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Based on the notes by Iain Gordon, Section 5.8

1 Adjoint Endomorphisms
1.1 Defining Adjoint Endomorphisms

¢ When are 2 endomorphism adjoint?
— consider an inner product space V with endomorphisms:

T.8: V=V

— S,T are adjoint if:
(T(v),w) = (v,Sw)), Vo,weV

— we write S = T to say that “S is the adjoint of T

1.1.1 Examples

One can think of adjoints as equivalent to taking transposes (see here for more details).

For example,if V' = R", we can define an endomorphism 7" : V' — V via matrix multiplication Ao of
A € Mat(n,R). Recall, we can rewrite the (standard) dot product as:

Then:

In other words, the adjoint of a real matrix is its transpose:

A*:AT

Alternatively, if V= C™, we have that the dot product is:

So if A € Mat(n,C):

In other words, the adjoint of a complex matrix is its conjugate transpose:

A*:AT
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https://golem.ph.utexas.edu/category/2013/08/linear_operators_done_right.html

1.2 Theorem: Existence of Adjoint

Let V' be a finite dimensional inner product space.
Let:
T:V =V

be an endomorphism.
Then, T* exists.
That is, we have a unique linear mapping:

TV =V

such that:
(T(v),w) = (v, T"(w))

[Theorem 5.5.4]

Proof. We have 3 steps:
1. Conjecture T*, dependent on T’
2. Shows that T is the adjoint of T’
3. Show that T is linear

Now, since V is finite dimensional, then we know that there exists an orthonormal basis:

€15-++5En

Then, assuming that T* exists, we would have to satisfy:

n

T (w) = ) (T (w),e)e;

i=1

T™* should be an adjoint of T, so:

n

T (w) = Y (w,T(e))e;

=1

Hence, we claim that this is a valid definition of the adjoint of T
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We now show that it is a valid adjoint:

Hence, T certainly satisfies the property of an adjoint.
The last step is to show that it is an endomorphism.

Linearity of addition:

Linearity of scalar multiplication:

Now, the last step is to show that T* is unique. This is necessary, since:
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1. Tt is part of the proof

2. Without it, our claims of linearity (i.e T*(w; + w,)) = T*(w;) + T*(w,)) don’t necessarily hold, since
we are making these claims by working over an inner product.

Fortunately, any endomorphism has at most 1 adjoint. Indeed, assume that T has 2 adjoints S,S".
Then:
(T(v),w) = (v, S(w)) = (v, §'(w))

and this is true Vv, w € V. But then by linearity:
(2, S(w) — §"(w)) =0
Since this is true Yo, w, in particular it is true for v = S(w) — S’'(w), so we must have:
(S(w) = 5" (w), S(w) — §'(w)) =0 <= S(w) - '(w) =0

which implies that Vw € V, we have that S, S’ map identically, so S = S’, so adjoints are unique (if they
exist).

Hence, we have shown the existence and uniqueness of an endomorphism 7™, which is an adjoint of 7.
O

1.2.1 Examples

Given a linear transformation 7' : R? — R, it can be represented as a 2 x 2 matrix. We compute its adjoint.
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1.2.2 Exercises (TODO)

1. Show that if T* is the adjoint of T, then T* has an adjoint, and:

() =T

Consider 2 vectors v, w. Then, assume that the adjoint of T" is T*. Then, Vv, w:

(T"(v), w) = (w, T*(v))
= (T(w),2v)
= (v, T(w))

But similarly, by definition:
(T"(v), w) = (v, (T7)" (w))
Hence, Vv, w:
(v, T(w) = (0,Tw)) <~ (v,T(w)—(T")"(w)) =0
and by similar arguments as above, taking v = T'(w) — (T*)*(w), then implies that:
T(w) = (T7)(w) =0 = T =(T7)"

as required.

