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1 Recapping Complex Numbers

• How can we define a complex function?

– a complex function f has the form:
f : [a, b]→ C

– we can write f as:
f = g + ih

where:
g : [a, b]→ R

h : [a, b]→ R

• When is a complex function Lebesgue Integrable?

– f is Lebesgue Integrable if g, h are Lebesgue Integrable

– then, we can define: ∫
I

f =

∫
I

f + i

∫
I

h

• What is the modulus of a complex function?

– the modulus of f is |f |, which is a real valued function:

|f |2 = f2 + g2

• What is the complex conjugate of a complex function?

– if f is a complex function, then f̄ is its complex conjugate, where:

f̄ = g − ih

– extending what we know from complex numbers, we know that:

ff̄ = |f |2

• What is Euler’s Formula?
eix = cos(x) + i sin(x)

2 The Space L2

2.1 Defining the Space L2

• What is the Space L2?

– a function space defined over some interval:

L2 = L2([a, b])

– contains measurable functions of the form:

f : [a, b]→ C

– f ∈ L2 then |f |2 is Lebesgue Integrable

• What is the L2-norm?
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– a quantity ‖f‖2 satisfying:

‖f‖22 =

∫ b

a

|f(x)|2 dx <∞

• When is a complex function L2 normalised?

– f is L2-normalised if its L2-norm is 1:
‖f‖2 = 1

• Is the set L2 a vector space?

– yes. If f, g ∈ L2, then:
f + λg ∈ L2

where λ ∈ C
– Proof. We firstly note that if f and g are measurable, then f + λg is also measurable. Consider:

|f + λg|2 = (f + λg)(f + λg)

= ff̄ + λgf + λgf̄ + (λg)(λg)

= |f |2 + |λg|2 + λgf + λgf̄

Then, if we integrate: ∫ b

a

|f + λg|2 =

∫ b

a

|f |2 + |λg|2 + λgf + λgf̄

Notice, since f, g ∈ L2, clearly
∫ b
a
|f |2 + |λg|2 converges. Hence, we just need to consider the

convergence of: ∫ b

a

λgf + λgf̄

Theorem 4.15 in the notes states that if f(x) is a measurable function on I, and we have |f(x)| <
g(x) for almost every x ∈ I (in other words, the inequality doesn’t hold only on a measurable set),
then if g is integrable, f is also integrable (the proof of this involves construction a sequence of
functions which converge to f , and are bounded above by g, and then applying the Dominated
Convergence Theorem).

Notice, if we take the absolute value of the complex functions:

|λgf + λgf̄ | ≤ |λgf |+ |λgf̄ |
= 2|λ||g||f |

A useful inequality to use is:

(a− b)2 = a2 + b2 − 2ab ≥ 0 =⇒ ab ≤ a2 + b2

2

It follows that:

|λgf + λgf̄ | ≤ 2|λ||g||f |
≤ |λ|(|g|2 + |f |2)

Hence, |λgf +λgf̄ | is dominated above by |λ|(|g|2 + |f |2), which is integrable. Thus, by Theorem
4.15, it must be the case that λgf + λgf̄ is also integrable, so:∫ b

a

|f + λg|2

must be integrable, and thus, f + λg ∈ L2.
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• Are step functions in L2?

– yes, since they are always positive, so |f(x)| = f , and f2 is also a step function, which is Lebesgue
Integrable

• Are continuous functions on [a, b] in L2?

– yes, since |f(x)| and |f(x)|2 will be continuous, and so, Lebesgue Integrable

2.2 The Inner Product of Functions

• What is the inner product of 2 functions in L2?

– let f, g ∈ L2([a, b])

– define their inner product via:

〈f, g〉 =

∫ b

a

f(x)g(x)dx

• When are 2 functions orthogonal?

– whenever their inner product is 0:

〈f, g〉 =

∫ b

a

f(x)g(x)dx = 0

• What is sesquilinearity of the inner product?

– the inner product is linear in the first term:

〈f + λg, h〉 = 〈f, h〉+ λ〈g, h〉

– the inner product is “semi-linear” in the second term:

〈h, f + λg〉 = 〈h, f〉+ λ̄〈h, g〉

• What is antisymmetry of the inner product?

〈f, g〉 = 〈g, f〉

• What is positivity of the inner product?

– if f is 0 almost everywhere (that is, f = 0 on a set of measure 0 only), then:

‖f‖22 = 〈f, f〉 > 0

– otherwise,
‖f‖22 = 〈f, f〉 ≥ 0

These properties define the abstract notion of an inner product space of
which L2 is a prototypical example. In fact, L2 is an example of a Hilbert
space – that is an inner product space, which has the desirable prop-
erty of completeness which means that every Cauchy sequence in L2 con-
verges to a limit in L2.
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2.3 The Cauchy-Schwarz Inequality

We have defined the inner product as an integral for functions in L2. However, we have no guarantee that
said integral will be defined. The Cauchy-Schwarz inequality is useful in general, and in particular helps show
that 〈f, g〉 is always defined, provided f, g ∈ L2.

