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1 Real Numbers

1.1 Properties of the Real Numbers

• R is an ordered set

– ∀a, b ∈ R there are only 3 possibilities:

1. a < b

2. a = b

3. a > b

• R is complete

– ∀A ⊂ R if A is non-empty and bounded, then A has an infimum and a supremum

– this follows from the Completeness Theorem

• R has the Archimidean Property

– this means that there is no largest or smallest real. In other words:

∀a, b ∈ R : a > 0, ∃n ∈ N : b < na

2 Nested Intervals

2.1 Definition: Nested Intervals

• What are nested intervals?

– consider a sequence of intervals (In)n∈N

– they form a set of nested intervals if:

I1 ⊃ I2 ⊃ . . .

– for example, In = [0, 1
n ] represents the sequence of nested intervals:

[0, 1],

[
0,

1

2

]
,

[
0,

1

3

]
, . . .
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2.2 Theorem: The Nested Interval Property

Let (In)n∈N be a nested sequence of:

• non-empty,

• closed,

• bounded

intervals. Define the set E as:

E =
⋂
n∈N

In = {x ∈ R : ∀n ∈ N, x ∈ In}

Then:

1. E is non-empty (|E| ≥ 1)

2. if lim
n→∞

λ(In) = 0, then |E| = 1, where λ(In) denotes the length of the

interval

The conditions for the theorem are very important:
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• if ∃n ∈ N : In = ∅, then trivially, the intersection of any set with the
empty set is in itself empty, so E = ∅

• if In is an open interval, the Nested Interval Property might not hold

– consider In = (1, 1
n
). Intuitively,

⋂
n∈N(1, 1

n
) might seem

non-empty.

– lets assume that ∃x ∈
⋂
n∈N(1, 1

n
). However, this would mean

that ∀n ∈ N, x < 1
n

, which violates the Archimidean Property (it
would mean that there exists a real number which is
infinitesimally small)

– an alternative view. Consider an arbitrary element x ∈ (0, 1
n
).

By the Archimidean property, we can always find an interval
(0, 1

m
),m > n, such that x 6∈ (0, 1

m
).

– overall what this means is that:⋂
n∈N

(
1,

1

n

)
= ∅

– see this Reddit thread on the topic

• if In is an unbounded interval, the Nested Interval Property might
not hold

– consider In = [n,∞). By similar arguments to the above case,
any element of

⋂
n∈N[n,∞] would need to be larger than any n,

which again violates the Archimidean Property (or rather, the
Archimidean Property contradicts this claim)

– see this stackexchange post on the topic

Proof. Consider this alternative proof if the following seems too complicated or over the top.
We first need to prove a Lemma:

If A and B are non-empty subsets of R, such that:

∀a ∈ A, b ∈ B, a ≤ b

Then:

1. supA ≤ infB

2. if ∀ε > 0,∃a ∈ A, b ∈ B : |b− a| < ε, then supA = infB
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Firstly, since A and B are non-empty, supA and infB exist. We claim that infB is an upper bound of
A. If this is the case, since supA is the least upper bound of A, then it follows from the definition that:

supA ≤ infB

as required. Thus, we seek to prove that:

∀a ∈ A, infB ≥ a

We proceed by contradiction, assuming that ∃a ∈ A : a > infB. Since infB is the greatest lower bound,
then infB + ε, ε > 0 is not a lower bound of B. Consider ε = a−infB

2 . Then, since infB + a−infB
2 is not a

lower bound, ∃b ∈ B : b < infB + a−infB
2 . But this then means that:

infB < b < infB +
a− infB

2
< a

which implies that b < a, which contradicts the assumption of the Lemma. Thus, it must be the case that
infB is an upper bound for A, as required.

Now, for the second part. Since supA ≤ infB, there are 2 possibilities:

supA < infB

or
supA = infB

Assume that supA < infB. Then:
infB − supA > 0

In particular, let ε′ = infB − supA > 0. Now, by the assumption,

∀ε > 0,∃a ∈ A, b ∈ B : |b− a| < ε

Thus, choose a, b, such that:
|b− a| < ε′

Then, from the properties of supA and infB:

a ≤ supA < infB ≤ b

From which it follows that:
infB − supA ≤ b− a < ε′

But this is a contradiction since we have defined ε′ = infB − supA but we get that infB − supA < ε′. In
other words, it must be the case that:

infB − supA = 0 =⇒ supA = infB

Now that this is done, we prove the Nested Interval Property.
Consider an interval In satisfying the conditions of the theorem. Then, ∃an, bn ∈ R such that an is the

lower bound of In and bn is its upper bound. Considering n ∈ N, it follows that:

a1 ≤ a2 ≤ a3 ≤ . . . ≤ ak ≤ . . . ≤ bk ≤ . . . ≤ b3 ≤ b2 ≤ b1

from the fact that In ⊃ In+1 and In ⊃ Ik, ∀n < k.
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Now, define the sets:
A = {a1, a2, . . .}

B = {b1, b2, . . .}

Notice that A and B satisfy the conditions of the Lemma, so from the first property of the Lemma, supA ≤
infB, and so:

a1 ≤ a2 ≤ a3 ≤ . . . ≤ ak ≤ . . . ≤ supA ≤ infB ≤ . . . ≤ bk ≤ . . . ≤ b3 ≤ b2 ≤ b1

Moreover, it follows that:

E =
⋂
n∈N

In = [supA, infB]

and clearly [supA, infB] is non-empty, as [supA, infB] ⊂ Ik, ∀k ∈ N.