2 Self-Adjoint Endomorphism

2.1 Defining Self-Adjoint Endomorphisms

e When is an endomorphism self-adjoint?
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— consider an inner product space V with endomorphism:

T:V >V

— T is self-adjoint if:
T=T"

2.1.1 Examples

Before we showed that:
e for real matrices, the adjoint is its tranpose
o for complex matrices, the adjoint is its conjugate transpose
This then tells us that:

e a real matrix is self-adjoint if it’s symmetric:

A= AT

e a complex matrix is self-adjoint if it’s hermitian:

A=AT

2.2 Theorem: Properties of Self-Adjoint Endomorphisms

Let V' be an tnner-product space.
Consider a self-adjoint linear mapping:

T:V >V
Then:
1. Fvery eigenvalue of T' is real

2. If 2 eigenvalues \, i1 are distinct, their corresponding
eigenvectors v, w are orthogonal:

(v,w) =0

3. T has an etgenvalue

[Theorem 5.3.7]

Proof. Consider non-zero vectors v,w € V and a self-adjoint mapping 7" = T™*.
1. Assume that v is an eigenvector of T" with eigenvalue v. Then:
T(v) =

Now, consider:
Av,v) = (M, v) = (T(v),v) = (v, T"(v))
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But now, T is self-adjoint, so (v, T*(v)) = (v, T(v)). Thus:
A, ) = (v, T(v) = (v, \v) = Ay, v)
(Notice, using A is general, since its a property of both real and complex inner products).

But then we have that: -
AMv,v) = A(v,v)

Since v # 0, then (v,v) > 0. V being an integral domain then implies that:

A=A < AeR

. By the above, if A\, u are eigenvalues, then A\, u € R. Thus:

Ay, w) =

>
1=
E

3 ~—
—~
e
= =
~—

[ I
EEERY
T NNE

Il
= T

By hypothesis, A # pu, so:
Mo, w) = p(v,w) = (v,w)=0

so the eigenvectors are orthogonal.

. We now consider the 2 possible types of inner product spaces.

If V is a complex inner product space, the fact that it has an eigenvalue is no surprise. Since C is
algebraically closed, any characteristic polynomial will have roots in C. This is also Theorem 4.5.4 in
the notes.

The interesting case comes wehn we consider a real inner product space; after all, we know there are
many endomorphisms (i.e 90° rotations) which don’t have any real eigenvalue.

To prove this, we use a rather contrived method, which requires analysis (yuck!), but which leads to a
pretty nice geometric consequence which we met in ILA.

We now work with V' as a finite dimensional, real, inner product space. Define the Railegh Quotient:
v),v
R = ——= cV 0
(v) P veV\{0}

The first thing to note is that we can restrict ourselves to a unit sphere:
S={v|llull=1}

This is because:

e

R = T o = (1

- (vv) [l

So R is fully defined by unit vectors.

) )

v
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Since I hate analysis, I'll go out an say that the set S is closed (since its complement is an open
set: just think of all vectors with length greater than one!) and bounded (since it’s composed of
unit vectors), the Extreme Value Theorem states that a continuous function over said interval will
achieve a maximum and a minimum. Admittedly, we haven’t shown that R(v) is continuous, but in
the videos Iain shows that we can write:

(T(v),v) = Z XX (T(e;), e5)

where \; = (v,¢;) and we have a set of orthonormal basis vectors e;. This can be thought as a
polynomial in A;, A;, so as all polynomials, R(v) is continuous and differentiable.

Given a symmetric n X n matrix A = (a;;) € Mat(n;R) let T : R® — R" be the self-adjoint
endomorphism with matrix A defined by

i mn n
— T
T(.‘El,:ﬂz,...,.‘fﬂn) = (E G]_j.’l.'j, E tl2j.’12j,..., E (Injll'j) ER .
i=1 i=1 =1

Consider the Rayleigh quotient function as in the proof of Theorem 5.3.7

T mn
Tiez  S5"0""
R:R\{0} 5 R; &= (z1,2s,...,2,) = R(E) = ——s = =21
rex 2
Ee

Figure 1: Here we are using the standard inner product.

All this for what, I asked myself as reading (and presuming what I'll think when reading this in the
future)? Well, we know there exists some vector v, (and we can assume that v is a unit vector) such

that R(v, ) is maximal.

‘We can now define a function:
(T(v, +tw), v, + tw)

Ry (t) = Rlv, + tw) = (vy +tw, v, +tw)

For those of you (aka me in the many futures in which I consult this) which are geometrically inclined:

IRL?LJC\ = R(TP-F Jcﬁ?)

N

teR te(-gg)

Figure 2: We define R,, for small ¢, so that we are still in the unit sphere (I think?). We can see that the
maximum is achieved when ¢ = 0, since R(v, ) is maximal.