Let f, g ∈ L2([a, b]). Then, the function fḡ is Lebesgue Integrable and:

|〈f, g〉| =
∫ b

a

|fḡ| ≤ ‖f‖2‖g‖2

[Theorem 5.1]

Proof: Cauchy-Schwarz Inequality. To show that:∫ b

a

f(x)g(x)dx

exists, we once again apply Theorem 4.15:

Let fn be a sequence of integrable functions on an interval I, and as-
sume that:

f(x) = lim
n→∞

fn(x)

Further assume that the sequence fn is dominated by a function g:

|fn(x)| ≤ g(x), ∀x ∈ I,∀n ≥ 1

with: ∫
I

g <∞

Then, the function f is integrable on I and:∫
I

f =

∫
I

(
lim
n→∞

fn

)
= lim

n→∞

∫
I

fn

[Theorem 4.15]

We consider whether we can dominate |f(x)g(x)| with an integrable function. Indeed:

|f(x)g(x)| = |f(x)||g(x)| ≤ 1

2
(|f(x)|2 + |g(x)|2)
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This is an integrable function, so it follows that
∫ b
a
f(x)g(x)dx exists. Moreover, notice that:

|〈f, g〉| =
∫ b

a

|f(x)g(x)|dx

Using λ > 0, we can rewrite the integral as:∫ b

a

|f(x)g(x)|dx =

∫ b

a

|λf(x)||λ−1g(x)|dx ≤ λ2

2

∫ b

a

|f(x)|2dx+
1

2λ2

∫ n

a

|g(x)|2 =
λ2

2
〈f, f〉+

1

2λ2
〈g, g〉

If we want to make the inequality:∫ b

a

|f(x)g(x)|dx ≤ λ2

2
〈f, f〉+

1

2λ2
〈g, g〉

we minimise the RHS with respect to λ:

λ〈f, f〉 − 1

λ3
〈g, g〉 = 0 =⇒ λ2 =

√
〈g, g〉
〈f, f〉

Hence: ∫ b

a

|f(x)g(x)|dx ≤ λ2

2
〈f, f〉+

1

2λ2
〈g, g〉

=⇒
∫ b

a

|f(x)g(x)|dx ≤ 1

2

(√
〈g, g〉
〈f, f〉

〈f, f〉+

√
〈f, f〉
〈g, g〉

〈g, g〉

)

=⇒
∫ b

a

|f(x)g(x)|dx ≤ 1

2

(
〈g, g〉〈f, f〉+ 〈f, f〉〈g, g〉√

〈f, f〉〈g, g〉

)

=⇒
∫ b

a

|f(x)g(x)|dx ≤
√
〈f, f〉〈g, g〉

=⇒
∫ b

a

|f(x)g(x)|dx ≤ ‖f‖2‖g‖2

2.3.1 Exercises (TODO)

1. Show that if f ∈ L2([a, b]) then ∃C > 0 such that:

‖f‖1 ≤ C‖f‖2

2. Show that there does not exists C ∈ (0,∞) such that:

‖f‖2 ≤ C‖f‖1

for every f ∈ L2.
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2.4 The Minkowski Inequality

The Cauchy-Schwarz Inequality allows us to generalise the triangle inequality for L2 space, via the Minkowski
Inequality:

If f, g ∈ L2([a, b]) then:

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

Proof: Minkowski Inequality. Whilst the result might seem simple, it becomes less apparent if we consider
the integral form: √∫ b

a

|f + g|2 ≤

√∫ b

a

|f |2 +

√∫ b

a

|g|2

Notice, if ‖f + g‖22 = 0, since the L2-norm is non-negative, we would be done. Hence, consider ‖f + g‖22 > 0.
We have:

‖f + g‖22 =

∫ b

a

|f + g|2

=

∫ b

a

|f + g||f + g|

≤
∫ b

a

|f + g|(|f |+ |g|)

=

∫ b

a

|f + g||f |+
∫ b

a

|f + g||g|

Now, notice that: ∫ b

a

|f + g||f | = |〈f + g, f〉|∫ b

a

|f + g||g| = |〈f + g, g〉|

Hence, by the Cauchy-Schwarz Inequality:

‖f + g‖22 ≤ |〈f + g, f〉|+ |〈f + g, g〉|
≤ ‖f + g‖2‖f‖2 + ‖f + g‖2‖g‖2
= ‖f + g‖2(‖f‖2 + ‖g‖2)

But if we then divide by ‖f + g‖2 we get:

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

as desired.
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2.5 Convergence of Functions in L2

• When does a function converge in L2?

– let f1, f2, . . . and f be functions in L2([a, b])

– sequence (fn) converges to f in L2 if the sequence:

‖fn − f‖2 =

√∫ b

a

|fn(x)− f(x)|2dx

converges to 0 as n→∞

• How is L2 convergence related to normal function convergence?

