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1 Real Numbers

1.1 Properties of the Real Numbers

e R is an ordered set

— Va,b € R there are only 3 possibilities:

1. a<bd
2.a=0»
3.a>b

e R is complete

— VA C R if A is non-empty and bounded, then A has an infimum and a supremum

— this follows from the Completeness Theorem
e R has the Archimidean Property

— this means that there is no largest or smallest real. In other words:

Va,beR:a>0, IneN:b < na

2 Nested Intervals

2.1 Definition: Nested Intervals

e What are nested intervals?

— consider a sequence of intervals (I,,),en

— they form a set of nested intervals if:

LDOLD...

— for example, I, = [0, %] represents the sequence of nested intervals:

[0,1], [O, ﬂ , [0, ?j
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2.2 Theorem: The Nested Interval Property

The conditions for the theorem are very important:
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e ifIn €N : I, =0, then trivially, the intersection of any set with the
empty set is in itself empty, so E = ()

e if I, is an open interval, the Nested Interval Property might not hold

— consider I, = (1, ). Intuitively, (), cn(1, =) might seem
non-empty.

— lets assume that 3z € (), n(1, £). However, this would mean
thatVn € N, x < %, which violates the Archimidean Property (it
would mean that there exists a real number which is
infinitesimally small)

— an alternative view. Consider an arbitrary element x € (0, %)

By the Archimidean property, we can always find an interval
(0,L),m > n, such that v & (0, =).

— owerall what this means is that:

QN(l%) =

— see this Reddit thread on the topic

e if I, is an unbounded interval, the Nested Interval Property might
not hold

— consider I, = [n,00). By similar arguments to the above case,
any element of (,,cn[n, 00| would need to be larger than any n,
which again violates the Archimidean Property (or rather, the
Archimidean Property contradicts this claim)

— see this stackexchange post on the topic

Proof. Consider this alternative proof if the following seems too complicated or over the top.
We first need to prove a Lemma:

If A and B are non-empty subsets of R, such that:
Vae A, beB, a<b
Then:
1. supA < infB
2. ifVe>0,Ja € A, be B : |b—al <e¢, then supA =infB
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https://www.reddit.com/r/learnmath/comments/hsg7vm/real_analysis_im_having_trouble_wrapping_my_mind/
https://math.stackexchange.com/questions/3347553/why-is-infinite-intersection-towards-infinity-an-empty-set
https://www.planetmath.org/NestedIntervalTheorem

Firstly, since A and B are non-empty, supA and inf B exist. We claim that infB is an upper bound of
A. If this is the case, since supA is the least upper bound of A, then it follows from the definition that:

supA <infB
as required. Thus, we seek to prove that:
Ya € AinfB > a

We proceed by contradiction, assuming that 3a € A : a > infB. Since infB is the greatest lower bound,
then infB + ¢, > 0 is not a lower bound of B. Consider € = % azinfB

. Then, since infB + “—5= is not a
lower bound, 3b€ B : b<infB + %. But this then means that:

me<b<me+%<a

which implies that b < a, which contradicts the assumption of the Lemma. Thus, it must be the case that
infB is an upper bound for A, as required.

Now, for the second part. Since supA < infB, there are 2 possibilities:
supA <infB

or
supA =infB

Assume that supA < infB. Then:
infB — supA >0

In particular, let ¢’ = infB — supA > 0. Now, by the assumption,
Ve>0,Ja €A, beB : |b—a|l<e

Thus, choose a, b, such that:
|b—al <&

Then, from the properties of supA and infB:
a < supA<infB<b

From which it follows that:
infB —supA<b—a<¢

But this is a contradiction since we have defined ¢’ = infB — supA but we get that infB — supA < &’. In
other words, it must be the case that:

infB—supA=0 — supA=infB

Now that this is done, we prove the Nested Interval Property.
Consider an interval I,, satisfying the conditions of the theorem. Then, Ja,,b, € R such that a,, is the
lower bound of I,, and b, is its upper bound. Considering n € N, it follows that:

ap<az<az<...<ap <. <bp<...<b3<by<b

from the fact that I,, D I,,41 and I, D I, Vn < k.
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Now, define the sets:
A= {al,ag, .. }