Now notice: if we differentiate R, (0), we should get 0, since R(v_ ) is maximal (and differentiation is
defined, since R is differentiable). Thus, applying the quotient rule:
(T(w),vy) + (T(vy),w)  2T(vy),v4) (04, w)

RE(O) = (Q+,Q+) B (2+72+)2
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If we then make the smart choice of picking w such that:
wlw,

Then we have:

(T(w),vy) + (T(vy), w)

(vy,04)

RLJ(O) == =0 = (T(Q),Q_,_) = _(T(ﬂ-‘r)vﬂ)

Now, since we are working over a real inner product space:

(T(Q-f)aﬂ) = (va(ﬂ+))
Moreover, T is self-adjoint, so:

(T(w),vy) = (w, T(vy))
Hence, we have that:

(T(w),vy) =—(T(wy)w) = (w,T(vy))=—(wT(vy))

and this is true if and only if:

(w,T(vy)) =0
which means that:
w1l T(v,)
This means that since:
w e ((vg))*

then:
T(vy) € () )™
Proposition 5.2.2 tells us then that:

((<Q+>)L)L = (uy)

so in particular, each T'(v ) must be in the span of v, or in other words, 3X € R such that:
T(vy) = vy

thus showing that T has an eigenvalue.

2.2.1 Example: The Geometric Interpretation of Raleigh Quotient

Consider the transofrmation:
5 -6
T =

-6 13

Since T is a real symmetric matrix, it is self-adjoint.

Now, consider the case of maximising/minimising:

In the above, we maximised R by keeping the denominator constant (the restriction that v lies in the unit
sphere). However, an alternative is to maximise R by minimising (v, v), given that T'(v),v) stays constant.
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For example, we can minimise ||v|| whilst ensuring that (T'(v),v) = 1. Then, using v = (x, y):

5 —6 T 5 — 6y
-6 13 Y —6x + 13y

(T'(v),v) = 5x? — 6zy — 62y + 13y? = 522 — 122y + 13y
We can plot 522 — 122y 4+ 13y? = 1 and obtain ... an ellipse!

0.4

0:3

01 0.2 0.3 0.4 0.5 0.6 07

Now, our objective is to minimise ||v||, where v is any of the vectors which define the ellipse. That is
we seek the v whose distance from the origin to the ellipse is minimal. In other words: v corresponds to
the minor axis of the ellipse above.

Similarly, if we wanted to minimise R, we would seek to maximise ||v||, in which case we would have
found the major axis of the ellipse.

And what do you know? The axes defining the ellipse are eigenvectors of the self-adjoint mapping. And
as expected, they are orthogonal to each other!

3 The Spectral Theorem

3.1 Theorem: The Spectral Theorme for Self-Adjoint Endomorphisms

Let'V be a finite dimensional inner product space.
Define the self-adjoint endomorphism:

T:V >V

Then, V has an orthonormal basis, consisting of eigenvectors of T
[Theorem 5.5.9]
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Proof. We apply induction on n = dim(V).
(Dn=0,1

These cases are trivial. If dim(V) = 0, then V = {0}, for which there are no eigenvectors. Similarly, if
dim(V) = 1, then V = (v), and any endomorphism T must have v as its only eigenvector, which is clearly
orthonormal to itself (since \v =0 <= A =0).

@n:k

Assume true for n = k. That is, if dim (V') = k, there exists an orthonormal basis for V.

@n:k-l—l

Consider a space V with dim(V) = k + 1. Since T is self adjoint, we know that T" has at least one real
eigenvalue A (2.1.1). Define u to be a unit eigenvector of A\, and define a subspace U = (u).

Now, let v € U-+. Then:
(u, T(v) = (T'(u),v = (Au,v) = Mu,v) =0

where we have used the fact that u is an eigenvector of T, and the fact that 7" is self-adjoint.

Notice, this then means that u L T'(v), so we must have that:
TUH) cUut

In particular, we can define an endomorphism Tj,. : ULt — U+ by restricting T to U+. Now recall, the
dimension theorem:
dim(A + B) + dim(AN B) = dim(A) + dim(B)

Moreover, recall that:
V=UeaU"

and that this implies that UN UL = () and U + UL = V (we showed this last week). Then, the dimension
theorem tells us that:
dim(V') = dim(U) + dim(U*)

SO:
E+1=1+dim(U) = dim(U')=k

Hence, since T being self-adjoint means that Ty, . is also self-adjoint, the induction hypothesis exists, and
U+ has an orthonormal basis (of k elements), call it B.