– if fn → f uniformly on [a, b], then fn → f on L2

– if fn → f on L2, then it doesn’t mean that fn converges. In fact, we can have convergence in L2,
but no convergence for any point on [a, b]

– if fn, f are all in L2, and fn → f for every x ∈ [a, b], it doesn’t mean that fn → f on L2 (for
example, fn(x) =

√
nxn)

– if however |fn| ≤ 1, then, if fn → f on [a, b], it follows that fn → f on L2

3 Orthonormal Systems

3.1 Defining Orthonormal Systems

• What is an orthonormal system?

– consider a set of functions φn ∈ L2

– it’s an orthonormal system if the set is mutually orthogonal, and 〈φn, φn〉 = 1:

〈φn, φm〉 =

∫ b

a

φn(x)φm(x)dx =

{
1, m = n

0, m 6= n

3.1.1 Examples

• if In are disjoint sets, then if φn = XIn , n = 0, 1, . . . , N −1 forms an orthonormal system on [0, N ] (this
is simple, since the sets are disjoint, the characteristic functions will be 1 if and only if both functions
are defined over the same interval)

• the following are orthonormal systems on [0, 1]. Considering n ∈ Z:

– ei2nπx

–
√

2 cos 2nπx

–
√

2 sin 2nπx

• the Rademacher Function for n ∈ N and x ∈ [0, 1], defined as:

φn(x) = sgn(sin(2nπx))

3.2 Expanding Functions via Orthonormal Systems

One useful property of orthonormal systems is that we can use them as a basis for constructing arbitrary
functions by using linear combinations. We motivate this by considering a best case scenario (i.e a function
which is an actual linear combination of an orthonormal system), and then show how it generalises.
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3.2.1 Exact Function as a Linear Combination

If we have an orthonormal system (φn)n, and we have a function f which is a linear combination of the
functions in the system, we can write:

f(x) =
∑
n

cnφn(x)

We can easily compute cn by considering the fact that the φn are mutually orthonormal:

f(x) =
∑
n

cnφn(x)

=⇒ f(x)φm(x) =
∑
n

cnφn(x)φm(x)

=⇒
∫ b

a

f(x)φm(x) =

∫ b

a

∑
n

cnφn(x)φm(x)

=⇒ 〈f(x), φm(x)〉 =
∑
n

cn

∫ b

a

φn(x)φm(x)

=⇒ 〈f(x), φm(x)〉 =
∑
n

cn〈φn(x), φm(x)〉

=⇒ 〈f(x), φm(x)〉 = cm

Hence, we can compute cn via:
cn = 〈f(x), φn(x)〉

3.2.2 Theorem: Orthonormal Projection via Linear Combination

What is remarkable is that, even if f is not expressed as a linear combination of φn, we can still approx-
imate it using said linear combination, and the coefficients will be computed in the same way. In fact, we
can show that if we approximate f via a linear combination of φn, cn = 〈f(x), φn(x)〉 are the best set of
coefficients.

Let (φn(x)) be an orthonormal system on [a, b], and consider f ∈ L2.
Define a linear combination of φn as:

sN =
N∑

n=1

〈f, φn〉φn(x)

Moreover, denote XN to be the span of φn (i.e the set of all possible linear
combinations of φn).

If g is any function in XN (i.e g =
∑N

n=1 bnφn(x)), then:

‖f − sN‖2 ≤ ‖f − g‖2

In other words, sN is the best possible approximation to f (in L2), out
of all possible linear combinations in XN . In fact, sN is unique, so equal-
ity holds if and only if g = sN . [Theorem 5.2]
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Proof: Orthonormal Projection. Define g ∈ XN via:

g(x) =

N∑
n=1

bnφn(x)

Furthermore, we have:
cn = 〈f, φn〉

and:

sN =

∞∑
n=1

cnφn(x)

For this proof, we are interested in expressing ‖f − g‖2 and ‖f − sN‖2. We can equivalently consider their
squares, so:

‖f − g‖22 =

∫ b

a

(f − g)(f − g) = 〈f − g, f − g〉

Similarly:
‖f − sN‖2 = 〈f − sN , f − sN 〉

Lets consider each expression at a time. If we employ sesquilinearity for

〈f − g, f − g〉 = 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

Since f is arbitrary, we can’t infer anything useful. For the remaining 3, we can compute expressions. Indeed:

〈g, g〉 =

〈
N∑
n=1

bnφn,

N∑
m=1

bmφm

〉

=

N∑
n=1

N∑
m=1

bnbm〈φn, φm〉

=

N∑
n=1

bnbn

=

N∑
n=1

|bn|2
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Moreover:

〈f, g〉 =

〈
f,

N∑
n=1

bnφn

〉
=

N∑
n=1

bn〈f, φn〉 =

N∑
n=1

bncn

So by antisymmetry:

〈g, f〉 = 〈f, g〉 =

N∑
n=1

cnbn

Thus,

〈f − g, f − g〉 = 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

= 〈f, f〉 −
N∑
n=1

bncn −
N∑
n=1

cnbn +

N∑
n=1

bnbn

= 〈f, f〉+

N∑
n=1

(bn − cn)(bn − cn)−
N∑
n=1

cncn

= 〈f, f〉+

N∑
n=1

|bn − cn|2 −
N∑
n=1

|cn|2

We can perform similar computations for 〈f − sN , f − sN 〉:

〈f − sN , f − sN 〉 = 〈f, f〉 − 〈f, sN 〉 − 〈sN , f〉+ 〈sN , sN 〉

Again, we compute each individual expression:

〈sN , sN 〉 =

〈 ∞∑
n=1

cnφn,

∞∑
m=1

cmφm

〉
=

N∑
n=1

N∑
m=1

cncm〈φn, φm〉 =

N∑
n=1

|cn|2

〈f, sN 〉 =

〈
f,

∞∑
n=1

cnφn

〉
=

N∑
n=1

cn〈f, φn〉 =

N∑
n=1

cncn =

N∑
n=1

|cn|2

〈sN , f〉 =

N∑
n=1

|cn|2

Hence:

〈f − sN , f − sN 〉 = 〈f, f〉 − 〈f, sN 〉 − 〈sN , f〉+ 〈sN , sN 〉

= 〈f, f〉 − 2

N∑
n=1

|cn|2 +

N∑
n=1

|cn|2

= 〈f, f〉 −
N∑
n=1

|cn|2

In other words, we have:

〈f − g, f − g〉 = 〈f − sN , f − sN 〉+

N∑
n=1

|bn − cn|2

Thus, it follows that:
〈f − g, f − g〉 ≥ 〈f − sN , f − sN 〉

with equality holding if and only if bn = cn.
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3.3 Theorem: Bessel’s Inequality

From the orthonormal projection above, a number of theorems can be derived.

If (φn)n=1,2,... is an orthonormal system on [a, b], and f ∈ L2([a, b]),
then: ∑

n

|〈f, φn〉|2 ≤ ‖f‖22

[Theorem 5.3]

Proof: Bessel’s Inequality. Lets notice that:

‖f‖22 = 〈f, f〉

〈f, φn〉 = cn

In other words, we can rewrite Bessel’s Inequality as:

〈f, f〉 ≥
∑
n

|cn|2

(without loss of generality we can assume n = 1, 2, . . .).

But then notice that, in proving that an orthonormal projection is the best L2 approximation to a
function(3.2.2), we showed that:

〈f − sN , f − sN 〉 = 〈f, f〉 −
N∑
n=1

|cn|2

By positivity, 〈f − sN , f − sN 〉 ≥ 0, so in particular:

〈f, f〉 −
N∑
n=1

|cn|2 ≥ 0 =⇒ 〈f, f〉 ≥
N∑
n=1

|cn|2

and this is true ∀N , so if we take N →∞:

〈f, f〉 ≥
∑
n

|cn|2

as required. The series must converge, since it is bounded above, independent of n.

Page 12



3.4 Corollary: Riemann-Lebesgue Lemma

Let (φn)n=1,2,... be an orthonormal system, and let f ∈ L2. Then:

lim
n→∞
〈f, φn〉 = lim

n→∞
cn = 0

Proof: Riemann-Lebesgue Lemma. This is just a consequence of Bessel’s Inequality: since
∑
n |cn|2 con-

verges, it must be the case that
∑
n |cn| is also convergent (since |cn| is positive), so in particular

∑
n cn

converges absolutely. But then, for this to converge, we must have:

lim
n→∞

cn = 0

3.5 Complete Orthonormal Systems

Complete orthonormal systems are more robust, and particularly useful.

• What is a complete orthonormal system?

– an orthonormal system satisfying Parseval’s Identity:∑
n

|〈f, φn〉|2 = ‖f‖22

Let (φn) be an orthonormal system in [a, b].
Define:

sN =
∑
n

cnφn

We say the orthonormal system (φn) is complete, if and only if

sN → f

on L2 for any f ∈ L2 [Theorem 5.4]
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Proof: Completeness and Convergence. Again using (3.2.2), we had:

〈f − sN , f − sN 〉 = 〈f, f〉 −
N∑
n=1

|cn|2 =⇒ ‖f − sN‖22 = ‖f‖22 −
N∑
n=1

〈f, φn〉

If we take the limit as N →∞, notice that ‖f‖22 −
∑N
n=1〈f, φn〉 → 0 if and only if the orthonormal system

is complete (this is by definition). In other words:

‖f − sN‖22 → 0 =⇒ sN → f

if and only if φn is complete.

4 Workshop

Define L2 = L2([a, b]) as the set of measurable functions:

f : [a, b]→ C

so that:

‖f‖22 :=

∫ b

a

|f(x)|2 dx <∞

1. Show that L2 forms a vector space: if f, g ∈ L2 and λ ∈ C, then f + λg ∈ L2.

Hints:

• “Let f be a measurable function on I, and assume that:

|f(x)| ≤ g(x)

for almost every x ∈ I, where g is an integrable function on I. Then,
f is integrable on I.” [Theorem 4.15]

• if z ∈ C, then |z|2 = zz̄

• if x, y ≥ 0 then:

xy ≤ 1

2
(x2 + y2)

Since f, g are measurable, then f + λg are measurable.

