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1 Recapping Complex Numbers

e How can we define a complex function?

— a complex function f has the form:

fila,b) = C
— we can write f as:
f=g+ih
where:
g:la,b] > R
h:la,b] = R

e When is a complex function Lebesgue Integrable?

— f is Lebesgue Integrable if g, h are Lebesgue Integrable

- froef

e What is the modulus of a complex function?

— then, we can define:

— the modulus of f is |f|, which is a real valued function:
[fI?=f*+g°
e What is the complex conjugate of a complex function?
— if f is a complex function, then f is its complex conjugate, where:
f=g—ih
— extending what we know from complex numbers, we know that:

Fr=1rP

e What is Euler’s Formula? ‘
e'® = cos(z) + isin(x)

2 The Space L?

2.1 Defining the Space L*
e What is the Space L??

— a function space defined over some interval:

L? = L*([a, b))
— contains measurable functions of the form:

fila,b) = C

— f € L? then |f|? is Lebesgue Integrable

e What is the L?-norm?
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— a quantity || f||2 satisfying:
b
1913 = [ W@ de <o
a

e When is a complex function L? normalised?

— f is L?-normalised if its L?-norm is 1:

[Ifll2=1

o Is the set L? a vector space?

— yes. If f, g € L?, then:
f4+AgeL?

where A € C
— Proof. We firstly note that if f and g are measurable, then f + Ag is also measurable. Consider:

If + Xl = (f + Ag)(f + Ag)
= [F+2f +Xgf + (Ag)(Ng)
=[fI*+ Mgl* + Agf + Agf
Then, if we integrate:

b b
/|f+Ag|2=/ P+ Agl? +3gf + AgF

Notice, since f,g € L?, clearly f; |fI? + |A\g|? converges. Hence, we just need to consider the
convergence of:

/;Agfwgf

Theorem 4.15 in the notes states that if f(x) is a measurable function on I, and we have |f(x)| <
g(x) for almost every z € I (in other words, the inequality doesn’t hold only on a measurable set),
then if ¢ is integrable, f is also integrable (the proof of this involves construction a sequence of
functions which converge to f, and are bounded above by g, and then applying the Dominated
Convergence Theorem).

Notice, if we take the absolute value of the complex functions:

Agf + Agfl < |Agfl+[Agf]
= 2[A|gl| ]

A useful inequality to use is:

2 | 12
(a—b)2:a2+b2—2ab20 = abga +b

It follows that:

[Agf + Agfl < 20|l f]
< Algl* + /1)

Hence, |Agf + Agf| is dominated above by |A|(|g|?+ |f|?), which is integrable. Thus, by Theorem
4.15, it must be the case that Agf + Agf is also integrable, so:

b
/ |f + Agl?

must be integrable, and thus, f + A\g € L2. O
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e Are step functions in L2?

— yes, since they are always positive, so |f(z)| = f, and f2 is also a step function, which is Lebesgue
Integrable

e Are continuous functions on [a,b] in L??

— yes, since |f(z)] and |f(z)|? will be continuous, and so, Lebesgue Integrable

2.2 The Inner Product of Functions

e What is the inner product of 2 functions in L??

— let f,g € L*([a, b))

— define their inner product via:

b
(f.9) = / f(@)g@)da

e When are 2 functions orthogonal?

— whenever their inner product is 0:

b
(f. ) = / f(@)g(@)dz = 0

e What is sesquilinearity of the inner product?

— the inner product is linear in the first term:
(f + g, h) = (f, h) + Mg, h)
— the inner product is “semi-linear” in the second term:
(h, f +Ag) = (h. f) + AR, g)
e What is antisymmetry of the inner product?

(f.9)=1(9. /)

e What is positivity of the inner product?