Then, BU{u} produces an orthonormal basis for V', as required (since its a set of k+1 linearly independent
vectors, and they will span V, since as discussed above V =U @& U+).
O

3.2 Orthogonal Matrices

e What is an orthogonal matrix?

— let P € Mat(n,R)

— P is an orthogonal matrix if:

P’p=1, = pPT=p!
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3.2.1 Examples

Consider the matrix:

(this was used to define the ellipse above)

We want to create a change of basis matrix which maps from the standard basis to a basis of the
eigenvectors of T. The fact that T is self-adjoint (since its real and symmetric) implies that V has an
orthonormal basis consisting of eigenvectors of T, by the Spectral Theorem.

We begin by computing the eigenvectors and eigenvalues:
5—2x —6 9
=bB-2)(13—2z)—36=2"—182x+29=0
-6 13—z
Applying the quadratic formula defines 2 real roots (as expected from a self-adjoint transformation):
a=9+2V13
B=9-2V13

We now find the eigenvectors:

5—« —6 V1 0 (5 — a)v; — 6vy 0
= = =
-6 13—« Vg 0 —6v1 + (13 — a)vs 0
Then: .
'02:( _6OZ)U1 = v1 =06, 19 =5—«
So:
6
v =
5—«a
From identical reasoning it follows that:
6
Vy =
5-p

We confirm that these 2 vectors are orthogonal:
vy =36+ (5—a)(5— )
=36 +25—5a—58+ab
= 61 — 5(9 + 2V13) — 5(9 — 2v/13) + (9 4 2V13)(9 — 2V13)
=61 — 90+ 81 —4(13)
=142 — 142
=0

We can now normalise v;, v, to obtain unit vectors:

1 6

E1:—2
V36+(B—a)? \5_q
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1 6
LT B 6 BE \5-p

Define a basis of V' via B = {u;,u,}. The change of basis matrix g[idy]p is constructed by taking the
eigenvectors as columns:

6 6
V36+(5—a)?2  /36+(5—p)2
5—a 5—0
V36+(—a)2  /36+(5—p)2

s lidy]p = P =

To simplify this a bit, we can expand:

36 + (5 —a)? =36 + 25 — 10a + o

=0ao? —10a + 61

= (18 — 29) — 10c + 61
=8a + 32

=4(2a +8)

The same applies to 36 + (5 — «)?, since we are just using the fact that a, 3 satisfy 22 — 182 + 29 = 0. Thus:

6 6
P = 2v/2a+8 22348
5—a 5—p8
2v2a+8  24/2B+8

The change of basis matrix p[idy]g(2) is nothing but P~!. We can compute this:

det(P) = 6(5—8)—6(5—a) _ 6(c — 3) _ 6v13
4420+ 828 + 8 4120+ 8/28+8 V2a+8/28+8

But now notice that:

V2a 4 8v/28 + 8 = \/4afB + 16a + 1653 + 64 = \/4(81 — 52) + 16(18) + 64 = /468
613 = v/36 x 13 = /468