From the definition of the modulus of a complex number:

|f(x) + λg(x)|2 = (f(x) + λg(x))(f(x) + λg(x))

= f(x)f(x) + λg(x)f(x) + λ̄f(x)g(x) + λλ̄g(x)g(x)

= |f(x)|2 + |λg(x)|2 + g(x)f(x) + f(x)g(x)
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Since f, g ∈ L2, then |f(x)|2, |λg(x)|2 are integrable, so it follows that |f(x) + g(x)|2 is integrable if and
only if we can show that:

λg(x)f(x) + λ̄f(x)g(x)

is integrable. Notice:

λg(x)f(x) = λ̄f(x)g(x)

So it is sufficient to show (by linearity of the integral, and the fact that if f ∈ L2, then f̄ ∈ L2) that
λg(x)f(x) is integrable.

Now, consider Theorem 4.15. λg(x)f(x) is a product of measurable functions, so it is measurable.
Moreover:

|λg(x)||f(x)| ≤ 1

2
(|λg(x)|2 + |f(x)|2)

Since |λg(x)|2+|f(x)|2 is integrable (as f, g ∈ L2), we have that Theorem 4.15 applies, and so, λg(x)f(x)
must be integrable.

Thus, if f, g ∈ L2, it follows that f + λg ∈ L2.

2. Let f : [0, 1]→ C, and a ∈ R. For each of the following, decide if f is necessarily in L2:

(a) f(x) = e2πiax

We have: ∫ 1

0

|e2πiax|2 dx =

∫ 1

0

(e2πiax)(e−2πiax) dx

=

∫ 1

0

1 dx

= 1

Moreover, since f is continuous, it is Lebesgue Measurable. Thus, it follows that e2πiax ∈ L2

(b) f(x) = xaX(0,1](x)

Firstly, f(x) is continuous (except possibly at 0), so it is Lebesgue Measurable.

Now, if x ∈ (0, 1], then:
|f(x)|2 = x2a

We have that: ∫ 1

0

|f(x)2| = lim
u→0+

∫ 1

u

x2a

=

limu→0+ [ln |x|]1u, 2a = −1

limu→0+

[
x2a+1

2a+1

]1
u
, 2a 6= −1

Now, if 2a = −1, the integral won’t be defined. If 2a 6= 1 then:

lim
u→0+

[
x2a+1

2a+ 1

]1
u

= lim
u→0+

[
12a+1

2a+ 1
− u2a+1

2a+ 1

]
If 2a < −1, then 2a+ 1 < 0, so:

lim
u→0+

[
12a+1

2a+ 1
− u2a+1

2a+ 1

]
= lim
u→0+

[
12a+1

2a+ 1
− 1

(2a+ 1)u−2a−1

]
= −∞

so the integral won’t be defined.

However, if 2a > 1, then:

lim
u→0+

[
12a+1

2a+ 1
− u2a+1

2a+ 1

]
=

1

2a+ 1

and so, it follows that f(x) = xaX(0,1](x) ∈ L2 only when 2a > −1 =⇒ a > − 1
2 .
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(c) f is continuous

If f is continuous, it is measurable. Moreover, |f |2 will also be continuous, and so, integrable.
Hence, f ∈ L2.

(d) f is a step function

Step functions are measurable. Moreover, |f |2 will also be a step function, and step functions are
Lebesgue Integrable. Hence, f ∈ L2.

(e) f is Lebesgue Integrable

Consider:
f(x) = x−

1
2X(0,1](x)

Then: ∫ 1

0

f(x) dx =

∫ 1

0

x−
1
2 dx = [2x

1
2 ]10 = 2

so f is Lebesgue Integrable. However, we showed above that that |f(x)|2 won’t be Lebesgue
Integrable (since this is the case a = − 1

2 ). Hence, f need not be in L2.

If f, g ∈ L2([a, b]), then their inner product is defined by:

〈f, g〉 :=

∫ b

a

f(x)g(x) dx

3. Let us prove on the most important inequalities in analysis: the Cauchy-Schwarz inequality.
For f, g ∈ L2, we have:

| 〈f, g〉 | ≤ ‖f‖2‖g‖2

(a) Show that the integral: ∫ b

a

f(x)g(x) dx

exists. As a hint, you might want to use Theorem 4.15 of the notes, outlined above.

This is clear from the first question. Since f, g are measurable, then so is f(x)g(x). Moreover:

|f(x)||g(x)| ≤ 1

2
(|f(x)|2 + |g(x)|2)

Since |f(x)|2 + |g(x)|2 is integrable (as f, g ∈ L2), we have that Theorem 4.15 applies, and so,
f(x)g(x) must be integrable.

Thus, if f, g ∈ L2, it follows that f(x)g(x) is integrable.