— if f is 0 almost everywhere (that is, f =0 on a set of measure 0 only), then:

I£15 = (£, f) >0

— otherwise,

IF1I3 = (£, f) > 0

These properties define the abstract notion of an inner product space of
which L? is a prototypical example. In fact, L? is an example of a Hilbert
space — that is an inner product space, which has the desirable prop-
erty of completeness which means that every Cauchy sequence in L con-
verges to a limit in L?.
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2.3 The Cauchy-Schwarz Inequality

We have defined the inner product as an integral for functions in L?. However, we have no guarantee that
said integral will be defined. The Cauchy-Schwarz inequality is useful in general, and in particular helps show
that (f,g) is always defined, provided f,g € L.

Let f,g € L*([a,b]). Then, the function fg is Lebesgue Integrable and:

b
1, g)] = / 1l < 1 £lllglls

[Theorem 5.1]

Proof: Cauchy-Schwarz Inequality. To show that:

/a ' fl)a@)d

exists, we once again apply Theorem 4.15:

Let f,, be a sequence of integrable functions on an interval I, and as-
sume that:

f(z) = lim fu(z)
Further assume that the sequence f, is dominated by a function g:

[fa(@)] <g(z), VzelVn>1

[l
1

Then, the function f is integrable on I and:

1= [ Qim 5.) = im [ .

with:

[Theorem 4.15]

We consider whether we can dominate |f(z)g(x)| with an integrable function. Indeed:

[f(@)g(2)| = 1f(@)|lg(@)] < S(If (@)1 + [g()]*)

DN | =
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This is an integrable function, so it follows that f f(z)g(x)dz exists. Moreover, notice that:

(f.9 \—/ | (@)g(w)lda

Using A > 0, we can rewrite the integral as:

b b 2 b
[ r@g@lds = [T nf@In el < 5 [P+ g [lat

If we want to make the inequality:

+ i<g,g>

[ 1s@u@lar < 0.0+

we minimise the RHS with respect to A:

M f) = <g =0 = A= (9, 9)

Hence:

b
[ 1r@s@ids < F 1.0+ 53000

b
— | |f<x>g<x>|dx<1< 9.9) 1 1y 4 <f’f><g7g>)

(£, 0 (9. 9)
|d1‘< 1 <<979><f,f>+<f,f><g,g>>

(f, )9, 9)
b
— / F@)g(@)ldz < /T 1) g.9)

b
ﬁ/ | (@)g(@)|dz < || f]l2llgll2

2.3.1 Exercises (TODO)
1. Show that if f € L*([a,b]) then 3C > 0 such that:

£l < ClIfll2

2. Show that there does not exists C € (0,00) such that:

Ifll2 < ClIf I

for every f € L2
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2.4 The Minkowski Inequality

The Cauchy-Schwarz Inequality allows us to generalise the triangle inequality for L? space, via the Minkowski
Inequality:

If f,g € L*(|a, b)) then:

1f +gll2 < [[fll2+ llgll2

Proof: Minkowski Inequality. Whilst the result might seem simple, it becomes less apparent if we consider

the integral form:
b b b
[irwar <y [z [ e

Notice, if || f + g||3 = 0, since the L?-norm is non-negative, we would be done. Hence, consider | f + g||3 > 0.
We have:

b
I+ 93 = [ 1+ 9P
b
= [1r+ls+dl

b
s/’v+QMﬂ+mD

b b
:/Nf+mﬂ+/Nf+mm

Now, notice that:

b
/|f+mu1=Kf+me

b
[ 15+ sllol =117 + 9.9)

Hence, by the Cauchy-Schwarz Inequality:

If+gl3 < [{f+g, )+ {f +3.9)
< f+gll2llfllz + Lf + gll2llgll2
= lf+gll20lfll2 + llgll2)

But if we then divide by ||f + gl|2 we get:

If +gllz < 1fll2+ llgll2

as desired.
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2.5 Convergence of Functions in L2

e When does a function converge in L??

