geometric series, with first term 1, and common ratio e2πix:

DN (x) = e−2πiNx
2N∑
n=0

(
e2πix

)n
Recall the sum of a (finite) geometric series:

N∑
n=0

a0 × rn =
a(1− rN+1)

1− r
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Thus, we can write:

DN (x) = e−2πiNx
1−

(
e2πix

)2N+1

1− e2πix

=
e−2πiNx − e2πi(2N+1)xe−2πiNx

1− e2πix

=
e−2πiNx − e2πi(N+1)x

1− e2πix

=
e−2πiNx − e2πiNxe2πix

1− e2πix

=
e−πix

e−πix
× e−2πiNx − e2πiNxe2πix

1− e2πix

=
e−2πiNxe−πix − e2πiNxeπix

e−πix − eπix

=
e−2πi(N+ 1

2 )x − e2πi(N+ 1
2 )x

e−πix − eπix

=
e2πi(N+ 1

2 )x − e−2πi(N+ 1
2 )x

eπix − e−πix

But recall the formula (derived from Euler’s Identity):

sin(x) =
eix − e−ix

2i

So it follows that:

DN (x) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

as required.
It must be noted that in this form, DN (0) is undefined; however, if we look at the original formula, we

can see that:

DN (0) =

N∑
n=−N

e0 = 2N + 1

which will in fact be the maximum of the function. We can visualise DN (x):
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Figure 2: As N increases, the frequency of DN (x) also increases. Moreover, its maximum 2N + 1 will also
increase. The result is taht the sequence gets progressively more squashed towards the center.

3.1.1 Lemma: Integral of Dirichlet Kernel

∫ 1

0

DN(x) dx = 1, N ∈ N

Proof. This is a straightforward calculation:∫ 1

0

DN (x) dx =

∫ 1

0

(
N∑

n=−N
e2πinx

)
dx

=

N∑
n=−N

(∫ 1

0

e2πinx dx

)

But recall, by Lemma 5.1, since e2πinx is part of the trigonometric system:∫ 1

0

e2πinx dx =

{
0, n 6= 0

1, n = 0
∀n ∈ Z

Such that: ∫ 1

0

DN (x) dx =

N∑
n=−N

(∫ 1

0

e2πinx dx

)
= 1
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3.2 Intuition: Approximations via Dirichlet Kernel

From the above, the Dirichlet Kernel has some nice properties, namely:

•
∫ 1

0
DN (x) dx = 1

• most of it’s “mass” gets concentrated on the origin as N →∞

Because of this, it seems reasonable that we can approximate any function f via:

f(x) ≈ f ∗DN (x)

(the convolution acts as a weighted average of f at x; but most of the probability mass DN (x) will assign
to the value of f at x)

However, DN (x) has a problem: it is an oscillating function, with oscillations getting very out of hand
as N →∞. In particular this means that for some functions (including well-behaved, continuous ones):

f ∗DN (x)

can diverge as N →∞.

3.2.1 Exercises: Cesàro Summation (TODO)

Consider a sequence (ak)k∈N.
It’s Nth Cesàro Sum or Nth Cesàro Mean is the sequence obtained
by taking an average of the first N partial sums of ak:

σN =

∑N
i=1 Si
N

=

∑N
i=1

∑i
k=1 ak

N

The series
∑∞

k=1 ak is called Cesàro Summable to S if σN converges to
S <∞.

1. Prove that if ak → L then:

lim
n→∞

Sn
n

= L

2. Prove that if S =
∑∞
k=1 ak with S <∞, then

∑∞
k=1 ak is Cesàro Summable to S.

3. Prove that the series
∑∞
k=1(−1)k−1 does not converge, but is nonetheless Cesàro Summable

to S. Find this S.

3.3 Lemma: The Fejér Kernel

We now introduce the Fejér Kernel. It is constructed by employing Cesàro Sums, with the hopes (well
justified) that taking the average will smoothen out the oscillations. As we can see, this tends out to solve
our problem, and allow us to prove our claims with regards to the convergence of Fourier Series.
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The Fejér Kernel is the Cesàro Sum of the trigonometric system:

KN(x) =
1

N + 1

N∑
n=0

Dn(x) =
1

N + 1

N∑
n=0

n∑
k=−n

e2πikx

Furthermore, we have that:

KN(x) =
1

2N + 1

1− cos(2π(N + 1)x)

sin(πx)2
=

1

N + 1

(
sin(π(N + 1)x)

sin(πx)

)2

In particular, this means that KN(x) ≥ 0 for any x ∈ R. [Lemma 5.4]

Proof. Recall, we have that:

DN (x) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

The key is to make use of the following identity:

2 sin(x) sin(y) = cos(x− y)− cos(x+ y)

This is immediately derived from the use of the sum of angle formulae:

cos(A+B) = cos(A) cos(B)− sin(A) sin(B) cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

To use it, we require a product of sines, which can be easily achieved (here we assume that x 6= 0):

DN (x) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

=
2 sin(πx)

2 sin(πx)
×

sin
(
2π
(
N + 1

2

)
x
)

2 sin(πx)

=
2 sin(πx) sin

(
2π
(
N + 1

2

)
x
)

2 sin2(πx)

=
cos
(
πx− 2π

(
N + 1

2

)
x
)
− cos

(
πx+ 2π

(
N + 1

2

)
x
)

2 sin2(πx)

=
cos (πx− 2πNx− πx)− cos (πx+ 2πNx+ πx)

2 sin2(πx)

=
cos (−2πNx)− cos (2π(N + 1)x)

2 sin2(πx)

=
cos (2πNx)− cos (2π(N + 1)x)

2 sin2(πx)

since the cosine is an even function.