(b) Let λ > 0. Show that:∫ b

a

|f(x)g(x)| ≤ λ

2

∫ b

a

|f(x)|2 dx+
1

2λ

∫ b

a

|g(x)|2 dx

We have:

|f(x)g(x)| =

∣∣∣∣∣
√
λ√
λ
f(x)g(x)

∣∣∣∣∣
=
∣∣∣√λf(x)

∣∣∣ ∣∣∣∣ 1√
λ
g(x)

∣∣∣∣
≤ 1

2

(
λ|f(x)|2 +

1

λ
|g(x)|2

)
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So indeed: ∫ b

a

|f(x)g(x)| ≤ λ

2

∫ b

a

|f(x)|2 dx+
1

2λ

∫ b

a

|g(x)|2 dx

(c) By using calculus, or otherwise, find the value of λ that minimises the right hand side
of the previous inequality (holding, f, g fixed) and finish the proof.

Define:

F =

∫ b

a

|f(x)|2 dx G =

∫ b

a

|g(x)|2

Then:

d

dλ

(
λ

2
F +

1

2λ
G

)
= 0

=⇒ F

2
− G

2λ2
= 0

=⇒ F

2
=

G

2λ2

=⇒ λ =

√
G

F

Hence, we have that: ∫ b

a

|f(x)g(x)| ≤ λ

2
F +

1

2λ
G

=

√
G
F

2
F +

1

2
√

G
F

G

=

√
G
√
F

2
+

√
G
√
F

2

=
√
G
√
F

But now, notice:∫ b

a

|f(x)g(x)| = | 〈f, g〉 | F =

∫ b

a

|f(x)|2 dx = ‖f‖22 G =

∫ b

a

|g(x)|2 = ‖g‖22

So:
| 〈f, g〉 | ≤ ‖f‖2‖g‖2

as required.

(d) By examining the proof, determine when equality holds in the Cauchy-Schwarz in-
equality.

The only inequality we considered was:

|f(x)g(x)| ≤ 1

2

(
λ|f(x)|2 +

1

λ
|g(x)|2

)
Notice, we obtain equality if and only if:

λ|f(x)| = 1

λ
|g(x)|
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If we integrate, equality of integration holds if and only if for almost every x ∈ [a, b] (that is,
λ|f(x)| 6= 1

λ |g(x)| only for x in a set of measure 0). In particular, we thus require that for some
c ∈ R, we have:

f(x) = cg(x)

for almost every x ∈ [a, b].

4. For integrable f : [a, b]→ C, we write:

‖f‖1 =

∫ b

a

|f |

. Show that there exists a constant C ∈ (0,∞) such that:

‖f‖1 ≤ C‖f‖2, ∀f ∈ L2

Does the converse hold? That is, does there exist C ∈ (0,∞) such that:

‖f‖2 ≤ C‖f‖1, ∀f ∈ L2

Notice:

| 〈f, 1〉 | =
∫ b

a

|f × 1| dx =

∫ b

a

|f | = ‖f‖1

Hence, by the Cauchy-Schwarz inequality:

‖f‖1 ≤ ‖f‖2‖1‖2 =
√
b− a‖f‖2

as required.

For the second part, I had no idea what to do: none of the counterexam-
ples I came up with worked.

Without loss of generality, consider the interval [0, 1]. Let ε ∈ (0, 1) and define:

f = X[0,ε]

Then:

‖f‖1 =

∫ 1

0

|X[0,ε]| dx = ε

‖f‖2 =

√∫ 1

0

|X[0,ε]|2 dx =
√
ε

But now, assume ∃C > 0 such that:
‖f‖2 ≤ C‖f‖1

This would imply that:
√
ε ≤ Cε =⇒

√
ε ≥ 1

C
=⇒ ε ≥ C−2

However, ε was an arbitrary positive constant, so picking ε < C−2 ensures that ∀C > 0 we don’t have
‖f‖2 ≤ C‖f‖1.
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Let f, f1, f2, . . . be functions in L2([a, b]). We say that the sequence (fn)n
converges to f in L2 if the sequence:

‖fn − f‖2 =

√∫ b

a

|fn(x)− f(x)|2 dx

converges to 0 as n→ infty. We write fn → f in L2-

5. Show that if fn → f uniformly on [a, b], then fn → f in L2.

I approached this using the standard definition, whilst the solutions use a
much sleeker version of said definition.

Recall:

Let fn : E → R be a sequence of functions. Let f : E → R be a function.
Then, the following are equivalent:

1. fn → f uniformly on E

2. sup
x∈E
|fn(x)− f(x)| → 0 as n→∞

• in other words, ∀ε > 0 we can find some N ∈ N such that if
n ≥ N , then:

sup
x∈E
|fn(x)− f(x)| < ε

• here, sup
x∈E
|fn(x)− f(x)| is the sequence formed by:

– for n = 1, consider the supremum of |f1(x)− f(x)| over all
values of x

– for n = 2, consider the supremum of |f2(x)− f(x)| over all
values of x

– . . .

