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Based on the notes by Iain Gordon, Section 5.3

1 Adjoint Endomorphisms
1.1 Defining Adjoint Endomorphisms

• When are 2 endomorphism adjoint?

– consider an inner product space V with endomorphisms:

T, S : V → V

– S, T are adjoint if:
(T (v), w) = (v, S(w)), ∀v, w ∈ V

– we write S = T ∗ to say that “S is the adjoint of T”

1.1.1 Examples

One can think of adjoints as equivalent to taking transposes (see here for more details).

For example,if V = Rn, we can define an endomorphism T : V → V via matrix multiplication A◦ of
A ∈Mat(n,R). Recall, we can rewrite the (standard) dot product as:

(v, w) = vT ◦ w

Then:

(A ◦ v, w) = (A ◦ v)T ◦ w
= vT ◦AT ◦ w
= vT ◦ (AT ◦ w)
= (v,AT ◦ w)

In other words, the adjoint of a real matrix is its transpose:

A∗ = AT

Alternatively, if V = Cn, we have that the dot product is:

(v, w) = vT ◦ w

So if A ∈Mat(n,C):

(A ◦ v, w) = (A ◦ v)T ◦ w
= vT ◦AT ◦ w
= vT ◦ (AT ◦ w)

= (v,AT ◦ w)

= (v,A
T ◦ w)

In other words, the adjoint of a complex matrix is its conjugate transpose:

A∗ = ĀT
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1.2 Theorem: Existence of Adjoint

Let V be a finite dimensional inner product space.
Let:

T : V → V

be an endomorphism.
Then, T ∗ exists.
That is, we have a unique linear mapping:

T ∗ : V → V

such that:
(T (v), w) = (v, T ∗(w))

[Theorem 5.3.4]

Proof. We have 3 steps:

1. Conjecture T ∗, dependent on T

2. Shows that T ∗ is the adjoint of T

3. Show that T ∗ is linear

Now, since V is finite dimensional, then we know that there exists an orthonormal basis:

e1, . . . , en

Then, assuming that T ∗ exists, we would have to satisfy:

T ∗(w) =

n∑
i=1

(T ∗(w), ei)ei

T ∗ should be an adjoint of T , so:

T ∗(w) =

n∑
i=1

(w, T (ei))ei

Hence, we claim that this is a valid definition of the adjoint of T .
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We now show that it is a valid adjoint:

(v, T ∗(w)) =

(
v,

n∑
i=1

(w, T (ei))ei

)

=

(
n∑

i=1

(w, T (ei))ei, v

)

=

(
n∑

i=1

(w, T (ei))

)
(ei, v)

=

(
n∑

i=1

(T (ei), w)

)
(v, ei)

=

n∑
i=1

(T (ei), w)(v, ei)

=

n∑
i=1

(T ((v, ei)ei), w)

=

(
n∑

i=1

T ((v, ei)ei), w

)

=

(
T

(
n∑

i=1

(v, ei)ei

)
, w

)
= (T (v), w)

where we have used the fact that since ei are an orthonormal basis for V , we can write:

v =

n∑
i=1

(v, ei)ei

Hence, T ∗ certainly satisfies the property of an adjoint.

The last step is to show that it is an endomorphism.

Linearity of addition:

(v, T ∗(w1 + w2)) = (T (v), w1 + w2)

= (T (v), w1) + (T (v), w2)

= (v, T ∗(w1)) + (v, T ∗(w2))

= (v, T ∗(w1) + T ∗(w2))

Linearity of scalar multiplication:

(v, T ∗(λw)) = (T (v), λw)

= λ̄(T (v), w)

= λ̄(v, T ∗(w))

= (v, λT ∗(w))

Now, the last step is to show that T ∗ is unique. This is necessary, since:
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1. It is part of the proof

2. Without it, our claims of linearity (i.e T ∗(w1 +w2)) = T ∗(w1) + T ∗(w2)) don’t necessarily hold, since
we are making these claims by working over an inner product.