It is useful to “save” the fact that:
a+ =18 af =29

(this is just Vieta’s Theorem!).
So det(P) = 1. Hence

5-8 __ 6

p-l— 2v/23+8 2/2B6+8
__5—« 6

2/2a+8 2v/2a+8

At this point, I haven’t found a nice algebraic way of showing that P~! = PT (year spoiler P is orthogonal
- prove of this in the exercise below), so I'll go for second best: simply showing that PPT = I,.
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6 6 6 5—a
ppT — | 2vV2a+8  2V253+8 2v2a+8  2y/2a+8
5—a 5—0 [§] 5—p8
2v2a+8  24/2B+8 22B8+8  2/2B+8
36 36 6(5—a) 6(5—8)
_ | T@ats) T a@EFE)  1ats) T 12549
66=—a) | 6(6=p)  (5-a)®* , (5-8)°
2(20+8) T 4(2B+8) 4(2a+8) " 4(2B+8)
9 9 3(5—a) 3(5-8)
_ 2a+8 + 2848 2(2a+38) + 2(26+8)
36—a) | 3(6-p)  (5-a)® , (5-8)°
2(2a+8) 2(28+8) 4(2a+8) T 4(2B+8)
9(2B+8+2a+8) 3((5—a)(2B+8)+(5—B)(2a+8)
_ (2a+8)(28+8) 2(2a+8)(28+8)
3((5—)(28+8)+(5—8)(2a+8)  (5—a)?(28+8)+(5—B)%(2a+8)
2(2a+8)(28+8) 4(2a+8)(28+38)
9(2(a+p)+16) 3(80+2(a+B—2ap))
_ 468 2(2a+8)(28+38)
3(80+2(a+B—2ap))  (4(204+8)—36)(2848)+(4(28+8)—36)(2a+8)
2(2a+8)(28+8) 4(2a+8)(2B+8)
9(2(18)+16) 3(80+2((18)—2(29)))
_ 468 2(20+8) (28+8)
3(80+2((18)—2(29)))  (4(2a+8)—36)(28+8)+(4(25+8)—36)(2a+8)
2(2a+8)(23+8) 4(2a+8)(26+8)
468 3(80—80)
_ 168 2(2a+8)(28+8)
B 3(80—80) 2(20+8) (28+8) —9(20+8+25+8)
2(2a+8)(28+8) (2a+8)(28+8)
1 0
B 9(2(a+B)+16)
0 2- 468
1 0
B 9(2(18)+16)
0 2- 468
1 0
B 9(2(18)+16)
0 2- 468
1 0
0 2—-1
1 0
0 1

So indeed, P~!' = P”', and P is an orthogonal matrix!

Our last step is to build the matrix p[T]p. I'll spare you the pain, since we know that this is nothing
but the diagonal matrix with eigenvalues at the diagonal:

g[T)p =P 'TP
a 0
0 B
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3.2.2 Exercises (TODO)

1. Show that the condition:
PTpP=1,

is equivalent to the columns of P forming an orthonormal basis for R" with its standard
inner product.

Consider an orthonormal basis E = {e,,...,¢,}, and let P be a matrix with £ as columns:

P=(e| ... | &)
Then:
el
PT =
e
Then:
ef
PP (er ] - len)
ey
efe; eer ... ehe
| e de o ele
ele, eie, ele,
L1 29 =1 , €
(e1,€1) (eare1) (enr€1)
=1 = =27 = n €
_ (e1,€2) (€as€2) (ens€2)
(ﬁlﬁgn) (§27Qn> (en’gn)
= I’ﬂ
by using the orthonormality of e,.
2. Show that the set:
{P|P'P=1, PecMatnR)}

is a group (this is known as the orthogonal gorup, O(n)).

We now consider specific cases of self-adjoint matrices, for which we can apply the Spectral Theorem
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3.3 Corollary: The Spectral Theorem for Real Symmetric Matrices

Let A € Mat(n;R), and let A be a symmetric matriz:
A= AT
Then:
3P € Mat(n;R) : P AP = PTAP = diag(\, ..., \)

where:

o P is an orthogonal matrix

o Ai,..., A\, are the real eigenvalues of A (including those with

repeated multiplicity)

[Corollary 5.3.14]

Proof. Thinking of A as an endomorphism:
(Ao) : R" - R"

we apply the spectral theorem. This tells us that we have an orthonormal basis of eigenvectors {vy,...,v,}.
We construct the orthogonal matrix P by using this orthonormal basis, as in the exercise above. Then,
notice that:

AP =Av, | ... | v,)
=(Avy | ... | Av,)
= ()‘121 | |>‘nﬂn)

= Pdiag(A1,...,\n)

which directly implies that:
P7YAP = diag( M1, ..., \n)

3.4 Unitary Matrices

e What is a unitary matrix?

— let P € Mat(n;C)

— P is a unitary matrix if: B
PTp=1,

— alternatively, a complex matrix with:
p~t=pT
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3.4.1 Exercises (TODO)

1. Show that the condition: -
P'p=1,

is equivalent to the columns of P forming an orthonormal basis for C with its standard
inner product.

2. Show that the set: B
{P|PTP=1, Pec Matn;C)}

is a group (called the unitary group, U(n)).