3. there exists a sequence an → 0 such that for all x ∈ E,
|fn(x)− f(x)| < an

[Proposition 2.1]

From solutions:

Since fn → f uniformly, it follows that:

sup
x∈[a,b]

|fn(x)− f(x)| → 0
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as n→∞. But then:√∫ b

a

|fn(x)− f(x)|2 dx ≤

√√√√∫ b

a

(
sup
x∈[a,b]

|fn(x)− f(x)|

)2

dx = sup
x∈[a,b]

|fn(x)− f(x)|
√
b− a→ 0

so as required:
‖fn − f‖2 → 0

From self:

By definition, since fn → f uniformly on [a, b], it follows that ∀ε > 0,∃N such that ∀x ∈ [a, b],∀n ≥ N
then:

|fn(x)− f(x)| < ε

so if n ≥ N :

‖fn − f‖2 =

√∫ b

a

|fn(x)− f(x)|2 dx

≤

√∫ b

a

ε2 dx

= ε
√
b− a

so indeed:
‖fn − f‖2 → 0

6. Suppose that fn(x)→ f(x),∀x ∈ [0, 1] for f, f1, f2, . . . ∈ L2([0, 1]).

(a) Show that not necessarily fn → f in L2.

Again, we have 2 possible solutions, albeit with the same idea. One is
from the solutions, and one is using a hint from the notes.

From solutions:

Define:
fn(x) =

√
nX(0, 1n )

Then,
fn(x)→ 0

pointwise for x ∈ [0, 1] (since the N we pick will depend on the x aswell).

However:

‖fn(x)− f(x)‖2 =

√∫ 1

0

|
√
nX(0, 1n )|

2 dx

=

√∫ 1

0

nX(0, 1n ) dx

=

√
n× 1

n

= 1
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and so:
‖fn(x)− f(x)‖2 6→ 0

From self/notes:

Let:
fn(x) =

√
nxn

Then fn(x)→ 0 pointwise on [0, 1). However:

‖fn(x)− f(x)‖2 =

√∫ 1

0

|
√
nxn|2 dx

=

√∫ 1

0

nx2n dx

=

√[
n× x2n+1

2n+ 1

]1
0

=

√[
n× 12n+1

2n+ 1

]
=

√
n

2n+ 1

so:

‖fn(x)− f(x)‖2 →
1√
2
6= 0

(b) Assume in addition that |fn(x)| ≤ 1,∀x ∈ [0, 1] and n ≥ 1. Show that fn → f in L2.

Since fn(x)→ f(x) pointwise, it follows that:

|fn(x)− f(x)| → 0 =⇒ |fn(x)− f(x)|2 → 0

At this point, we could already claim that |fn(x) − f(x)|2 is bounded, but
in the solutions they give an explicit bound.

Now, since fn → f , and |fn| ≤ 1, then |f | ≤ 1, so:

|fn(x)− f(x)|2 ≤ (|fn(x)|+ |f(x)|)2

= |fn(x)|2 + 2|fn(x)||f(x)|+ |f(x)|2

≤ |fn(x)|2 + (|fn(x)|2 + |f(x)|2) + |f(x)|2

= 2(|fn(x)|2 + |f(x)|2)

≤ 2(1 + 1)

= 4
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Hence, the sequence |fn(x)− f(x)|2 is bounded above by 4 for all n, x, and 4 is a constant, and so,
integrable. Recall the Dominated Convergence Theorem:

Let fn be a sequence of integrable functions on an interval I, and as-
sume that:

f(x) = lim
n→∞

fn(x)

Further assume that the sequence fn is dominated by a integrable func-
tion g:

|fn(x)| ≤ g(x), ∀x ∈ I,∀n ≥ 1

with: ∫
I

g <∞

Then, the function f is integrable on I and:∫
I

f =

∫
I

(
lim
n→∞

fn

)
= lim

n→∞

∫
I

fn

[Theorem 4.12]

It thus follows that:

lim
n→∞

∫ b

a

|fn(x)− f(x)|2 dx =

∫ b

a

0 = 0

and so, fn → f on L2-

7. Construct a sequence (fn)n of L2 functions on [0, 1] so that fn → 0 in L2, but the sequence
(fn(x))n does not converge for any x ∈ [0, 1].

This is taken entirely from the solutions, unfortunately.

We first show that the claim is true for the interval
[
1
2 , 1
]
.

Define the subintervals:
In =

[
n2−k, (n+ 1)2−k

]
where for each n, we pick k as the unique integer such that:

2k−1 ≤ n < 2k

Notice, by this definition, we always ensure that:

n2−k ≥ 2k−12−k =
1

2

(n+ 1)2−k < 2k2−k = 1

and so:

In ⊂
[

1

2
, 1

]
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Then, define:
fn(x) = XIn(x)

Then:
‖fn(x)− 0‖2 = ‖XIn(x)‖2 =

√
λ(In) = 2−

k
2

Since as n→∞ we get k →∞, it follows that:

lim
n→∞

‖fn(x)− 0‖2 = lim
k→∞

2−
k
2 = 0

and so, fn → f on L2.