Fortunately, any endomorphism has at most 1 adjoint. Indeed, assume that T has 2 adjoints S, S′.
Then:

(T (v), w) = (v, S(w)) = (v, S′(w))

and this is true ∀v, w ∈ V . But then by linearity:

(v, S(w)− S′(w)) = 0

Since this is true ∀v, w, in particular it is true for v = S(w)− S′(w), so we must have:

(S(w)− S′(w), S(w)− S′(w)) = 0 ⇐⇒ S(w)− S′(w) = 0

which implies that ∀w ∈ V , we have that S, S′ map identically, so S = S′, so adjoints are unique (if they
exist).

Hence, we have shown the existence and uniqueness of an endomorphism T ∗, which is an adjoint of T .

1.2.1 Examples

Given a linear transformation T : R2 → R2, it can be represented as a 2×2 matrix. We compute its adjoint.
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Thus, it follows that:

T =

a b

c d

 =⇒ T ∗ =
1

2

3(a+ c)− (b+ d) 3(a+ 3c)− (b+ 3d)

(b+ d)− (a+ c) (b+ 3d)− (a+ 3c)


1.2.2 Exercises (TODO)

1. Show that if T ∗ is the adjoint of T , then T ∗ has an adjoint, and:

(T ∗)∗ = T

Consider 2 vectors v, w. Then, assume that the adjoint of T is T ∗. Then, ∀v, w:

(T ∗(v), w) = (w, T ∗(v))

= (T (w), v)

= (v, T (w))

But similarly, by definition:
(T ∗(v), w) = (v, (T ∗)∗(w))

Hence, ∀v, w:
(v, T (w)) = (v, T (w)) ⇐⇒ (v, T (w)− (T ∗)∗(w)) = 0

and by similar arguments as above, taking v = T (w)− (T ∗)∗(w), then implies that:

T (w)− (T ∗)∗(w) = 0 =⇒ T = (T ∗)∗

as required.

2 Self-Adjoint Endomorphism
2.1 Defining Self-Adjoint Endomorphisms

• When is an endomorphism self-adjoint?
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– consider an inner product space V with endomorphism:

T : V → V

– T is self-adjoint if:
T = T ∗

2.1.1 Examples

Before we showed that:

• for real matrices, the adjoint is its tranpose

• for complex matrices, the adjoint is its conjugate transpose

This then tells us that:

• a real matrix is self-adjoint if it’s symmetric:

A = AT

• a complex matrix is self-adjoint if it’s hermitian:

A = ĀT

2.2 Theorem: Properties of Self-Adjoint Endomorphisms

Let V be an inner-product space.
Consider a self-adjoint linear mapping:

T : V → V

Then:

1. Every eigenvalue of T is real

2. If 2 eigenvalues λ, µ are distinct, their corresponding
eigenvectors v, w are orthogonal:

(v, w) = 0

3. T has an eigenvalue
[Theorem 5.3.7]

Proof. Consider non-zero vectors v, w ∈ V and a self-adjoint mapping T = T ∗.

1. Assume that v is an eigenvector of T with eigenvalue v. Then:

T (v) = λv

Now, consider:
λ(v, v) = (λv, v) = (T (v), v) = (v, T ∗(v))
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But now, T is self-adjoint, so (v, T ∗(v)) = (v, T (v)). Thus:

λ(v, v) = (v, T (v)) = (v, λv) = λ̄(v, v)

(Notice, using λ̄ is general, since its a property of both real and complex inner products).

But then we have that:
λ(v, v) = λ̄(v, v)

Since v 6= 0, then (v, v) > 0. V being an integral domain then implies that:

λ = λ̄ ⇐⇒ λ ∈ R

2. By the above, if λ, µ are eigenvalues, then λ, µ ∈ R. Thus:

λ(v, w) = (λv,w)

= (T (v), w)

= (v, T ∗(w))

= (v, T (w))

= (v, µw)

= µ̄(v, w)

= µ(v, w)

By hypothesis, λ 6= µ, so:
λ(v, w) = µ(v, w) ⇐⇒ (v, w) = 0

so the eigenvectors are orthogonal.