Now, suppose that lim
n→∞

λ(In) = 0. Then, in particular, it follows that:

lim
n→∞

(bn − an) = 0

But by the definition of a limit, it follows that, ∀ε > 0:

|bn − an| < ε

This is precisely the condition required for the second property of the Lemma. Overall, it implies that
supA = infB, which means that [supA, infB] is a degenerate interval, and only contains one element, as
required.

3 Compactness

3.1 Covers and Subcovers

Consider a closed interval/set X.

• What is the cover of the set?

– a cover of X is a collection of sets whose union has X as a subset

• What is the subcover of the set?

– a subset of a cover of X, which still covers X
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3.2 Theorem: Compactness of a Closed Interval

Let E = [a, b] be a closed interval with a, b ∈ R. Consider an arbitrary
collection of open intervals, (Iα)α∈A, such that they cover E:

E ⊂
⋃
α∈A

Iα

Then, there exists a finite set of indices {α1, α2, . . . , αn} ⊂ A, such that
they form a finite subcover of E:

E ⊂
n⋃
i=1

Iαi

[Theorem 1.2]

Proof: Compactness of a Closed Interval. Consider a set of open intervals, (Iα)α∈A, such that they form a
cover of E = [a, b]. Define a subset of E:

S = {x | x ∈ [a, b], [a, x] can be covered by finitely many sets from (Iα)α∈A}

Notice, if we prove that b ∈ S, then this means that [a, b] can be covered by finitely many open sets,
proving our theorem.

Firstly, S 6= ∅, as a ∈ S. Indeed, a ∈ [a, b] ⊂
⋃
α∈A Iα, so there exists at least one open interval, call it

Iα1
, such that a ∈ Iα1

. Thus, the degenerate interval [a, a] = {a} can be covered by a finite (1) number of
intervals from (Iα)α∈A, so a ∈ S.

Secondly, S is bounded above by b, since any element from E is at most b. Since S is non-empty and
bounded above, supS exists, and supS ≤ b.

Thirdly, we claim that supS = b. We proceed by contradiction. Since E is closed, ∃c ∈ S : c = supS.
Now, assume that c < b. As in the case for a, if c ∈ [a, b] ⊂

⋃
α∈A Iα, then there exists some open interval,

call it Iα′ , such that c ∈ Iα′ . Moreover, since Iα′ is an open interval:

∃δ > 0 : (c− δ, c+ δ) ⊂ Iα′

By the approximation property of the supremum, we know that:

∃s ∈ S : s ∈ (c− δ, c]

By definition of S, there exists a finite set of intervals which cover the interval [a, s]:

[a, s] ⊂
n⋃
i=1

Iαi
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Moreover, s ∈ (c− δ, c+ δ) ⊂ Iα′ , so:

[a, c+ δ) ⊂ Iα′ ∪
n⋃
i=1

Iαi

But this is a contradiction: there are many points between c and c+δ which belong to S, but this contradicts
the fact that c is the supremum of S. Thus, our assumption that c < b must be false, and so:

c = supS = b

Now, since we have shown that c is in S, and b = c, then b ∈ S (using the same cover, Iα′ ∪
⋃n
i=1 Iαi

). Thus,
there exists a finite subcovering of the closed interval [a, b], as required.

4 Sequences in R
4.1 Convergence of a Sequence

• When does a sequence converge?

– let (xn)n∈N be a sequence

– we say it converges to a ∈ R if:

∀ε > 0, ∃N ∈ N : n ≥ N =⇒ |xn − a| < ε

and we write:
lim
n→∞

xn = a

xn → a

• What is the limit of a sequence?

– the value to which a sequence converges

• What does it mean if a sequence diverges?

– if the sequence does not converge to any real number, then it is said to diverge

5 Exercises

1. Let (an)n∈N be a sequence of real numbers, and a ∈ R. Suppose that an → a. Show that:

a1 + a2 + . . .+ an
n

→ a

Proof. Since an converges, in particular:

1. an is bounded : ∀n ∈ N, ∃M ∈ Z+ : |an| < M

2. ∀ε > 0, ∃N ∈ N : ∀ n ≥ N =⇒ |an − a| < ε
2

We claim that a1+a2+...+an
n → a so, by the definition of the limit, we require that:

∀ε > 0, ∃N∗ ∈ N : ∀n ≥ N∗ =⇒
∣∣∣∣a1 + a2 + . . .+ an

n
− a
∣∣∣∣ < ε
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Now, let:

N∗ = max

{
N,

4M(N − 1)