Now, for the Féjer Kernel:
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KN (x) =
1

N + 1

N∑
n=0

Dn(x)

=
1

N + 1

N∑
n=0

cos (2πNx)− cos (2π(N + 1)x)

2 sin2(πx)

=
1

2 sin2(πx)(N + 1)

N∑
n=0

cos (2πNx)− cos (2π(N + 1)x)

=
1

2 sin2(πx)(N + 1)
(cos (2π0x)−�����cos (2πx) +�����cos (2πx)−�����cos (2π2)

+ . . .+������
cos (2πNx)− cos (2π(N + 1)x))

=
1− cos(2π(N + 1)x)

2 sin2(πx)(N + 1)

This is the first of the formulae. For the second one, we employ the identity:

1− cos(2x) = 2 sin2(x)

such that:

KN (x) =
1− cos(2π(N + 1)x)

2 sin2(πx)(N + 1)
=

2 sin2(π(N + 1)x)

2 sin2(πx)(N + 1)
=

1

N + 1

(
sin(π(N + 1)x)

sin(πx)

)2

4 Approximations of Unity

4.1 Defining an Approximation of Unity

• What is the identity function for the convolution operator?

– if ∗ had an identity g, this would mean that for any 1-periodic function f ∈ L2 we would have
that:

f ∗ g(x) =

∫ 1

0

f(y)g(x− y) dy = f(x)

– turns out, no such g can exists

Proof. We recall the Riemann-Lebesgue Lemma:

Let (φn)n∈N be an orthonormal system, and let f ∈ L2. Then:

lim
n→∞
〈f, φn〉 = 0

[Corollary 5.2]

Now, lets assume that an identity g exists, and consider the trigonometric system. Then:

φn∗g(x) = g∗φn(x) =

∫ 1

0

φn(x−y)g(y) dy = e2πinx
∫ 1

0

g(y)e−2πiny dy = φn(x)

∫ 1

0

g(y)φn(y) dy = φn(x)〈g, φn〉
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But if g is the identity, then we must have that:

φn ∗ g(x) = φn(x)〈g, φn〉 = φn(x) ⇐⇒ 〈g, φn〉 = 1

But this contradicts the Riemann-Lebesgue Lemma, so no such g can exist.

• What is an approximation of unity?

– the “next best thing” in terms of having a unity for convolution

– an approximation of unity is a sequence of 1-periodic and integrable functions (kn)n∈N

– the (kn)n∈N are such that:
kn ∗ f → f

uniformly on R for any 1-periodic and continuous f

– in other words:
lim
n→∞

sup
x∈R
|f ∗ kn(x)− f(x)| = 0

4.2 Theorem: Properties of Approximations of Unity

Let (kn)n∈N be a sequence of 1-periodic and integrable functions satis-
fying:

1. ∀x ∈ R, kn(x) ≥ 0

2. ∫ 1
2

− 1
2

kn(t) dt = 1

3. ∀δ ∈
(
0, 1

2

]
we have that:

lim
n→∞

(∫ δ

−δ
kn(t) dt

)
= 1

Then, (kn)n∈N is an approximation of unity. [Theorem 5.6]
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The conditions (2) and (3) can be alternatively formulated as:

lim
n→∞

(∫
δ≤|t|≤ 1

2

kn(t) dt

)
= 0

What these conditions tell us is that approximations of unity:

• are always positive

• have constant area under the curve

• most of the area under the curve is concentrated near the origin
x = 0; alternatively, away from its centre, there is very little area
under the curve

This allows us to get an idea of what approximations of unity look like:

Proof. Consider f which is 1-periodic and continuous. In particular, this means that on
[
− 1

2 ,
1
2

]
, f is

bounded and uniformly continuous, so by periodicity, this is the case over all R.

By definition of uniform continuity, ∃δ > 0 such that ∀ε > 0, whenever |t| < δ we have that:

|f(x− t)− f(x)| ≤ ε

2

where x ∈ R.

Now, consider the expression:
f ∗ kn(x)− f(x)
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Using the definition of convolution:

f ∗ kn(x)− f(x) =

(∫ 1
2

− 1
2

kn(t)f(x− t) dt

)
− f(x)

=

(∫ 1
2

− 1
2

kn(t)f(x− t) dt

)
− f(x)

∫ 1
2

− 1
2

kn(t) dt (by property (2),

∫ 1
2

− 1
2

kn(t) dt = 1)

=

∫ 1
2

− 1
2

kn(t)(f(x− t)− f(x)) dt

Now, we can split this integral into 2 integrals, depending on whether |t| < δ or not (since in such a case,
uniform continuity applies, whilst in the other case it doesn’t). Hence, define:

A =

∫
|t|<δ

kn(t)(f(x− t)− f(x)) dt

B =

∫
δ≤|t|≤ 1

2

kn(t)(f(x− t)− f(x)) dt

such that:
f ∗ kn(x)− f(x) = A+B

For A, the uniform continuity condition applies, so we know that:

|f(x− t)− f(x)| ≤ ε

2

Thus:

|A| =

∣∣∣∣∣
∫
|t|<δ

kn(t)(f(x− t)− f(x))

∣∣∣∣∣ ≤
∫
|t|<δ

|kn(t)||f(x−t)−f(x)| ≤ ε

2

∫
|t|<δ

kn(t) dt ≤ ε

2

∫
|t|≤ 1

2

kn(t) dt =
ε

2

where we have used the positivity of kn(t) so that |kn(t)| = kn(t). Overall, we have shown that:

|A| ≤ ε

2

Now, we consider B. Notice, since f is bounded, it follows that ∃C > 0 such that ∀x ∈ R:

|f(x)| ≤ C

In particular, this implies that:

|f(x− t)− f(x)| ≤ |f(x− t)|+ |f(x)| ≤ 2C

Now, recall, by assumption of the theorem we have that:

lim
n→∞

(∫
δ≤|t|≤ 1

2

kn(t) dt

)
= 0

That is, ∃N such that whenever n ≥ N ,
∫
δ≤|t|≤ 1

2
kn(t) dt is arbitrarily small. In other words, we can find N

such that if n ≥ N : ∫
δ≤|t|≤ 1

2

kn(t) dt ≤ ε

4C
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This means that:

|B| ≤
∫
δ≤|t|≤ 1

2

|kn(t)||(f(x− t)− f(x))| dt ≤ 2C

∫
δ≤|t|≤ 1

2

kn(t) ≤ 2C
ε

4C
=
ε

2

Thus, we have shown that whenever n ≥ N , we have a ε > 0 such that:

|f ∗ kn(x)− f(x)| = |A+B| ≤ |A|+ |B| ≤ ε

2
+
ε

2
= ε

That is:
f ∗ kn(x)→ f(x)

so kn(x) is an approximation of unity, as required.