3.5 Theorem: The Spectral Theorem for Hermitian Matrices

Let A € Mat(n;C), and let A be a hermitian matriz:
A=AT
Then:
3P € Mat(n;C) : P 'AP = PTAP = diag(\,...,\)

where:

e P is an unitary matric

o Ai,..., A\, are the real eigenvalues of A (including those with

repeated multiplicity)
[Corollary 5.3.15]
Proof. Identical to the one above, but using the fact that PTP = I,,. O

4 Workshop

1. True or false. Consider R? equipped with the usual inner product. The orthogonal com-

plement to the set:
U={(z,y) | ey =1} CR?

is {(0,0)}

This is true.

Solutions:

o for any set U+ = (U)* (that is, the orthogonal complement of a set is
the orthogonal complement of its spanning vectors)

o the span of U is R?

o the only vector which is orthogonal to all R? is 0

Page 18



Notice, U contains the following vectors:
1

1

[\)

)

=

These vectors span R?, since they are linearly independent, and dim(R?) = 2. Then, if v € U+, in
particular it is orthogonal to these vectors, which means that it is orthogonal to any vector in R2, since
if w € R? then Ja, b such that:

1 2
w=a +b
1

so that (v, w) = 0. The only vector which is orthogonal with all of R? is 0, so we must have that v = 0.

. Let V be the finite dimensional real inner product space, and suppose 7 is an endomorphism
of V.

(a) Show that
T+7T"

2

is self-adjoint.
We just compute, applying linearity and symmetry of the inner product:

((TZT*) v,w> _1 (Tv + T*v, w)

2
1 *
=5 (Tv,w) + (T"v, w))
1
=5 (0 T"w) + (v, Tw))
1
=5 @ T+Tuw)
T+T*
=(v w
= 2 —_
Hence, TJ;T* is self-adjoint.
(b) Show that there is an orthonormal basis {v;,...,v,} of V consisting of eigenvectors of
T+T*

such that the eigenvalue corresponding to v, is (T'v;,v;).

2
By the Spectral Theorem:

Let V' be a finite dimensional inner product space.
Define the self-adjoint endomorphism:

T:V >V

Then, V' has an orthonormal basis, consisting of eigenvectors of T'.
[Theorem 5.5.9]

.
So since T'ET

is self-adjoint, its eigenvectors form an orthonormal basis for V. Call them {v,,...,v,}.
T+T*
( —; ) v, = )\iﬂi
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The eigenvalues satisfy:




If we take the inner product with v; of both sides:

(757 =

Now, since we have an orthonormal basis:

(Niv;,v;) = AMv;,0;) = N\

240 21

T+ T 1
(7o) =

((Twi,v) + (T"w;, 1))

=i =21

Moreover:

((Tws, v3) + (w3, Twy))

19 =1

2
1
2
1
T2
1
T2

((Tws, ;) + (Twi, 7))

AR

= (Tv;,v;)

19 24

where we have used the symmetry of a real inner product.
Thus:
(Tv;v;) =N

19 24

What happens to the answers if ' is a complex inner product space instead?
If V' were complex, symmetry wouldn’t apply in the same way. Then:

T+T* 1
(( _; )'Umvi) = (TU +1T Uzvvz)

Tv;,v;) + (T"v;,v;))

=i =21

—~
—~

(T, v;) + (v, Twy))

19 =1

< TU??”Z Tvl7y7))

CR[(Tw;,v:)])
(T, ;)]

AR

@w\r—'wm—wm—wm— o |

So we’d get that:
R[(Tv; ;)] = Ai

Intuitively, this makes sense, since a property of self-adjoint operators is that their eigenvalues are
real. (Theorem 5.3.7)

Let A € Mat(n;R) be an orthogonal matrix. Show that det(A) € {£1}.
Since A is an orthogonal matrix, by definition:

AT =AY — ATA=1,

So then:
det(AT A) = det(I,) = 1

However:
det(AT A) = det(AT)det(A) = det(A)det(A) = det(A)?
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Thus:
det(A)? =1

Since we operate over R this is only possible if:
det(A) = £1
as required.