— let f1, fa,... and f be functions in L?([a, b])

— sequence (f,) converges to f in L? if the sequence:
b
0= Sle = [ 1ale) = s

e How is L? convergence related to normal function convergence?

converges to 0 as n — oo

— if f, — f uniformly on [a,b], then f, — f on L?

— if f, = f on L2, then it doesn’t mean that f,, converges. In fact, we can have convergence in L?,
but no convergence for any point on [a, b]

— if f,, f are all in L?, and f, — f for every x € [a,b], it doesn’t mean that f,, — f on L? (for
example, f,(x) = y/nx™)
— if however |f,,| < 1, then, if f,, — f on [a,b], it follows that f,, — f on L?

3 Orthonormal Systems

3.1 Defining Orthonormal Systems

¢ What is an orthonormal system?

— consider a set of functions ¢,, € L?

— it’s an orthonormal system if the set is mutually orthogonal, and (¢, ¢,) = 1:

b
_— 1, m=n
(Onsm) = [ 0n(a)mlade =
a 0, m # n
3.1.1 Examples
e if [, are disjoint sets, then if ¢,, = X7, ,n=0,1,..., N —1 forms an orthonormal system on [0, N| (this

is simple, since the sets are disjoint, the characteristic functions will be 1 if and only if both functions
are defined over the same interval)

e the following are orthonormal systems on [0, 1]. Considering n € Z:
_ eiQTLTK'JJ
— V/2cos2nmzx
— V/2sin2nwx

e the Rademacher Function for n € N and x € [0, 1], defined as:
¢n(x) = sgn(sin(2"mx))

3.2 Expanding Functions via Orthonormal Systems

One useful property of orthonormal systems is that we can use them as a basis for constructing arbitrary
functions by using linear combinations. We motivate this by considering a best case scenario (i.e a function
which is an actual linear combination of an orthonormal system), and then show how it generalises.
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3.2.1 Exact Function as a Linear Combination

If we have an orthonormal system (¢, ),, and we have a function f which is a linear combination of the
functions in the system, we can write:

f@) =" cnn(®)
We can easily compute ¢, by considering the fact that the ¢, are mutually orthonormal:
@)=Y cudula)
— ()0 (@) = 3 caton (2)5m (@)

— /abf(x)gbm(x) - /lb;cn¢n(x)¢%@)

b P
:wmwmmzz%/%m%m
= (f(2), pm(2)) = cm

Hence, we can compute ¢, via:

en = (f(2), dn(x))

3.2.2 Theorem: Orthonormal Projection via Linear Combination

What is remarkable is that, even if f is not expressed as a linear combination of ¢,, we can still approx-
imate it using said linear combination, and the coefficients will be computed in the same way. In fact, we
can show that if we approzimate f via a linear combination of ¢n, ¢, = (f(x), dn(x)) are the best set of
coefficients.

Let (¢, (x)) be an orthonormal system on [a,b], and consider f € L2.
Define a linear combination of ¢,, as:

N

SN = Z(fa ¢n>¢n($)

n=1

Moreover, denote Xy to be the span of ¢,, (i.e the set of all possible linear
combinations of ¢y, ).

If g is any function in Xy (i.e g = ij:l butn () ), then:

If = snlla < [1f = gll2

In other words, sy is the best possible approzimation to f (in L?), out
of all possible linear combinations in Xy. In fact, sy is unique, so equal-
ity holds if and only if g = sn. [Theorem 5.2/
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I
I
I
:

g SN

Proof: Orthonormal Projection. Define g € Xy via:

N
2) = bun(z)

Furthermore, we have:

Cp = <f7 ¢n>

SN = Z Cn¢n(x)
n=1

For this proof, we are interested in expressing || f — g||2 and || f — sx||2. We can equivalently consider their
squares, So:

and:

b
I =9l = [ (=0T =91 =tf 9. ~9)
Similarly:
|f = snllz=(f —sn,f—sn)

Lets consider each expression at a time. If we employ sesquilinearity for

Since f is arbitrary, we can’t infer anything useful. For the remaining 3, we can compute expressions. Indeed:

N N
g) = <an¢na Z bm¢m>

n=1 m=1

N
Z m (bn: ¢m
1m=1
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Moreover:
N N N
g>:<f,2bn¢n>=2 (f,én) :Z
n=1 =1 n=1

So by antisymmetry:

N
<gyf> = <.fvg> :Zﬁbn
n=1

Thus,
(f=g9.f—a=(/1)- <f,> <gf> (9,9)

Zb Cn — chb +Zb b

n=1 n=1

N
) + Z —cn)(bn —Cn) = > Calr

n=1

=+ Z |bn — Cn|2 - Z |Cn|2
n=1 n=1
We can perform similar computations for (f — sy, f — sn):

(f=sn,f=sn)={f, [) = (f.sn) = (sn, [) + (sn,5N)

Again, we compute each individual expression:

N N N
SstN <Z Cn¢na Z Cm¢m> Z Z CnCm ¢na¢m> = Z |Cn|2

m=1

0o N N N
quN < Z n¢n>zzcn<fﬂ¢n>zzcncn:§:|cn2

n=1 n=1 n=1

Hence:

<f75N7f75N>:<f7f>7<f75N>7<SN7f>+<SN’5N>

N N
=(f, f) _QZ‘Cn‘2+Z|0n|2
];1_1 n=1
_Z|Cn|2
n=1

In other words, we have:

N
(f=g f=g)={(f—sn.f=sn)+ I |bn—cnl”

n=1
Thus, it follows that:
<f_gvf_g> > <f_sN7f_sN>
with equality holding if and only if b, = ¢,.
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3.3 Theorem: Bessel’s Inequality

From the orthonormal projection above, a number of theorems can be derived.

If (pn)n=12... is an orthonormal system on [a,b], and f € L*([a,b]),

then:
S U o) < I£13

[Theorem 5.3]

Proof: Bessel’s Inequality. Lets notice that:

IF13 = (£, f)
<f7¢n> = Cn

In other words, we can rewrite Bessel’s Inequality as:

F ) =S el

(without loss of generality we can assume n = 1,2,...).

But then notice that, in proving that an orthonormal projection is the best L? approximation to a
function(3.2.2), we showed that:

N
(f=snf=sn)y=(L, )= leal
n=1

By positivity, (f — sy, f —sny) > 0, so in particular:

N

N
0=l >0 = (£ =D leal
n=1

n=1

and this is true VN, so if we take N — oo:

(£, )= lenl®

as required. The series must converge, since it is bounded above, independent of n.
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3.4 Corollary: Riemann-Lebesgue Lemma

Let (¢n)n=12... be an orthonormal system, and let f € L?. Then:

lim (f, ¢,) = lim ¢, =0
n—oo

n—o0

Proof: Riemann-Lebesque Lemma. This is just a consequence of Bessel’s Inequality: since Y., |cn|* con-
verges, it must be the case that ) |c,| is also convergent (since |c,| is positive), so in particular ), ¢,
converges absolutely. But then, for this to converge, we must have:

lim ¢, =0
n— oo

3.5 Complete Orthonormal Systems

Complete orthonormal systems are more robust, and particularly useful.

e What is a complete orthonormal system?

— an orthonormal system satisfying Parseval’s Identity:

S UE ) =113

Let (¢,,) be an orthonormal system in [a,b].
Define:
SN = E Cn(bn

We say the orthonormal system (¢,,) is complete, if and only if

sy — f

on L? for any f € L* [Theorem 5.4]
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Proof: Completeness and Convergence. Again using (3.2.2), we had:

N N
(f=snf—sn) = F ) =S leal = IIf = snll3 = 113 = S0F 6n)
n=1

n=1

If we take the limit as N — oo, notice that || f]|3 — 22]21(]‘, ¢n) — 0 if and only if the orthonormal system
is complete (this is by definition). In other words:

If —snl?2—=0 = sy—f

if and only if ¢,, is complete.