4.3 Corollary: Fejér Kernel as Approximation of Unity

The Fejér Kernel:

KN(x) =
1

N + 1

N∑
n=0

Dn(x)

is an approximation of unity.
However, the Dirichlet Kernel is not (it doesn’t satisfy positivity).

Proof. We just need to verify the 3 properties above:

1. ∀x ∈ R, kn(x) ≥ 0

This follows immediately from the definition of the Fejér Kernel.

2. ∫ 1
2

− 1
2

KN (t) dt = 1

This is clear, since we know that
∫ 1

0
DN (x) dx = 1, N ∈ N so:∫ 1

2

− 1
2

KN (t) dt =

∫ 1
2

− 1
2

1

N + 1

N∑
n=0

Dn(t) dt =
1

N + 1

N∑
n=0

∫ 1
2

− 1
2

Dn(t) dt =
1

N + 1

N∑
n=0

1 = 1

3.

lim
n→∞

(∫
δ≤|t|≤ 1

2

KN (t) dt

)
= 0

Recall we can write the Fejér Kernel explicitly as:

KN (x) =
1

2N + 1

1− cos(2π(N + 1)x)

sin(πx)2
=

1

N + 1

(
sin(π(N + 1)x)

sin(πx)

)2
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Now, let δ ∈
(
0, 12
)

and let |x| ≥ δ. Now, we know that ∀x ∈ R:

0 ≤ (sin(π(N + 1)x))2 ≤ 1

Moreover, on
[
0, π2

]
, sin2(x) is an increasing function, so sin2(πx) is increasing on

[
0, 12
]
. In particular,

this means that if |x| ≥ δ with − 1
2 ≤ x ≤

1
2 , then:

sin2(πx) ≥ sin2(σx) =⇒ 1

sin2(πx)
≤ 1

sin2(σx)

Thus, we have an upper bound on KN (x):

KN (x) ==
1

N + 1

(
sin(π(N + 1)x)

sin(πx)

)2

≤ 1

N + 1

1

sin2(πσ)

So then: ∫
δ≤|t|≤ 1

2

KN (t) dt ≤
∫
δ≤|t|≤ 1

2

1

N + 1

1

sin2(πσ)
dt ≤ 1

N + 1

1

sin2(πσ)

which converges to 0 as N →∞.

Hence, it follows that the Fejér Kernel is an approximation of unity.

4.3.1 Exercises (TODO)

1. Show that there exists a constant c > 0 such that:∫ 1

0

|DN (x)| dx ≥ c log(2 +N), ∀N ≥ 0

5 L2 Convergence of Fourier Series: The Grand Finale

5.1 Theorem: Fejér’s Theorem

For every 1-periodic, continuous function f :

KN ∗ f → f

uniformly on R as N →∞. [Theorem 5.5]

An alternative statement is that Fourier series of continuous functions are uniformly Cesàro Summable.

Proof. Since the Fejér Kernel is an approximation of unity, by definition:

KN ∗ f → f

uniformly on R as N →∞
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5.2 Corollary: Corollary of Fejér’s Theorem

Every 1-periodic, continuous function can be uniformly approxi-
mated by trigonometric polynomials.
That is, for every 1-periodic, continuous f , there exists a sequence:

(fn)n

of trigonometric polynomials, such that:

fn → f

uniformly.

Proof. If we can show that KN ∗ f is a trigonometric polynomial, then Fejér’s Theorem tells us that:

Kn ∗ f → f

uniformly, as we require.

A trigonometric polynomial has the form:

N∑
n=−N

cne
2πinx

We can write Kejér’s Kernel as:

KN (x) =
1

N + 1

N∑
n=0

n∑
k=−n

e2πikx

We then compute:

Kn ∗ f(x) =

∫ 1

0

f(t)Kn(x− t) dt

=

∫ 1

0

f(t)
1

N + 1

N∑
n=0

n∑
k=−n

e2πik(x−t) dt

=
1

N + 1

N∑
n=0

n∑
k=−n

e2πikx
∫ 1

0

f(t)e−2πikt dt

=
1

N + 1

N∑
n=0

n∑
k=−n

f̂(k)e2πikx

Now notice, for any n, we have that
∑n
k=−n f̂(k)e2πikx is a trigonometric polynomial. It then follows

that Kn ∗ f(x) is a finite sum of trigonometric polynomials, so it must also be a trigonometric polynomial,
as required.
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5.3 Lemma: L2 Convergence of Periodic and Continuous Functions

Let f be a 1-periodic and continuous function. Then, SNf converges
to f on L2. That is:

lim
N→∞

‖SNf − f‖2 = 0

[Lemma 5.5]

Proof. The notes have a longer, more spectacular proof, but I include a tiny, succint one below too.