B={by,by,...}

Notice that A and B satisfy the conditions of the Lemma, so from the first property of the Lemma, supA <
infB, and so:

a1 <as<az3<...<ap<...<supA<infB<...<by<...<b3<by<b

Moreover, it follows that:
E= ﬂ I, = [supA,infB]
neN

and clearly [supA,infB] is non-empty, as [supA,infB] C I, Vk € N.
Now, suppose that lim A(1,) = 0. Then, in particular, it follows that:
n—oo

lim (b, —a,)=0

n—oo
But by the definition of a limit, it follows that, Ve > 0:
|br, —an| < €

This is precisely the condition required for the second property of the Lemma. Overall, it implies that
supA = infB, which means that [supA,infB] is a degenerate interval, and only contains one element, as
required. O

3 Compactness
3.1 Covers and Subcovers
Consider a closed interval/set X.

e What is the cover of the set?
— a cover of X is a collection of sets whose union has X as a subset
e What is the subcover of the set?

— a subset of a cover of X, which still covers X
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3.2 Theorem: Compactness of a Closed Interval

Let E = [a,b] be a closed interval with a,b € R. Consider an arbitrary
collection of open intervals, (1,)aca, such that they cover E:

Ec|JL

acA

Then, there exists a finite set of indices {a1,aa,...,a,} C A, such that
they form a finite subcover of E:

i=1

[Theorem 1.2]

Proof: Compactness of a Closed Interval. Consider a set of open intervals, (I)aea, such that they form a
cover of E = [a,b]. Define a subset of E:

S={z|x€la,b],a,x] can be covered by finitely many sets from (In)aea}

Notice, if we prove that b € S, then this means that [a,b] can be covered by finitely many open sets,
proving our theorem.

Firstly, S # 0, as a € S. Indeed, a € [a,b] C ,ea Lo, so there exists at least one open interval, call it
I,,, such that a € I,,. Thus, the degenerate interval [a,a] = {a} can be covered by a finite (1) number of
intervals from (Iy)aea, 80 a € S.

Secondly, S is bounded above by b, since any element from E is at most b. Since S is non-empty and
bounded above, supS exists, and supS < b.

Thirdly, we claim that supS = b. We proceed by contradiction. Since F is closed, 3¢ € S : ¢ = supS.
Now, assume that ¢ < b. As in the case for a, if ¢ € [a,b] C [J,c4 Lo, then there exists some open interval,
call it I/, such that ¢ € I,». Moreover, since I,/ is an open interval:

36>0 : (c—d,¢c+9) C Iy
By the approximation property of the supremum, we know that:
dse S : se(c—d,(

By definition of S, there exists a finite set of intervals which cover the interval [a, s]:
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Moreover, s € (¢ — §,c+§) C I, so:

[a,c+ 0) CIa/UUIai

i=1
But this is a contradiction: there are many points between ¢ and ¢+ 9 which belong to S, but this contradicts
the fact that ¢ is the supremum of S. Thus, our assumption that ¢ < b must be false, and so:

c=supS=1»b

Now, since we have shown that ¢ is in S, and b = ¢, then b € S (using the same cover, I,» U{J;_, I,). Thus,

there exists a finite subcovering of the closed interval [a, b], as required.
O

4 Sequences in R

4.1 Convergence of a Sequence

¢ When does a sequence converge?

— let (x,,)nen be a sequence
— we say it converges to a € R if:
Ve>0,dNeN : n>N = |z,—a|<¢
and we write:
lim =z, =a
n—oo
Ty —a
e What is the limit of a sequence?

— the value to which a sequence converges

e What does it mean if a sequence diverges?

— if the sequence does not converge to any real number, then it is said to diverge

5 Exercises

1. Let (a,)nen be a sequence of real numbers, and a € R. Suppose that a,, — a. Show that:

a; +as+...+a,
n

— a

Proof. Since a,, converges, in particular:

1. a, is bounded: Yn € N, IM € Z* : |a,| <M
2.¥¢e>0,dINeN :Vn>N = la, —a|<§

We claim that W — a so, by the definition of the limit, we require that:

Ve>0 IN*E€N : ¥n> N* — |GF02F--Fan 1
n
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Now, let:

AM(N —1
N* = maX{N,()}
€

and let n > N*.