4 Workshop

Define L? = L*([a,b]) as the set of measurable functions:
f:la,b] - C
so that:

b
12 = / F@) dz < 0o

1. Show that L? forms a vector space: if f,g € L? and A € C, then f + \g € L.

Hints:

o “Let f be a measurable function on I, and assume that:

|[f(@)] < g()

for almost every x € I, where g is an integrable function on I. Then,
f is integrable on I.” [Theorem 4.15]

e if 2 € C, then |2|* = 22
o ifx,y >0 then:

zy < (" + %)

DN | —

Since f, g are measurable, then f + A\g are measurable.

From the definition of the modulus of a complex number:

F(@) +Ag@) = (@) + M@ @ Fhgl)

= f(@)f(2) + Ag(2) f(2) + Af (2)g(2) + Mg(x)g(z)
=|f(@)]> + [\g(2)]” + g(2) f(z) + f(2)g(x)
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Since f,g € L?, then |f(z)[?, |\g(z)|* are integrable, so it follows that |f(z) 4+ g(x)|? is integrable if and
only if we can show that:

Ag(x) f(z) + Af(2)g(x)
is integrable. Notice:

Ag(@) f(z) = Af(2)g()
So it is sufficient to show (by linearity of the integral, and the fact that if f € L% then f € L?) that
Ag(z) f(x) is integrable.
Now, consider Theorem 4.15. Ag(x)f(z) is a product of measurable functions, so it is measurable.
Moreover:

l\D\>—~

Ag(@)I[f(@)] < 5 (1Ag()]* + [ f(2)]*)

Since [A\g(x)|*+]|f(z)|? is integrable (as f, g € L?), we have that Theorem 4.15 applies, and so, Ag(z) f(z)
must be integrable.

Thus, if f,g € L?, it follows that f + \g € L2.

2. Let f:[0,1] — C, and a € R. For each of the following, decide if f is necessarily in L?:

() f(z) = 2rios
We have:

1 1
/ ‘62ﬂiam|2 dr = / (€2ﬂiaz)(e—2ﬂiaz) dx
0 0

1
:/1dx
0

=1

Moreover, since f is continuous, it is Lebesgue Measurable. Thus, it follows that 27 ¢ L2
(b) f(x)= fEaX(o,l] ()

Firstly, f(x) is continuous (except possibly at 0), so it is Lebesgue Measurable.

Now, if z € (0, 1], then:

|f(2)? = 2
We have that:
= lim %
/ |f | u—0F
llmu_>0+ [In |z]L, 2a = —1
- . 2a4+171
lim,, o+ [éaﬁ} L’ 2a # —1

Now, if 2a = —1, the integral won’t be defined. If 2a # 1 then:

20+l 12a+1 2a+1
lim lim —
u—0t+ |20+ 1 u%O* 20+1 2a+1
If 2a < —1, then 2a + 1 < 0, so:

12a+1 2a+1 12a+1 1
lim |—— lim =—00
w—0t [2a+1 2a+1] w0t [2a+1 " (2a+ 1)u—2e-1

so the integral won’t be defined.
However, if 2a > 1, then:

12a+1 2a+1 1
lim =
u—0+ [2a+1 2a+1] 2a +1
and so, it follows that f(z) = 2°X( 1)(z) € L? only when 2a > -1 = a> —1.
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(¢c) f is continuous
If f is continuous, it is measurable. Moreover, |f|? will also be continuous, and so, integrable.
Hence, f € L.
(d) f is a step function
Step functions are measurable. Moreover, |f|? will also be a step function, and step functions are
Lebesgue Integrable. Hence, f € L?.
(e) f is Lebesgue Integrable
Consider: )
flx) = T2 X0, (2)
Then:

1 1
dr — =3 dp = [223]% =
/Of(m) x /Ox x=[2x2]; =2

so f is Lebesgue Integrable. However, we showed above that that |f(x)|*> won’t be Lebesgue
Integrable (since this is the case a = —%) Hence, f need not be in L2.