Let A € Mat(n;C) be a unitary matrix. Show that det(A) lies on the unit circle in C.
Since A is unitary, by definition:

At =AT = ATA=1,

So then:
det(AT A) = det(I,) = 1
However:
det(ATA) = det(AT)det(A) = det(A)det(A) = det(A)det(A) = ||det(A)]|*
Thus:

ldet(A)]* =1 = ||det(A)] =1
which is precisely the definition of det(A) lying on the unit circle.

Find a non-zero nilpotent symmetric matrix A € Mat(2;C). Can you find one with real
entries?

Here, I just used a general matrix:

a b
b ¢

A:

, squared it, and sought a,b, c which ensured that entries were 0.

However, this wont work: if A is nilpotent, 3d such that A? is the 0-
matrix - d need not be 2 however. In this particular case, since we consider
2 x 2 matrices, this will work. However, the method from the solutions is
much more robust, so I use that here.

For this question, we begin by showing that if A is nilpotent, such that if A? = 0, then the
characteristic polynomial will be x%:

Av=> v = A=)\ — X =0

In this case, since we have a 2 x 2 symmetric matrix, the characteristic polynomial will have degree
2, so we expect:

pa(z) = a2
if A is nilpotent. Consider:
a b
A =
b ¢

This has characteristic polynomial:

pa(z) = (z —a)(z —c) —b* =2® —2z(a+¢) + (ac — b?)
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Thus, we seek:
a=—c ac—0 =0 = —a?-*=0 = a==+b/—1

And so, we can pick a =1,c=—-1,b=+/—1:

A_(1 \m)
VT -1

At this stage, I would say that the above already tells us that we can’t have
this work for real, non-zero matrices, but the solutions give a much more
rigorous argument, which is quite neat.

Now, lets assume that we can come up with real a, b, c such that A is nilpotent and symmetric.
Notice that by the Corollary of the Spectral Theorem applied to real, symmetric matrices:

Let A € Mat(n;R), and let A be a symmetric matriz:
A=AT
Then:
P € Mat(n;R) : P'AP = PTAP = diag(\, ..., \)

where:

e P is an orthogonal matrix

o A, ..., A\, are the real eigenvalues of A (including those with

repeated multiplicity)

[Corollary 5.3.14]

A is diagonalisable, and will have the same characteristic polynomial as its conjugate matrix. The
only diagonal matrix with characteristic polynomial 22 is the O-matrix, so A is similar to the zero
matrix, and only the 0 matrix is conjugate to the 0 matrix, so A will have to be the 0 matrix.

IfV is a vector space over a field F', we define the dual vector space
V* to be the space of linear mappings:

V* = Homp(V, F)

In Exercise 15, we show that this is a vector space: if 0,0 € Vv € V. \ €
F then:

0+ ) () =0() +o()  (M)() = A0())
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4. Assume that V is an inner product space.

(a) Let v € V. Show that the mapping:

is an element of V*. Call it ¢,.
In simple words, this just wants us to show that €, is a homomorphism of the form V' — F.
We check the properties. Let a,b € V and A € F. Then:

ev(a+b) =(a+b)=(av)+ (bv) =cya) +eu(b)

ev(Aa) = (Ag,v) = Mg, v) = Aey(a)
So indeed, €, is a homomorphism.

(b) Show that the mapping:
A:VV*
V> €y
is injective.
If A is injective, then Yv,,v, € V if A(v;) = A(v,y) then v, = v,.
If A(vy) = A(vy), then:
€y

=&y, = YWeV, g (v) =¢y,(v)

1 2

This is true if and only if Yv € V:

In particular, if we choose v = v; — v, then:
(L1 =090 —0y) =0 = v —wy, =0

so indeed, if A(vy) = A(vy) then v; = v,, and so, A is injective.
(c) Is A linear?

We consider if it satisfies the properties. Let v;,v, € V, A € F. Then, Vv € V, consider:

A(yy +v2)(1) = €0, 40, (V)

= (v, vy +vg)
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Hence, this means that if the underlying field is R, A will be linear; if however it is complex, it
won’t be linear.