3. We now consider the 2 possible types of inner product spaces.

If V is a complex inner product space, the fact that it has an eigenvalue is no surprise. Since C is
algebraically closed, any characteristic polynomial will have roots in C. This is also Theorem 4.5.4 in
the notes.

The interesting case comes wehn we consider a real inner product space; after all, we know there are
many endomorphisms (i.e 90º rotations) which don’t have any real eigenvalue.

To prove this, we use a rather contrived method, which requires analysis (yuck!), but which leads to a
pretty nice geometric consequence which we met in ILA.

We now work with V as a finite dimensional, real, inner product space. Define the Railegh Quotient:

R(v) =
(T (v), v)

(v, v)
, v ∈ V \ {0}

The first thing to note is that we can restrict ourselves to a unit sphere:

S = {v | ‖v‖ = 1}

This is because:
R(v) =

(T (v), v)

(v, v)
=

1

‖v‖2
(T (v), v) =

(
T

(
v

‖v‖

)
,
v

‖v‖

)
So R is fully defined by unit vectors.
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Since I hate analysis, I’ll go out an say that the set S is closed (since its complement is an open
set: just think of all vectors with length greater than one!) and bounded (since it’s composed of
unit vectors), the Extreme Value Theorem states that a continuous function over said interval will
achieve a maximum and a minimum. Admittedly, we haven’t shown that R(v) is continuous, but in
the videos Iain shows that we can write:

(T (v), v) =
∑
i,j

λiλj(T (ei), ej)

where λi = (v, ei) and we have a set of orthonormal basis vectors ei. This can be thought as a
polynomial in λi, λj , so as all polynomials, R(v) is continuous and differentiable.

Figure 1: Here we are using the standard inner product.

All this for what, I asked myself as reading (and presuming what I’ll think when reading this in the
future)? Well, we know there exists some vector v+ (and we can assume that v+ is a unit vector) such
that R(v+) is maximal.

We can now define a function:

Rw(t) = R(v+ + tw) =
(T (v+ + tw), v+ + tw)

(v+ + tw, v+ + tw)

For those of you (aka me in the many futures in which I consult this) which are geometrically inclined:

Figure 2: We define Rw for small t, so that we are still in the unit sphere (I think?). We can see that the
maximum is achieved when t = 0, since R(v+) is maximal.

Now notice: if we differentiate Rw(0), we should get 0, since R(v+) is maximal (and differentiation is
defined, since R is differentiable). Thus, applying the quotient rule:

R′
w(0) =

(T (w), v+) + (T (v+), w)

(v+, v+)
−

2(T (v+), v+)(v+, w)

(v+, v+)
2
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If we then make the smart choice of picking w such that:

w ⊥ v+

Then we have:

R′
w(0) =

(T (w), v+) + (T (v+), w)

(v+, v+)
= 0 =⇒ (T (w), v+) = −(T (v+), w)

Now, since we are working over a real inner product space:

(T (v+), w) = (w, T (v+))

Moreover, T is self-adjoint, so:
(T (w), v+) = (w, T (v+))

Hence, we have that:

(T (w), v+) = −(T (v+), w) =⇒ (w, T (v+)) = −(w, T (v+))

and this is true if and only if:
(w, T (v+)) = 0

which means that:
w ⊥ T (v+)

This means that since:
w ∈ (〈v+〉)⊥

then:
T (v+) ∈ ((〈v+〉)⊥)⊥

Proposition 5.2.2 tells us then that:
((〈v+〉)⊥)⊥ = 〈v+〉

so in particular, each T (v+) must be in the span of v+, or in other words, ∃λ ∈ R such that:

T (v+) = λv+

thus showing that T has an eigenvalue.