We now show that fn 6→ f , and that in fact, it doesn’t even converge. To do this, we show it isn’t
Cauchy. That is, for N ≥ 1, we want to find n1, n2 ≥ N such that x ∈ In1 but x 6∈ In2 , which then
means that:

fn1
(x) = 1 fn2

(x) = 0

and so:
|fn1

(x)− fn2
(x)| = 1

implying that fn won’t be Cauchy.

To do this, pick k ≥ 2 such that 2k−1 ≥ N . Then consider the intervals:

I2k−1 =
[
2k−12−k, (2k−1 + 1)2−k

]
=

[
1

2
,

1

2
+ 2−k

]

I2k−1+1 =
[
(2k−1 + 1)2−k, (2k−1 + 1 + 1)2−k

]
=

[
1

2
+ 2−k,

1

2
+ 2−k+1

]
...

I2k−1 =
[
(2k − 1)2−k, (2k − 1 + 1)2−k

]
=
[
1− 2−k, 1

]
Notice, these are all disjoint (except at the endpoints), and their union gives

[
1
2 , 1
]
.

Since they cover the whole interval, it follows that ∃n1, 2k−1 ≤ n1 < 2k such that x ∈ In1 .

Here I diverge from the solutions, and write what makes sense to me, as
otherwise I’d just leave the proof as is.

Moreover, ∃n2, 2k−1 ≤ n2 < 2k with x 6∈ In2
, as In1

∩ In2
= ∅. This proves the claim.

For the interval [0, 1], we just need to change each In by 2In − 1.

We say that 2 functions f, g ∈ L2([a, b]) are orthogonal on [a, b] if
〈f, g〉 = 0.

8. Suppose that f1, f2, . . . , fN are L2 functions on [a, b].

(a) Show that: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

≤
√
N

√√√√ N∑
k=1

‖fk‖22

and give an example to show that the constant
√
N can’t be improved.
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For this I used an inductive proof. However, it requires getting a bit
messy, so this is more elegant.

Recall the Cauchy-Schwarz Inequality (the normal one beyond our study of L2 spaces):

k∑
i=1

xiyi ≤

√√√√ k∑
i=1

x2i

√√√√ k∑
i=1

y2i

Then notice: ∣∣∣∣∣
N∑
k=1

fk

∣∣∣∣∣ ≤
N∑
k=1

1 · |fk|

If we apply the inequality, it follows that:∣∣∣∣∣
N∑
k=1

fk

∣∣∣∣∣ ≤
√√√√ N∑
k=1

12

√√√√ N∑
k=1

|fk|2 =
√
N

√√√√ N∑
k=1

|fk|2

So if we take the L2 norm of both sides:∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

≤
√
N

∥∥∥∥∥∥
√√√√ N∑
k=1

|fk|2

∥∥∥∥∥∥
2

Now, notice: ∥∥∥∥∥∥
√√√√ N∑
k=1

|fk|2

∥∥∥∥∥∥
2

=

√√√√∫ b

a

N∑
k=1

|fk|2

=

√√√√ N∑
k=1

∫ b

a

|fk|2

=

√√√√ N∑
k=1

‖fk‖22

Hence: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

≤
√
N

√√√√ N∑
k=1

‖fk‖22

as required.

To see that
√
N can’t be improved, consider:

f1 = f2 = . . . = fN = X[a,b]

Then: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
k=1

X[a,b]

∥∥∥∥∥
2

=
∥∥NX[a,b]

∥∥
2

= N
√
b− a
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√
N

√√√√ N∑
k=1

‖fk‖22 =
√
N

√√√√ N∑
k=1

‖X[a,b]‖22 =
√
N
√
N(b− a) = N

√
b− a

so we get: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

=
√
N

√√√√ N∑
k=1

‖fk‖22

and so,
√
N can’t be improved (in the sense that it is the smallest constant guaranteeing that

equality will hold).

(b) Suppose f1, . . . , fN are pairwise orthogonal on [a, b]. Show that:∥∥∥∥∥
n∑
k=1

fk

∥∥∥∥∥
2

≤

√√√√ N∑
k=1

‖fk‖22

Again, this can be done using the standard definition of the L2 norm, but
it yields a long winded answer. Here, the properties of the inner product
are your friend!

Notice: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

2

=

〈
N∑
k=1

fk,

N∑
k=1

fk

〉

=

N∑
k=1

n∑
j=1

〈fk, fj〉

where we have used symmetry and sesquilinearity.

But notice, since the functions are mutually orthogonal:

〈fk, fj〉 = 0 ⇐⇒ k 6= j

and so: ∥∥∥∥∥
N∑
k=1

fk

∥∥∥∥∥
2

2

=

N∑
k=1

n∑
j=1

〈fk, fj〉 =

N∑
k=1

〈fk, fk〉 =

N∑
k=1

‖fk‖22

as required.
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