ε

}
and let n ≥ N∗.
Using the triangle inequality, we can split the LHS into 2 summations: since we are considering n ≥ N∗,
in particular n ≥ N , so we can have one summation with terms (ai)1≤i<N , and another one with terms
(ai)N≤i≤n: ∣∣∣∣a1 + a2 + . . .+ an

n
− a
∣∣∣∣ =

1

n
|(a1 − a) + (a2 − a) + . . .+ (an − a)|

≤ 1

n
|a1 − a|+ |a2 − a|+ . . .+ |an − a|

=
1

n

(
N−1∑
i=1

|ai − a|+
n∑

i=N

|ai − a|

)

Now, since an is bounded, its limit is also bounded, so ∃M ∈ Z+:

∀i ∈ N, |ai| < M and |a| < M

For i < N , the largest possible value of |ai − a| must be 2M (for example if ai = M,a = −M). This
also follows from the triangle inequality (|ai − a| < |ai|+ |a| < M +M). Thus:

N−1∑
i=1

|ai − a| ≤ 2M(N − 1)

For i ≥ N , we can impose a tighter bound, as we know that ∀i ≥ N, |ai − a| < ε
2 , so:

n∑
i=N

|ai − a| <
ε(n−N + 1)

2

Thus, it follows that:

1

n

(
N−1∑
i=1

|ai − a|+
n∑

i=N

|ai − a|

)
<

2M(N − 1)

n
+
ε(n−N + 1)

2n

Since n ≥ N∗, then either n ≥ N ≥ 4M(N−1)
ε or n ≥ 4M(N−1)

ε ≥ N .

Since n ≥ 4M(N−1)
ε , then:

2M(N − 1)

n
≤ 2M(N − 1)

4M(N−1)
ε

=
ε

2

Moreover, since n−N + 1 ≤ n =⇒ n−N+1
n ≤ 1 then:

ε(n−N + 1)

2n
≤ ε

2
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By choosing n ≥ N∗, we thus ensure that:∣∣∣∣a1 + a2 + . . .+ an
n

− a
∣∣∣∣ =

1

n
|(a1 − a) + (a2 − a) + . . .+ (an − a)|

≤ 1

n

(
N−1∑
i=1

|ai − a|+
n∑

i=N

|ai − a|

)

<
2M(N − 1)

n
+
ε(n−N + 1)

n

≤ ε

2
+
ε

2
= ε

Thus, ∀ε > 0, ∃N∗ ∈ N such that for all n ≥ N∗:∣∣∣∣a1 + a2 + . . .+ an
n

− a
∣∣∣∣ < ε

By the definition of the limit, it follows that:

a1 + a2 + . . .+ an
n

→ a

2. (a) Suppose that (an) is a convergent sequence of real numbers, and let A be the set:

A = {a1, a2, . . . , an, . . .}

Prove that A has a maximum or a minimum or both.

Firstly, since an converges, it is a bounded sequence, and so A is also bounded. Since A is non-empty,
it follows that supA and infA exist.

Secondly, an converges, say to a ∈ R. Then, one of the 3 possibilities must be true:

1. infA = a = supA

2. a < supA

3. infA < a

If infA = a = supA, then it means that the sequence is constant, and so both the maximum and
minimum exist, and are the same.

Assume that a < supA. Then we have the following situation:

supA

a

a+ ε

a− ε

N
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∀n ≥ N , an are within ε of the limit. What this means is that supA must be within the first N − 1
terms. To ensure this, pick:

ε =
supA− a

2
Then, we are certain that ∃N ∈ N such that if n ≥ N :

|an − a| <
supA− a

2

Then:

a− supA− a
2

< an < a+
supA− a

2

So it follows that:
supA = max{a1, a2, . . . , aN−1}

and thus the maximum exists.

Using a similar argument, if infA < a, then:

infA = min{a1, a2, . . . , aN−1}

(b) Give an example of a bounded sequence which has neither a maximum nor a minimum

an = (−1)n
(

1− 1

n

)
The sequence is clearly bounded by -1 and 1, but it never reaches these values, so it has neither a
maximum nor a minimum.

3. Let (an)n∈N be a sequence of real numbers, and let a ∈ R. Suppose that every subsequence
of an has a sub-subsequence that converges to a. Prove that an → a.

We proceed by contradiction. Assume that an diverges. Then:

∃ε > 0 : ∀N ∈ N, ∃n ≥ N : |an − a| ≥ ε

Clearly, we can produce a subsequence of terms in an, such that |ank
− a| ≥ ε:

n1 ≥ N =⇒ |an1
− a| ≥ ε

n2 ≥ N = n1 + 1 =⇒ |an2
− a| ≥ ε

In general, we can obtain ank
by setting N = ank−1

. Thus, we ensure that:

n1 < n2 < . . . < nk . . .

and we obtain the subsequence:
an1

, an2
, . . . , ank

, . . .

Thus, we have found a subsequence, such that:

|ank
− a| ≥ ε

By the assumption of the question, we can define a sub-subsequence, such that:

|ankl
− a| < ε

But this is clearly a contradiction, as every term of our subsequence differs from a at least by ε, so no
subsequence of it can possibly satisfy |ankl

− a| < ε. Thus, our initial assumption was wrong, and it
must be the case that:

an → a
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