Notice, SNf is a trigonometric polynomial, so by the Corollary of Fejér’s Theorem, we know that:

SNf → f

uniformly. But then, we show that uniform convergence implies L2 convergence, so it follows that

lim
n→∞

‖SNf − f‖2 = 0

For the proof in the notes we make use of Minkowski’s Inequality:

If f, g ∈ L2([a, b]) then:

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

and Bessel’s Inequality:

If (φn)n=1,2,... is an orthonormal system on [a, b], and f ∈ L2([a, b]), then:∑
n

|〈f, φn〉|2 ≤ ‖f‖22

Now, consider ε > 0. Since f is 1-periodic and continuous, the corollary of Fejér’s Theorem says that we
can find a sequence (pn)n∈N of trigonometric polynomials such that:

pn → f

uniformly. In particular, we can always find a trigonometric polynomial p satisfying:

|f(x)− p(x)| < ε

2
, x ∈ R
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In particular, and using the fact that we integrate over a unit interval, we know that:

‖f − p‖2 =

√∫ 1

0

|f(x)− p(x)|2 dx <

√∫ 1

0

ε2

4
dx =

ε

2

Let N denote the degree of p. Since p is a trigonometric polynomial, in particular:

SNp = p

It follows that:
SNf − f = SNf − SNp+ SNp− f = SN (f − p) + (p− f)

Applying Minkowski’s Inequality:

‖SNf − f‖2 ≤ ‖SN (f − p)‖2 + ‖p− f‖2

Now consider:

‖SNg‖22 = 〈SNg, SNg〉

=

〈
N∑

n=−N
ĝ(n)e2πinx,

N∑
n=−N

ĝ(n)e2πinx

〉

=

N∑
n=−N

N∑
k=−N

〈
ĝ(n)e2πinx, ĝ(k)e2πikx

〉
=

N∑
n=−N

〈
ĝ(n)e2πinx, ĝ(n)e2πinx

〉
(by orthogonality of trigonometric system)

=

N∑
n=−N

|ĝ(n)|2

So it follows by Minkowski’s Inequality that:

‖SNg‖2 =

√ ∑
|n|≤N

|ĝ(n)|2 ≤ ‖g‖2

Hence, we have that:
‖SN (f − p)‖2 ≤ ‖f − p‖2

Thus:
‖SNf − f‖2 ≤ 2‖f − p‖2 ≤ ε

The assumption that f is continuous can be dropped, since every L2 function can be approximated by
continuous functions.
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5.4 Lemma: L2 Convergence of Periodic Function in L2

If f is a 1-periodic L2 function, then there exists a sequence (fn)n of
continuous, 1-periodic functions so that:

fn → f

in L2. That is:
‖fn − f‖2 → 0

[Exercise 5.12]

Proof. Hint: First show the claim if f is a step function. Then, use that an L2 function can be approximated
by step functions in the L2 norm.

The difference between these 2 theorems is that the first on considered
general 1-periodic functions, and showed L2 convergence via SNf .
In this theorem, we specifically consider 1-periodic function in L2, and
show that there is a sequence of periodic functions which produce L2 con-
vergence.
In the next theorem, we show that in fact, SNf are one such sequence
of functions, thus showing that Fourier Series converge in L2 to any 1-
periodic function.

5.5 Theorem: Completeness of Trigonometric System

The trigonometric system is complete:∑
n

|〈f, e2πinx〉|2 = ‖f‖22

In particular, as shown in Theorem 5.4, this is true if and only if for any
1-periodic f ∈ L2 we have that SNf =

∑N
n=−N f̂(n)e2πinx converges to f

in L2. That is:
lim
N→∞

‖SNf − f‖2 = 0

Hence, the Fourier Series of f converges to f in the L2 sense. [Theorem
5.7]

Proof. Let f ∈ L2 be 1-periodic, and let ε > 0.
By Exercise 5.12 above, there is a sequence of continuous, 1-periodic functions which converge to f in

L2. Pick g such that:
‖f − g‖2 ≤ ε
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Moreover, since g is continuous, Lemma 5.5 applies, such that:

‖SNg − g‖2 → 0

in L2. In particular, this means that ∀N ≥M , we have that:

‖SNg − g‖2 ≤ ε

Now, we can write:
SNf − f = SNf − SNg + SNg − g + g − f

Applying Minkowski’s Inequality, it follows that:

‖SNf − f‖2 ≤ ‖SNf − SNg‖2 + ‖SNg − g‖2 + ‖g − f‖2

We know that:

‖SNf − SNg‖2 =

√√√√ N∑
n=−N

| ̂(f − g)(n)|2

So by Bessel’s Inequality, it follows that:

‖SNf − SNg‖2 ≤ ‖f − g‖2 ≤ ε

Thus, we have shown that:
‖SNf − f‖2 ≤ 3ε

so in particular, SNf converges to f in L2, so the trigonometric system is complete, as required.

5.6 Corollary: Parseval’s Theorem

Let g, f ∈ L2 be 1-periodic.
Then, we have that:

〈f, g〉 =
∞∑

n=−∞

f̂(n)ĝ(n)

In particular, this means that:

‖f‖22 =
∞∑

n=−∞

|f̂(n)|2

Proof. Notice that by (sesqui)linearity of the inner product:

〈SNf, g〉 =

N∑
n=−N

f̂(n)〈e2πinx, g〉 =

N∑
n=−N

f̂(n)ĝ(n)

Now consider:
|〈SNf, g〉 − 〈f, g〉| = |〈SNf − f, g〉|
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But by the Cauchy-Schwarz Inequality, alongside the fact that SNf → f in L2, it follows that::

|〈SNf, g〉 − 〈f, g〉| ≤ ‖〈SNf − f‖2‖g‖2 → 0

Hence, we have that:
〈SNf, g〉 → 〈f, g〉

So in particular:

〈f, g〉 =

∞∑
n=−∞

f̂(n)ĝ(n)

5.6.1 Exercises (TODO)

1. Let f be the 1-periodic function satisfying f(x) = x, x ∈ [0, 1). Using Parseval’s Theorem,
derive the formula:

∞∑
n=1

1

n2
=
π2

6

2. Using Parseval’s Theorem for a suitable 1-periodic function, determine the value of:

∞∑
n=1

1

n4

6 Workshop

We say that the series:

∞∑
n=0

an, an ∈ C

is Abel summable to S if the series:

A(r) =
∞∑
n=0

anr
n

converges for every r ∈ (0, 1) and:

lim
r→1−

A(r) = S

1. We now prove Abel’s Theorem:

If the series
∑∞

n=0 an converges to S, then it is also Abel summable to
S.
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(a) Show that for complex numbers a0, . . . , aN , b0, . . . , bN :

N∑
n=0

(an − an−1)bn = aNbN +

N−1∑
n=0

an(bn − bn+1)

We can think of this as summation by parts.