If f, g € L*([a,b]), then their inner product is defined by:

(g} = / f(2)9(@) de

3. Let us prove on the most important inequalities in analysis: the Cauchy-Schwarz inequality.
For f,g € L?, we have:

Lo < A 2llgll

(a) Show that the integral:
b
| g s

exists. As a hint, you might want to use Theorem 4.15 of the notes, outlined above.
This is clear from the first question. Since f, g are measurable, then so is f(z)g(xz). Moreover:

|f(@)llg(x)] < %(U’(x)l2 +g(@)[?)

Since |f(x)|* + |g(x)|? is integrable (as f,g € L?), we have that Theorem 4.15 applies, and so,

f(z)g(x) must be integrable.
Thus, if f,g € L?, it follows that f(z)g(x) is integrable.
(b) Let A > 0. Show that:

b b b
[ t@a@i <5 [P do+ g5 [ Do) do
We have:

VA
[f(z)g(x)| = ‘f/\f(ff)g(x)

= ‘\f)\f(x

)| o
<5 (NP + Sl
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So indeed:

/ab|f(ac)g(£6)§;‘/ab|f(x)|2 dHf/ o(@)]? do

(c) By using calculus, or otherwise, find the value of A that minimises the right hand side
of the previous inequality (holding, f,¢ fixed) and finish the proof.

Define: . .
~ [@Pd = [ g
Then:
d [\ 1
2 222
:F_G
2 7 2)2
/G

Hence, we have that:

b >\

=
S
5
T
o |
|
+
Q

R

_VGVF VGVF
_2+2
=VGVF

But now, notice:

[we@i=10.01 p= [P a=i o= [ ek =

(90 < 1 fll2llgll2

So:

as required.

(d) By examining the proof, determine when equality holds in the Cauchy-Schwarz in-
equality.
The only inequality we considered was:

@) < 5 (NP + Hlato)l

l\D\»—t

Notice, we obtain equality if and only if:

NF@) = sloe)
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If we integrate, equality of integration holds if and only if for almost every z € [a,b] (that is,
A f(z)] # lg(z)| only for z in a set of measure 0). In particular, we thus require that for some
c € R, we have:

f(@) = cg(x)

for almost every z € [a, b].

4. For integrable f : [a,b] — C, we write:

b
Hﬂhz/\ﬂ

. Show that there exists a constant C' € (0,00) such that:
Ifllk < Cllfll2s  ¥f € L?
Does the converse hold? That is, does there exist C € (0, 00) such that:

Il <ClIflls VfelL?

Notice: . .
(1= [ 15 x1ldz= [ 171 =17l
Hence, by the Cauchy-Schwarz inequality:

11l < [[fll2lltll2 = Vo —al[f]l2

as required.

For the second part, I had no idea what to do: none of the counterexam-
ples I came up with worked.

Without loss of generality, consider the interval [0, 1]. Let € € (0,1) and define:

= Xo,
Then: .
Hﬂh=£\%wﬂw=f

1
| fll2 = \// |Xj0,¢ 2 do = Ve
0

But now, assume 3C > 0 such that:

[fll2 < Cllfllx
This would imply that:

Ve< Ce = \/Ez% = ¢>(C?

However, € was an arbitrary positive constant, so picking ¢ < C~2 ensures that VC > 0 we don’t have

Ifllz < Cllfll1
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Let f, f1, fa, ... be functions in L*([a,b]). We say that the sequence (f,)n
converges to f in L? if the sequence:

Hh—ﬂbz¢/\h@%ﬁhwdw

converges to 0 asn — infty. We write f,, — f in L*-

5. Show that if f,, — f uniformly on [a,b], then f, — f in L%

I approached this using the standard definition, whilst the solutions use a
much sleeker version of said definition.