2.2.1 Example: The Geometric Interpretation of Raleigh Quotient

Consider the transofrmation:

T =

 5 −6

−6 13


Since T is a real symmetric matrix, it is self-adjoint.

Now, consider the case of maximising/minimising:

R(v) =
T (v), v)

(v, v)

In the above, we maximised R by keeping the denominator constant (the restriction that v lies in the unit
sphere). However, an alternative is to maximise R by minimising (v, v), given that T (v), v) stays constant.
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For example, we can minimise ‖v‖ whilst ensuring that (T (v), v) = 1. Then, using v = (x, y):

T (v) =

 5 −6

−6 13

x
y

 =

 5x− 6y

−6x+ 13y


(T (v), v) = 5x2 − 6xy − 6xy + 13y2 = 5x2 − 12xy + 13y2

We can plot 5x2 − 12xy + 13y2 = 1 and obtain ... an ellipse!

Now, our objective is to minimise ‖v‖, where v is any of the vectors which define the ellipse. That is
we seek the v whose distance from the origin to the ellipse is minimal. In other words: v corresponds to
the minor axis of the ellipse above.

Similarly, if we wanted to minimise R, we would seek to maximise ‖v‖, in which case we would have
found the major axis of the ellipse.

And what do you know? The axes defining the ellipse are eigenvectors of the self-adjoint mapping. And
as expected, they are orthogonal to each other!

3 The Spectral Theorem
3.1 Theorem: The Spectral Theorme for Self-Adjoint Endomorphisms

Let V be a finite dimensional inner product space.
Define the self-adjoint endomorphism:

T : V → V

Then, V has an orthonormal basis, consisting of eigenvectors of T .
[Theorem 5.3.9]
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Proof. We apply induction on n = dim(V ).
1 n = 0,1

These cases are trivial. If dim(V ) = 0, then V = {0}, for which there are no eigenvectors. Similarly, if
dim(V ) = 1, then V = 〈v〉, and any endomorphism T must have v as its only eigenvector, which is clearly
orthonormal to itself (since λv = 0 ⇐⇒ λ = 0).

2 n = k

Assume true for n = k. That is, if dim(V ) = k, there exists an orthonormal basis for V .

3 n = k+1

Consider a space V with dim(V ) = k + 1. Since T is self adjoint, we know that T has at least one real
eigenvalue λ (2.1.1). Define u to be a unit eigenvector of λ, and define a subspace U = 〈u〉.

Now, let v ∈ U⊥. Then:
(u, T (v)) = (T (u), v = (λu, v) = λ(u, v) = 0

where we have used the fact that u is an eigenvector of T , and the fact that T is self-adjoint.

Notice, this then means that u ⊥ T (v), so we must have that:

T (U⊥) ⊆ U⊥

In particular, we can define an endomorphism TU⊥ : U⊥ → U⊥ by restricting T to U⊥. Now recall, the
dimension theorem:

dim(A+B) + dim(A ∩B) = dim(A) + dim(B)

Moreover, recall that:
V = U ⊕ U⊥

and that this implies that U ∩ U⊥ = ∅ and U + U⊥ = V (we showed this last week). Then, the dimension
theorem tells us that:

dim(V ) = dim(U) + dim(U⊥)

so:
k + 1 = 1 + dim(U⊥) =⇒ dim(U⊥) = k

Hence, since T being self-adjoint means that TU⊥ is also self-adjoint, the induction hypothesis exists, and
U⊥ has an orthonormal basis (of k elements), call it B.

Then, B∪{u} produces an orthonormal basis for V , as required (since its a set of k+1 linearly independent
vectors, and they will span V , since as discussed above V = U ⊕ U⊥).

3.2 Orthogonal Matrices
• What is an orthogonal matrix?

– let P ∈Mat(n,R)
– P is an orthogonal matrix if:

PTP = In =⇒ PT = P−1
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3.2.1 Examples

Consider the matrix:

T =

 5 −6

−6 13


(this was used to define the ellipse above)

We want to create a change of basis matrix which maps from the standard basis to a basis of the
eigenvectors of T . The fact that T is self-adjoint (since its real and symmetric) implies that V has an
orthonormal basis consisting of eigenvectors of T , by the Spectral Theorem.