5. Assume that V is a finite dimensional F-vector space.

(a) Let A= (vq,...,v,) be an ordered basis of V. Show that (6,,...,6,)) is an ordered basis
of V*, where I define:
91‘ Vo F

9i i)\jyj = )\z
j=1

This is called the dual basis to A.
We first show that the set is linearly independent. Indeed, let «; € F' such that Vv € V' we have:

(Z aiez‘) (v)=0

so by linearity:

In particular, if we pick v = v;:

But by definition of 6;, we have that:
0i(v;) = i
Thus:

Zalﬁz(yﬂ =0y = 0
i=1

Hence, Vj € [1,n] we have that a; = 0, and so, the 6; are linearly independent.

Now we check if the 6; are spanning. Consider ¢ € V* and let v € V such that:



Then:

Now, consider the linear combination Z?:l X;0;. Then:

Do Nibi(w) = 3 \iby Zajvj)

i=1

n n
= g Aib; E a;vj
i=1 j=1

i=1 Jj=1
= i )\iai
i=1

In particular, if we let \; = 6;(v;), we get that Vv € V:

0(v) = (Z Aﬂi) (v)
i=1

so the 6#; are spanning.

Let W be a finite dimensional F-vector space and f : V — W a linear mapping. Show
that the mapping f*: W* — V* defined by:

fr(0)(v) = 0(f(v)), GecW*veV

is linear. This is called the dual mapping to f.

We can note (and as is said in the solutions) that f* = 6 o f. Since 0, f
are homomorphisms, then f* will be a homomorphism. But this is less
fun.

We check the properties of homomorphism. Let 6,1 € W* and A € F. Then, Yv € V:
fHO+9)(v) = (0+¢)(f(v) =0(f(v) +¥(f(v) = f*(O) (W) + f*(¥) () = (f7(O) + f*(¥))(v)
FT(A0)(v) = (M)(f(v)) = A(0(f () = (Af7) ()

Thus, f* is linear.

Let A = (vy,...,v,) and B = (w,,...,w,,) be ordered bases of V,WW respectively. Let
A*, B* be the dual bases of V* W*. Show that:

4[]8 = (8lfla)"
Let:
A= (0r,...,6,)
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B* = (¢17"'7¢m)

Then, the jth column of 4-[f*]s- is given by the vector (as;);c[1,n], Where:
n
Fr@y) = aib;
i=1
Similarly, the kth column of s[f].4 is given by the vector (bix)ic(1,m), Where:
m
flug) = Z birw,
t=1

Now, consider applying f*(1;) to v,k € [1,n]. Then:

(W) (k) = ¥5(f(wg)) = ¢ (Z btkwt> = bjk
t=1
Similarly:
<Z aijei) (0) = Zaijei(ﬂk) = Z%‘j@'k = a;
i=1 i=1 i=1

Hence, we get that the matrices are such that ay; = b, so it follows that:

A-[f"]B = (8lfla)"

as required.

All of the following is directly from solutions, since this seemed like such a
bizarre and unnecessary question.

Let V be a one-dimensional vector space. Pick a non-zero vector, call it v. This gives
a basis for V, so you can apply 4)a) to get a dual basis vector, § € V*. Show that the
mapping V — V*:

Av — A0
is an isomorphism.
If we pick V' =R, then we can let v = 1. Then:

O(A) = O(A-1) = \0(1) = A

So @ is the identity mapping.

Do the above question again, this time choosing a different non-zero vector. Is your
isomorphism exactly the same as before?

If we pick v = 2, then:

O(\) = 0(0.5)-2) = %9(2) - %

So @ is the operation of halving.
Thus, we don’t get the same isomorphism.

Page 26



(¢c) Now, let V be an arbitrary finite dimensional vector space. Without ever picking a
basis, construct an explicit isomorphism V — (V*)*

(V*)* is the set of homomorphisms of the form V* — F. Define a mapping:

V=
via:
flw) = fo
where:
fu(8) = 6(v)

We begin by showing that this is a homomorphism:
forw(0) = 0(v+w) = 0(v) + 0(w) = fu(0) + fw(0) = (fu+ fuw)(0)

Srw(0) = 0(Av) = M(v) = Mfu(0) = (Afu)(0)
Moreover, it is injective. Assume that f, = f,,. Then, V0 € V*:

O(v) =0(w) < Ov—w)=0

If we take 6 as the identity mapping, this is true only when v = w, and so, the mapping is injective.
Now, since dim(V) = dim(V*) = dim((V*)*), this injective homomorphism must be surjective,
and so, it is an isomorphism.
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