We expand the sum, with a−1 = 0. Then:

N∑
n=0

(an − an−1)bn = (a0 − a−1)b0 + (a1 − a0)b1 + (a2 − a1)b2 + . . .+ (aN−1 − aN−2)bN−1 + (aN − aN−1)bN

= a0b0 + a1b1 − a0b1 + a2b2 − a1b2 + . . .+ aN−1bN−1 − aN−2bN−1 + aNbN − aN−1bN
= a0(b0 − b1) + a1(b1 − b2) + . . .+ aN−1(bN−1 − bN ) + aNbN

= aNbN +

N−1∑
n=0

an(bn − bn+1)

(b) If:

sn =

n∑
k=0

ak

show that:
N∑
n=0

anr
n = sNr

N + (1− r)
N−1∑
n=0

snr
n

This is a clear example of an easy question with good exam technique. For
some reason, I completely ignored what we just showed above, and pro-
ceeded to prove this by induction, which is completely unnecessary.

Notice, we can write:
an = sn − sn−1, a0 = s0

Then, applying summation by parts:

N∑
n=0

anr
n =

N∑
n=0

(sn − sn−1)rn = sNr
N +

N−1∑
n=0

sn(rn − rn+1) = sNr
N + (1− r)

N−1∑
n=0

snr
n)

(c) For r ∈ (0, 1), show that A(r) = (1 − r)
∑∞
n=0 snr

n. To conclude, show that ∀ε > 0 there
exists δ > 0 such that if 1− r < δ then:

|A(r)− S| < ε

This becomes straightforward once we realise that:

∞∑
k=0

ark =
a

1− r
=⇒ (1− r)

∞∑
k=0

rk = a

as this allows us to apply the fact that that sn → S. Failing to realise this
makes it extremely hard to prove.
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Notice:

A(r) = lim
N→∞

N∑
n=0

anr
n = lim

n→∞

(
sNr

N + (1− r)
N−1∑
n=0

snr
n)

)
Notice, since sn → S, we have that sN is bounded; since r ∈ (0, 1), it follows that sNr

N → 0, and
so:

A(r) = (1− r)
∞∑
n=0

snr
n

as required.

Moreover, we have that sn → S, so ∀ε > 0, we can find N ∈ N such that if n > N then:

|sn − S| < ε

Now, consider:

|A(r)− S| =

∣∣∣∣∣(1− r)
∞∑
n=0

snr
n − S

∣∣∣∣∣ =

∣∣∣∣∣(1− r)
∞∑
n=0

snr
n − (1− r)

∞∑
n=0

Srn

∣∣∣∣∣ =

∣∣∣∣∣(1− r)
∞∑
n=0

(sn − S)rn

∣∣∣∣∣
Now, we can split the summation:∣∣∣∣∣(1− r)

∞∑
n=0

(sn − S)rn

∣∣∣∣∣ ≤ (1− r)
∞∑
n=0

|sn − S|rn = (1− r)

(
N∑
n=0

|sn − S|rn +

∞∑
n=N+1

|sn − S|rn
)

By convergence of sn, it follows that:

(1− r)
∞∑

n=N+1

|sn − S|rn < (1− r)
∞∑

n=N+1

ε|sn − S|rn = ε

Hence, we have that:

|A(r)− S| < (1− r)
N∑
n=0

|sn − S|rn + ε

But since
∑N
n=0 |sn−S|rn is a finite sum, it is finite, and so, if 1− r < δ, with δ small enough (that

is, by making r as close to 1 as possible), it follows that we can ensure that:

(1− r)
N∑
n=0

|sn − S|rn < ε

Such that:
|A(r)− S| < 2ε

and so:
A(r)→ S

as required.

2. For each of the following, decide if the series is Abel summable and if so, compute the
corresponding limit:

(a)
∑∞
n=0(−1)n = 1− 1 + 1− 1 + . . .

We have:

A(r) =

∞∑
n=0

(−1)nrn =

∞∑
n=0

(−r)n
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This is a geometric series, with first term 1, and common ratio −r. Since r ∈ (0, 1):

A(r) =
1

1 + r

We still don’t know the value of the Abel summation: we need to take a
limit!

Taking the limit:

lim
r→1−

A(r) = lim
r→1−

1

1 + r
=

1

2

Hence,
∑∞
n=0(−1)n is Abel summable to 1

2 .

(b)
∑∞
n=0(−1)nn = −1 + 2− 3 + 4 + . . .

This is quite tricky, and it requires some ingenuity.

We have:

A(r) =

∞∑
n=0

(−1)nnrn

Notice, if we define:

f(r) =

∞∑
n=0

(−1)nrn

we have a power series. We can compute its radius of convergence:∣∣∣∣ (−1)n+1rn+1

(−1)nrn

∣∣∣∣ = | − r|

so we require:
|r| < 1

Hence, f(r) will be differentiable on (0, 1), and we can obtain the derivative by termwise differen-
tiation:

f ′(r) =

∞∑
n=0

(−1)nnrn−1 =

Hence, we have that:
A(r) = rf ′(r)

Now, notice that:

f(r) =

∞∑
n=0

(−1)nrn =
1

1 + r

so:

f ′(r) =
d

dr

(
1

1 + r

)
= − 1

(1 + r)2

Thus:
A(r) = rf ′(r) = − r

(1 + r)2

so A(r) converges, and:

lim
r→1−

A(r) = lim
r→1−

− r

(1 + r)2
= −1

4

Hence,
∑∞
n=0(−1)nn is Abel summable to − 1

4 .
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(c)
∑∞
n=0(−1)n2n = 1− 2 + 4− 8 + . . .

We have:

A(r) =

∞∑
n=0

(−1)n2nrn =

∞∑
n=0

(−2r)n

This only converges when:

| − 2r| < 1 =⇒ |r| < 1

2

so A(r) won’t converge ∀r ∈ (0, 1). Hence,
∑∞
n=0(−1)n2n is not Abel summable.

(d)
∑∞
n=0 1 = 1 + 1 + 1 + 1 + . . .