Using the triangle inequality, we can split the LHS into 2 summations: since we are considering n > N*,
in particular n > N, so we can have one summation with terms (a;)1<i<n, and another one with terms
(ai)N<i<n:

ar+as+...+ay,
n

—a (a1 —a) + (aa —a) + ...+ (a, — a)]

= 3|~

gﬁ\al—a|+\a2—a|+...+|an—a\
1 N-1 n
H(S-are Sl
i=1 i=N

Now, since a,, is bounded, its limit is also bounded, so IM € Z*:
VieN, |aj] <M and J|a|] <M

For i < N, the largest possible value of |a; — a| must be 2M (for example if a; = M,a = —M). This
also follows from the triangle inequality (|a; — a| < |a;| + |a| < M + M). Thus:

N-1
> foi—al < 2M(¥ 1)

i=1

For i > N, we can impose a tighter bound, as we know that Vi > N, |a; —a| < §, so:

En:la‘—al =N+
i=N l 2

Thus, it follows that:
1 (= i OM(N —1) e(n—N+1)
n<;|ai—a|+§\r|ai—a|>< - + o

SincenzN*,theneithernzNz%ornzsz.

AM(N—-1)
€

Since n > , then:

2M(N —1) 2M(N—-1) ¢
n = "T4M(N-1) 9
€

Moreover, sincen — N +1<n = ”‘TN'H <1 then:

e(n—N+1)

<
2n -

IS
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By choosing n > N*, we thus ensure that:

a1 +as+...+a 1
! 2 n—a’z(a1—a)+(a2—a)—|—...+(an—a)|
n n
1 N—-1 n
S<Z|ai_a|+2|ai_a|>
nm\ix i=N
<2M(N—1)+E(TL—N+1)
n n
e €
<Lz
*2—’_2
=c
Thus, Ve > 0, IN* € N such that for all n > N*:
a1+a2+...+an_a -

n

By the definition of the limit, it follows that:

ay +ag+...+an
n

—a

2. (a) Suppose that (a,) is a convergent sequence of real numbers, and let A be the set:
A=A{ay,a2,...,an,...}

Prove that A has a maximum or a minimum or both.

Firstly, since a,, converges, it is a bounded sequence, and so A is also bounded. Since A is non-empty,
it follows that supA and infA exist.

Secondly, a,, converges, say to a € R. Then, one of the 3 possibilities must be true:

1. infA =a = supA

2. a < supA

3. infA<a
If infA = a = supA, then it means that the sequence is constant, and so both the maximum and
minimum exist, and are the same.

Assume that a < supA. Then we have the following situation:

supA
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Vn > N, a, are within ¢ of the limit. What this means is that supA must be within the first N — 1
terms. To ensure this, pick:

_ supA—a
B 2
Then, we are certain that 3N € N such that if n > N:
supA —a
lan, —a| < — 5
Then:
SupA — a SupA — a
PR i N L. il
2 2
So it follows that:
supA = max{ai,as,...,an—_1}
and thus the maximum exists.
Using a similar argument, if infA < a, then:
infA=min{ay,as,...,an_1}

(b) Give an example of a bounded sequence which has neither a maximum nor a minimum

an = (—1)" (1 _ i)

The sequence is clearly bounded by -1 and 1, but it never reaches these values, so it has neither a
maximum nor a minimum.

3. Let (an)nen be a sequence of real numbers, and let a € R. Suppose that every subsequence
of a,, has a sub-subsequence that converges to a. Prove that a,, — a.
We proceed by contradiction. Assume that a,, diverges. Then:

Je>0: VNeN, In>N : |a,—al>¢

Clearly, we can produce a subsequence of terms in a,, such that |a,, —a| > e:
ng >N = la,, —al>¢
n>N=n+1 = |ap, —a|>¢
In general, we can obtain a,, by setting N = a,, ,. Thus, we ensure that:
ny<ng <...<ng...

and we obtain the subsequence:
Any s Ongs ey Qppy e e -

Thus, we have found a subsequence, such that:
|an, —al >¢€

By the assumption of the question, we can define a sub-subsequence, such that:
lan,, —al <e

But this is clearly a contradiction, as every term of our subsequence differs from a at least by ¢, so no
subsequence of it can possibly satisfy |ank_l — a|] < e. Thus, our initial assumption was wrong, and it
must be the case that:

G — @
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