We begin by computing the eigenvectors and eigenvalues:∣∣∣∣∣∣5− x −6

−6 13− x

∣∣∣∣∣∣ = (5− x)(13− x)− 36 = x2 − 18x+ 29 = 0

Applying the quadratic formula defines 2 real roots (as expected from a self-adjoint transformation):

α = 9 + 2
√
13

β = 9− 2
√
13

We now find the eigenvectors:5− α −6

−6 13− α

v1
v2

 =

0

0

 =⇒

 (5− α)v1 − 6v2

−6v1 + (13− α)v2

 =

0

0


Then:

v2 =
(5− α)v1

6
=⇒ v1 = 6, v2 = 5− α

So:

v1 =

 6

5− α


From identical reasoning it follows that:

v2 =

 6

5− β


We confirm that these 2 vectors are orthogonal:

v1 · v2 = 36 + (5− α)(5− β)

= 36 + 25− 5α− 5β + αβ

= 61− 5(9 + 2
√
13)− 5(9− 2

√
13) + (9 + 2

√
13)(9− 2

√
13)

= 61− 90 + 81− 4(13)

= 142− 142

= 0

We can now normalise v1, v2 to obtain unit vectors:

u1 =
1√

36 + (5− α)2

 6

5− α



Page 13



u2 =
1√

36 + (5− β)2

 6

5− β


Define a basis of V via B = {u1, u2}. The change of basis matrix S(2)[idV ]B is constructed by taking the
eigenvectors as columns:

S(2)[idV ]B = P =

 6√
36+(5−α)2

6√
36+(5−β)2

5−α√
36+(5−α)2

5−β√
36+(5−β)2


To simplify this a bit, we can expand:

36 + (5− α)2 = 36 + 25− 10α+ α2

= α2 − 10α+ 61

= (18α− 29)− 10α+ 61

= 8α+ 32

= 4(2α+ 8)

The same applies to 36+ (5−α)2, since we are just using the fact that α, β satisfy x2 − 18x+29 = 0. Thus:

P =

 6
2
√
2α+8

6
2
√
2β+8

5−α
2
√
2α+8

5−β
2
√
2β+8


The change of basis matrix B [idV ]S(2) is nothing but P−1. We can compute this:

det(P ) =
6(5− β)− 6(5− α)

4
√
2α+ 8

√
2β + 8

=
6(α− β)

4
√
2α+ 8

√
2β + 8

=
6
√
13√

2α+ 8
√
2β + 8

But now notice that:
√
2α+ 8

√
2β + 8 =

√
4αβ + 16α+ 16β + 64 =

√
4(81− 52) + 16(18) + 64 =

√
468

6
√
13 =

√
36× 13 =

√
468

It is useful to “save” the fact that:
α+ β = 18 αβ = 29

(this is just Vieta’s Theorem!).
So det(P ) = 1. Hence

P−1 =

 5−β
2
√
2β+8

− 6
2
√
2β+8

− 5−α
2
√
2α+8

6
2
√
2α+8


At this point, I haven’t found a nice algebraic way of showing that P−1 = PT (year spoiler P is orthogonal

- prove of this in the exercise below), so I’ll go for second best: simply showing that PPT = I2.
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PPT =

 6
2
√
2α+8

6
2
√
2β+8

5−α
2
√
2α+8

5−β
2
√
2β+8

 6
2
√
2α+8

5−α
2
√
2α+8

6
2
√
2β+8

5−β
2
√
2β+8


=

 36
4(2α+8) +

36
4(2β+8)

6(5−α)
4(2α+8) +

6(5−β)
4(2β+8)

6(5−α)
4(2α+8) +

6(5−β)
4(2β+8)

(5−α)2

4(2α+8) +
(5−β)2

4(2β+8)