We have:

A(r) =

∞∑
n=0

rn =
1

1− r

But notice:

lim
r→1−

A(r) = lim
r→1−

1

1− r
=∞

so the limit is not finite, and so,
∑∞
n=0 1 is not Abel summable.

Recall, the Fourier Series of a 1-periodic function f is given by:

∞∑
n=−∞

f̂(n)e2πinx

where:

f̂(n) =

∫ 1

0

f(t)e−2πint dt

A Fourier Series is Abel summable if:

Arf(x) =
∞∑

n=−∞

f̂(n)r|n|e2πinx

converges ∀r ∈ (0, 1), and the limit:

lim
r→1−

Arf(x)

exists.

3. Show that if f is integrable, then the series defining Arf(x) converges absolutely ∀r ∈ (0, 1)
and ∀x ∈ R. You might want to use the fact that:

|f̂(n)| =
∣∣∣∣∫ 1

0

f(t)e−2πint dt

∣∣∣∣ ≤ ∫ 1

0

|f(t)| dt
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Consider:

∞∑
n=−∞

∣∣∣f̂(n)r|n|e2πinx
∣∣∣ ≤ ∞∑

n=−∞

∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ r|n||e2πinx|
=

∞∑
n=−∞

∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ r|n|
=

∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ ∞∑
n=−∞

r|n|

Now, since f is integrable,
∣∣∣∫ 1

0
f(t) dt

∣∣∣ <∞. Moreover,
∑∞
n=−∞ r|n| is a convergent geometric series, so

it follows that:
∞∑

n=−∞

∣∣∣f̂(n)r|n|e2πinx
∣∣∣ ≤ ∞∑

n=−∞

∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ r|n| <∞
and so, Arf(x) is absolutely convergent.

In the solutions, they use power series. In particular, they use the fact that:

|e2πinx| = 1 |f̂(n)| ≤
∫ 1

0

|f(t)| dt

so the radius of convergence of:

∞∑
n=0

f̂(n)rne2πinx
∞∑
n=1

f̂(−n)rne−2πinx

will be 1, and so, both are absolutely convergent for r ∈ (0, 1), implying that:

∞∑
n=−∞

∣∣∣f̂(n)r|n|e2πinx
∣∣∣

is absolutely convergent ∀r ∈ (0, 1).

4. (a) Show that for all integrable f with r ∈ (0, 1) and x ∈ R, we have:

Arf(x) = (f ∗ Pr)(x)

where:

Pr(x) =

∞∑
n=−∞

r|n|e2πinx

Notice, Pr(x) is an absolutely convergent series. It is known as the Poisson kernel.
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From definition:

Arf(x) =

∞∑
n=−∞

f̂(n)r|n|e2πinx

=

∞∑
n=−∞

(∫ 1

0

f(t)e−2πint dt

)
r|n|e2πinx

=

∞∑
n=−∞

∫ 1

0

f(t)e−2πintr|n|e2πinx dt

=

∞∑
n=−∞

∫ 1

0

f(t)e2πin(x−t)r|n| dt

Now, recall:

Suppose fn is a sequence of functions, each of which is integrable on
some I.
If:

∞∑
n=1

∫
I

|fn| <∞

(the sum of integrals of each function in the sequence is convergent)
and f is a function on I, such that,

f(x) =
∞∑
n=1

fn(x)

for any x, such that
∑∞

n=1 |fn(x)| < ∞a , then f is integrable on I, and
its integral is: ∫

I

f =
∞∑
n=1

∫
I

fn <∞

[Theorem 4.3]

athis is just saying that we require the x to be such that the sum converges (to f)

Indeed, we have that:

∞∑
n=−∞

∫ 1

0

|f(t)e2πin(x−t)r|n|| dt =

∞∑
n=−∞

r|n|
∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(t) dt

∣∣∣∣ ∞∑
n=−∞

r|n| <∞

since
∣∣∣∫ 1

0
f(t) dt

∣∣∣ is finite, and
∑∞
n=−∞ r|n| dt is a geometric series with |r| < 1.

Hence, the theorem applies, and we can swap the integral and the summation:

Arf(x) =

∫ 1

0

f(t)

∞∑
n=−∞

e2πin(x−t)r|n| = (f ∗ Pr)(x)

as required.
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(b) Show that:

Pr(x) =
1− r2

1− 2r cos(2πx) + r2
, ∀r ∈ (0, 1)

Since Pr(x) is absolutely convergent, we can “choose” the order of summation, and so:

Pr(x) =

∞∑
n=−∞

r|n|e2πinx =

∞∑
n=0

rne2πinx +

∞∑
n=1

rne−2πinx =

∞∑
n=0

(
re2πix

)n
+

∞∑
n=1

(
re−2πix

)n
These are 2 geometric series, with common ratio less than 1, so:

Pr(x) =
1

1− re2πix
+

re−2πix

1− re−2πix

=
1− re−2πix

1− re−2πix
1

1− re2πix
+

1− re2πix

1− re2πix
re−2πix

1− re−2πix

=
1− re−2πix + re−2πix − r2

1− r(e2πix + e−2πix) + r2

=
1− r2

1− 2r cos(2πx) + r2

as required

(c) Use:

Let (kn)n∈N be a sequence of 1-periodic and integrable functions satis-
fying:

1. ∀x ∈ R, kn(x) ≥ 0

2. ∫ 1
2

− 1
2

kn(t) dt = 1

3. ∀δ ∈
(
0, 1

2

]
we have that:

lim
n→∞

(∫ δ

−δ
kn(t) dt

)
= 1

Then, (kn)n∈N is an approximation of unity. [Theorem 5.6]

to show that Prn(x) with rn = 1− 1
n+1 provides an approximation of unity.

Notice:

1− r2 > 0 1− 2r cos(2πx) + r2 ≥ 1− 2r + r2 = (1− r)2 > 0 ∀r ∈ (0, 1)

and since:

Pr(x) =
1− r2

1− 2r cos(2πx) + r2
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it follows that Pr(x) > 0 as required.