Recall:

Let f,, + E — R be a sequence of functions. Let f : E — R be a function.
Then, the following are equivalent:

1.
2.

3.

fn — [ uniformly on £

sup|fo(z) — f(x)] = 0 asn — oo
zeE

e in other words, Ve > 0 we can find some N € N such that if
n > N, then:
supl ful2) — f(2)] < &

zelE

e here, sup|fn(x) — f(x)| is the sequence formed by:

el
— forn =1, consider the supremum of |f1(x) — f(x)| over all
values of x

— forn = 2, consider the supremum of | fo(z) — f(x)| over all
values of x

there exists a sequence a,, — 0 such that for allx € F,

|[fn(2) = f(2)] < an

[Proposition 2.1]

From solutions:

Since f,, — f uniformly, it follows that:
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as n — oo. But then:

b b 2
W fule) — F(@)]? dst/ (sup Ifn(fr)f(:v)l> dr = sup |fulz) — f@VE—a 0

z€[a,b] z€la,b]

so as required:
Il fn = fll2 —0

From self:
By definition, since f,, — f uniformly on [a, b], it follows that Ve > 0,3N such that Vz € [a,b],Vn > N
then:

[fu(@) — f(2)] <€

soif n > N:
b
[fn = fll2 = \// |fn(z) = f(2)]? do
b
< / €2 dx
=evb—a
so indeed:
| fr = fll2 =0

6. Suppose that f,(z) — f(z),Vz € [0,1] for f, f1, f2,... € L*([0,1]).
(a) Show that not necessarily f, — f in L2

Again, we have 2 possible solutions, albeit with the same idea. One is
from the solutions, and one is using a hint from the notes.

From solutions:
Define:
fal@) = V&g 1)
Then,
fn(z) =0
pointwise for « € [0, 1] (since the N we pick will depend on the x aswell).
However:

| fu(x) — f(2)]]2 = \//0 |\/TELX(O’%)|2 dx

1
= TLX 1 dl'
/0 (0.%)
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and so:

[fn(z) = f(2)ll2 7 0

From self/notes:
Let:

fa(x) = Vna"

Then f,(xz) — 0 pointwise on [0, 1). However:

1
| ful) = F(2)]]2 = /O |2 da
= /1 nx2" dx
0

SO:

1fn(@) — F(@)]> — % 20

Assume in addition that |f,(z)| < 1,Vz € [0,1] and n > 1. Show that f,, — f in L2.
Since f,(x) = f(z) pointwise, it follows that:

[fa(2) = f@)] =0 = |fulz) = f(2)* =0

At this point, we could already claim that |f,(x) — f(z)|? is bounded, but
in the solutions they give an explicit bound.

Now, since f,, — f, and |f,| < 1, then |f] < 1, so:

|fu() = F(@)]* < (| fa(@)] + | (@)])?
= [fu(@)? + 2| fu (@) f (@)] + | f ()
<|fa(@) P+ (L fa(@)]? + 1 (@)1?) + [ f(2)]?
=2(fu(@)? + | f(2)[*)
<2(1+1)
=4
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Hence, the sequence |f,,(z) — f(z)|? is bounded above by 4 for all n,x, and 4 is a constant, and so,

integrable. Recall the Dominated Convergence Theorem:

Let f,, be a sequence of integrable functions on an interval I, and as-
sume that:

f(z) = lim f,(z)

n—o0

Further assume that the sequence f, is dominated by a integrable func-
tion g:
|fo(2)] < g(x), Vo eI, ¥n>1

[l
1

Then, the function f is integrable on I and:

[£= [ Qim 5.) = im [ .

with:

[Theorem 4.12]

It thus follows that:

b b
Jim (1) = S@)P o= [T0=0

and so, f, — f on L2-

7. Construct a sequence (f,), of L? functions on [0,1] so that f, — 0 in L?, but the sequence
(fn(z)), does not converge for any z € [0, 1].

This is taken entirely from the solutions, unfortunately.