Moreover: ∫ 1

0

Pr(x) dx =

∫ 1

0

∞∑
n=−∞

r|n|e2πinx dx

=

∞∑
n=−∞

r|n|
∫ 1

0

e2πinx dx = r0

= 1

since
∫ 1

0
e2πinx dx is non-zero only when n = 0.

For the third property, we use the alternative form, and we try to show that:

lim
n→∞

(∫
δ≤|t|≤ 1

2

Prn(t) dt

)
= 0

Consider 0 < δ ≤ 1
2 . Then, if δ ≤ |x| ≤ 1

2 (that is, either x ∈
[
δ, 12
]

or x ∈
[
− 1

2 ,−δ
]
). Then.

Pr(x) =
1− r2

1− 2r cos(2πx) + r2
<

1− r2

1− cos(2πx)

since:
1− cos(2πx) < 1− cos(2πx) + r2

We can plot 1− cos(2πx) for x ∈ [−0.5, 0.5]:

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.5

1

1.5

2
1− cos(2πx)

Now, if x ∈
[
δ, 12
]
, we can see that no matter what δ we pick, 1− cos(2πx) will be increasing, and

so:
1− cos(2πx) ≥ 1− cos(2πδ)

Similarly, if x ∈
[
− 1

2 ,−δ
]
, we have that 1 − cos(2πx) is decreasing, and so, no matter what δ we

pick:
1− cos(2πx) ≥ 1− cos(2π(−δ)) = 1− cos(2πδ)

Thus, for any x satisfying δ ≤ |x| ≤ 1
2 , we have that:

1− cos(2πx) ≥ 1− cos(2πδ)
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and so for these x:

Pr(x) <
1− r2

1− cos(2πx)
≤ 1− r2

1− cos(2πδ)

Thus:

lim
n→∞

(∫
δ≤|t|≤ 1

2

Prn(t) dt

)
< lim
n→∞

(∫
δ≤|t|≤ 1

2

1− r2n
1− cos(2πδ)

dt

)
= lim
n→∞

(
(1− 2δ)(1− r2n)

1− cos(2πδ)

)
= 0

where we use the fact that limn→∞ rn = 1.

Consider a sequence (ak)k∈N.
It’s Nth Cesàro Sum or Nth Cesàro Mean is the sequence obtained
by taking an average of the first N partial sums of ak:

σN =

∑N
i=1 Si
N

=

∑N
i=1

∑i
k=1 ak

N

The series
∑∞

k=1 ak is called Cesàro Summable to S if σN converges to
S <∞.

5. Prove that if
∑∞
k=1 ak is summable to S, then

∑∞
k=1 ak is Cesàro summable to S.

Define sn =
∑n
k=1 ak. Since sn converges, in particular:

1. sn is bounded : ∃M ∈ Z+ : ∀n ∈ N : |an| < M

2. ∀ε > 0, ∃N ∈ N : ∀ n ≥ N =⇒ |sn − S| < ε
2

We claim that s1+s2+...+sn
n → a so, by the definition of the limit, we require that:

∀ε > 0, ∃N∗ ∈ N : ∀n ≥ N∗ =⇒
∣∣∣∣s1 + s2 + . . .+ sn

n
− S

∣∣∣∣ < ε

Now, let:

N∗ = max

{
N,

4M(N − 1)

ε

}
and let n ≥ N∗.
Using the triangle inequality, we can split the LHS into 2 summations: since we are considering n ≥ N∗,
in particular n ≥ N , so we can have one summation with terms (si)1≤i<N , and another one with terms
(si)N≤i≤n: ∣∣∣∣s1 + s2 + . . .+ sn

n
− S

∣∣∣∣ =
1

n
|(s1 − S) + (s2 − S) + . . .+ (sn − S)|

≤ 1

n
|s1 − S|+ |s2 − S|+ . . .+ |sn − S|

=
1

n

(
N−1∑
i=1

|si − S|+
n∑

i=N

|si − S|

)

Now, since sn is bounded, its limit is also bounded, so ∃M ∈ Z+:

∀i ∈ N, |si| < M and |S| < M
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For i < N , the largest possible value of |si − S| must be 2M (for example if si = M,S = −M). This
also follows from the triangle inequality (|si − S| < |si|+ |S| < M +M). Thus:

N−1∑
i=1

|si − S| ≤ 2M(N − 1)

For i ≥ N , we can impose a tighter bound, as we know that ∀i ≥ N, |si − S| < ε
2 , so:

n∑
i=N

|si − S| <
ε(n−N + 1)

2

Thus, it follows that:

1

n

(
N−1∑
i=1

|si − S|+
n∑

i=N

|si − S|

)
<

2M(N − 1)

n
+
ε(n−N + 1)

2n

Since n ≥ N∗, then either n ≥ N ≥ 4M(N−1)
ε or n ≥ 4M(N−1)

ε ≥ N .

Since n ≥ 4M(N−1)
ε , then:

2M(N − 1)

n
≤ 2M(N − 1)

4M(N−1)
ε

=
ε

2

Moreover, since n−N + 1 ≤ n =⇒ n−N+1
n ≤ 1 then:

ε(n−N + 1)

2n
≤ ε

2

By choosing n ≥ N∗, we thus ensure that:∣∣∣∣s1 + s2 + . . .+ sn
n

− S
∣∣∣∣ =

1

n
|(s1 − S) + (s2 − S) + . . .+ (sn − S)|

≤ 1

n

(
N−1∑
i=1

|si − S|+
n∑

i=N

|si − S|

)

<
2M(N − 1)

n
+
ε(n−N + 1)

n

≤ ε

2
+
ε

2
= ε

Thus, ∀ε > 0, ∃N∗ ∈ N such that for all n ≥ N∗:∣∣∣∣s1 + s2 + . . .+ sn
n

− S
∣∣∣∣ < ε

By the definition of the limit, it follows that:

s1 + s2 + . . .+ sn
n

= σn → S

So
∑∞
k=1 ak is Cesàro summable to S, as required.
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6. Prove that the sum
∑∞
k=0(−1)k does not converge, but is Cesàro summable to some limit

S, and determine S.

The key here is to find a formula with which to define the sequence of par-
tial sums.

Looking at partial sums:
s1 = 1 s2 = 0 s3 = 1 . . .

We can write this as:

sn =
1

2
((−1)n + 1)

since when n is odd, we get sn = 0, and if n is even we get sn = 1.

Notice, sn diverges, since limn→∞(−1)n is undefined. However:

σN+1 =
1

N + 1

N∑
n=0

1

2
((−1)n + 1)

=
1

2(N + 1)

(
N∑
n=0

((−1)n + 1)

)

=
1

2(N + 1)
(sn +N + 1))

=
1
2 ((−1)n + 1) +N + 1

2(N + 1)

=
1

2
+

(−1)n + 1

4(N + 1)

Hence:

lim
N→∞

σN+1 = lim
N→∞

1

2
+

(−1)n + 1

4(N + 1)
=

1

2

so
∑∞
k=0(−1)k is Cesàro summable to 1

2 .

As an alternative, one can notice that in the partial sums, only the even terms contribute to s0 + s1 +
. . .+ sN , so:

s0 + s1 + . . .+ sN = 1 +

⌊
N

2

⌋
So then:

σN+1 =
1 +

⌊
N
2

⌋
N + 1

≤
1 + N

2

N
=
N + 2

2N
→ 1

2

However, I feel that this is less rigorous.

7. Show that if
∑∞
k=1 ak is Cesàro summable, then:

lim
n→∞

an
n

= 0
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Since the series is Cesàro summable, in particular σN converges, and so, it must be Cauchy. This means
that:

σN − σN−1 → 0

But we compute:

σN − σN−1 =

∑N
n=1 sn
N

−
∑N−1
n=1 sn
N − 1

=
(N − 1)

∑N
n=1 sn −N

∑N−1
n=1 sn

N(N − 1)

=
N
∑N
n=1 sn −

∑N
n=1 sn −N

∑N−1
n=1 sn

N(N − 1)

=
NsN −

∑N
n=1 sn

N(N − 1)

=
(N − 1)sN −

∑N−1
n=1 sn

N(N − 1)

=
sN
N
− σN−1

N

Notice, since σN converges, in particular it is bounded, so:

σN−1
N

→ 0

But then:
σN − σN−1 → 0 ⇐⇒ sN

N
→ 0

In particular, this again means that sN
N is Cauchy, so:

sN
N
− sN−1
N − 1

→ 0

But we compute:

sN
N
− sN−1
N − 1

=

∑N
n=1 an
N

−
∑N−1
n=1 an
N − 1

=
(N − 1)

∑N
n=1 an −N

∑N−1
n=1 an

N(N − 1)

=
N
∑N
n=1 an −

∑N
n=1 an −N

∑N−1
n=1 an

N(N − 1)

=
NaN −

∑N
n=1 an

N(N − 1)

=
(N − 1)aN −

∑N−1
n=1 an

N(N − 1)

=
aN
N
− sN−1
N(N − 1)

We know that sN−1

N−1 → 0 so sN−1

N(N−1) → 0, and so:

sN
N
− sN−1
N − 1

→ 0 ⇐⇒ aN
N
→ 0

as required.
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8. Give an example of a series which is Abel summable, but not Cesàro summable.

We saw above that
∑∞
n=1(−1)nn is Abel summable. However, it won’t be Cesàro summable. If it were,

then:
an
n
→ 0

but:
an
n

= (−1)n

which doesn’t even converge.

9. Show that if a series is Cesàro summable, then it is Abel summable (to the same value).

Let
∑∞
n=1 an be Cesàro summable, and assume that:

σN → 0

If not, we can modify a1 so that this is the case, since:

σN =

∑N
n=1 sn
N

=
Na1 +

∑N
n=1

∑n
k=2 ak

N
= a1 +

∑N
n=1

∑n
k=2 ak

N

so modifying a1 accordingly ensures that we can make σN converge to 0.

Now, consider the series:

A(r) =

∞∑
n=1

anr
n

this will converge for r ∈ (0, 1).

Moreover, from 1)b) above:
∞∑
n=1

anr
n = (1− r)

∞∑
n=1

snr
n

which further implies:
∞∑
n=1

snr
n = (1− r)

∞∑
n=1

nσnr
n

Hence:

A(r) =

∞∑
n=1

anr
n = (1− r)2

∞∑
n=1

nσnr
n

Since σn → 0, it follows that ∀ε > 0 ∃N such that if n ≥ N :

|σn| ≤ ε

Then:

|A(r)| =

∣∣∣∣∣(1− r)2
∞∑
n=1

nσnr
n

∣∣∣∣∣ ≤ (1− r2)

∞∑
n=1

n|σn|rn ≤ (1− r2)

(
N∑
n=1

n|σn|rn +

∞∑
n=N+1

nεrn

)

Notice, if we let f(r) =
∑∞
n=N∗1 r

n, we have aconvergent power series, so f ′(r) =
∑∞
n=N∗1 nr

n−1 is also
a convergent power series, and:

rf ′(r) =

∞∑
n=N+1

nrn

But:

f(r) =
rN+1

1− r
=⇒ f ′(r) =

(N + 1)rN (1− r) + rN+1

(1− r)2
= rN

(
N −Nr + 1

(1− r)2

)
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Thus:

(1− r)2
∞∑

n=N+1

nεrn = εrN+1(N −Nr + 1) < ε

Moreover,
∑N
n=1 n|σn|rn is a finite sum, so if we make r as close as we want to 1, we ensure that:

(1− r)2
N∑
n=1

n|σn|rn ≤ ε

Thus, we ensure that:
|A(r)| ≤ 2ε

so:
lim
r→1−

A(r) = 0

as required.

10. Prove the following Theorem of Tauber:

If
∑∞

n=1 an is Abel summable to S and:

nan → 0

then
∑∞

n=1 an = S.
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