We first show that the claim is true for the interval [%, 1}.

Define the subintervals:
I, = [n27% (n+1)27%

where for each n, we pick k£ as the unique integer such that:
k=t < < 2F

Notice, by this definition, we always ensure that:
—k klo—k _ L
n2™" > 287278 = 3

(n+1)27F < 2ka7F =1
1
I, C [2,1]
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Then, define:
falz) = Xy, ()
Then:
1fn(@) = Oll2 = | X7, (@) |2 = V/AT,) = 27%

Since as n — oo we get k — oo, it follows that:
. . _k
Jim | f(z) = Of|2 = lim 272 =0

and so, f, — f on L2.

We now show that f, 4 f, and that in fact, it doesn’t even converge. To do this, we show it isn’t
Cauchy. That is, for N > 1, we want to find ny,ns > N such that x € I,, but x € I,,,, which then
means that:

f(@) =1 fo,(z) =0
and so:
| for () = fra (@) =1
implying that f,, won’t be Cauchy.
To do this, pick k£ > 2 such that 2¥=1 > N. Then consider the intervals:

11
Ipw—y = [2F7127F (2F1 4 1)27H] = {2, 3+ 2—k]

, 1 1
L1y = [P+ 1)27F (2 14 1)27F) = [ +27F

- 2—k+1
2 Sl }

Iy = (25— )27k (25— 1+ 2] = [1—27%, 1]
Notice, these are all disjoint (except at the endpoints), and their union gives [1 1}.

2
Since they cover the whole interval, it follows that 3ny,25~1 < n; < 2% such that = € I,,,.

Here I diverge from the solutions, and write what makes sense to me, as
otherwise I'd just leave the proof as is.

Moreover, Ing, 281 < ny < 2% with x & I,,,, as I,,, N I,,, = (). This proves the claim.

For the interval [0, 1], we just need to change each I,, by 27,, — 1.

We say that 2 functions f,g € L*([a,b]) are orthogonal on [a,b] if
(f,9) = 0.

8. Suppose that fi, fo,..., fx are L? functions on [a,b].

(a) Show that:
N

>k

k=1

k=1

N
< VN D IAl3
2

and give an example to show that the constant /N can’t be improved.
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For this I used an inductive proof. However, it requires getting a bit
messy, so this is more elegant.

Recall the Cauchy-Schwarz Inequality (the normal one beyond our study of L? spaces):

Then notice:

N
> fi
k=1

If we apply the inequality, it follows that:

N
<y 1|l
k=1

k=1 k=1

So if we take the L? norm of both sides:

2

Now, notice:

— Z i

k=174

N
= [ D IIfel3
k=1

/

Hence:

N
< VN (DB

2 k=1

N
>
k=1

as required.
To see that v/ N can’t be improved, consider:

i=fa=...=fn = Xay

Then:
N

> Aoy

k=1

= [N Xy, = Nvb—a

2

N
> fi
k=1

2
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VN[ DIl = VN

k=1

N
D Xy l3 = VNYNOB—a)=NVb—a
k=1

so we get:
N

>k

k=1

2

and so, VN can’t be improved (in the sense that it is the smallest constant guaranteeing that
equality will hold).

Suppose fi,..., fy are pairwise orthogonal on [a,b]. Show that:

n

>k

k=1

N
=N DR FAE:
k=1

2

Again, this can be done using the standard definition of the L? norm, but
it yields a long winded answer. Here, the properties of the inner product
are your friend!

Notice:
N 2 N N
S f| = <kaasz>
k=1 9 k=1 k=1
N n
=3 e i)
k=1 j=1

where we have used symmetry and sesquilinearity.
But notice, since the functions are mutually orthogonal:

(fi, fi) =0 <= k#j

and so:

N 2

> h

k=1

N n N N
=22 e f) =D e fi) = D I full3
k=1j= = k=1

j=1 k=1 =

2

as required.
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