=

 9
2α+8 + 9

2β+8
3(5−α)
2(2α+8) +

3(5−β)
2(2β+8)

3(5−α)
2(2α+8) +

3(5−β)
2(2β+8)

(5−α)2

4(2α+8) +
(5−β)2

4(2β+8)


=

 9(2β+8+2α+8)
(2α+8)(2β+8)

3((5−α)(2β+8)+(5−β)(2α+8)
2(2α+8)(2β+8)

3((5−α)(2β+8)+(5−β)(2α+8)
2(2α+8)(2β+8)

(5−α)2(2β+8)+(5−β)2(2α+8)
4(2α+8)(2β+8)


=

 9(2(α+β)+16)
468

3(80+2(α+β−2αβ))
2(2α+8)(2β+8)

3(80+2(α+β−2αβ))
2(2α+8)(2β+8)

(4(2α+8)−36)(2β+8)+(4(2β+8)−36)(2α+8)
4(2α+8)(2β+8)


=

 9(2(18)+16)
468

3(80+2((18)−2(29)))
2(2α+8)(2β+8)

3(80+2((18)−2(29)))
2(2α+8)(2β+8)

(4(2α+8)−36)(2β+8)+(4(2β+8)−36)(2α+8)
4(2α+8)(2β+8)


=

 468
468

3(80−80)
2(2α+8)(2β+8)

3(80−80)
2(2α+8)(2β+8)

2(2α+8)(2β+8)−9(2α+8+2β+8)
(2α+8)(2β+8)


=

1 0

0 2− 9(2(α+β)+16)
468


=

1 0

0 2− 9(2(18)+16)
468


=

1 0

0 2− 9(2(18)+16)
468


=

1 0

0 2− 1


=

1 0

0 1



So indeed, P−1 = PT , and P is an orthogonal matrix!

Our last step is to build the matrix B [T ]B . I’ll spare you the pain, since we know that this is nothing
but the diagonal matrix with eigenvalues at the diagonal:

B [T ]B = P−1TP

=

α 0

0 β


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3.2.2 Exercises (TODO)

1. Show that the condition:
PTP = In

is equivalent to the columns of P forming an orthonormal basis for Rn with its standard
inner product.

Consider an orthonormal basis E = {e1, . . . , en}, and let P be a matrix with E as columns:

P = (e1 | . . . | en)

Then:

PT =


eT1
...

eTn


Then:

PTP =


eT1
...

eTn

 (e1 | . . . | en)

=


eT1 e1 eT2 e1 . . . eTne1

eT1 e2 eT2 e2 . . . eTne2
...

...
. . .

...

eT1 en eT2 en . . . eTnen



=


(e1, e1) (e2, e1) . . . (en, e1)

(e1, e2) (e2, e2) . . . (en, e2)
...

...
. . .

...

(e1, en) (e2, en) . . . (en, en)


= In

by using the orthonormality of ei.

2. Show that the set:
{P | PTP = In, P ∈Mat(n,R)}

is a group (this is known as the orthogonal gorup, O(n)).

We now consider specific cases of self-adjoint matrices, for which we can apply the Spectral Theorem
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3.3 Corollary: The Spectral Theorem for Real Symmetric Matrices

Let A ∈ Mat(n;R), and let A be a symmetric matrix:

A = AT

Then:

∃P ∈ Mat(n;R) : P−1AP = P TAP = diag(λ1, . . . , λn)

where:

• P is an orthogonal matrix

• λ1, . . . , λn are the real eigenvalues of A (including those with
repeated multiplicity)

[Corollary 5.3.14]

Proof. Thinking of A as an endomorphism:

(A◦) : Rn → Rn

we apply the spectral theorem. This tells us that we have an orthonormal basis of eigenvectors {v1, . . . , vn}.
We construct the orthogonal matrix P by using this orthonormal basis, as in the exercise above. Then,
notice that:

AP = A(v1 | . . . | vn)
= (Av1 | . . . | Avn)
= (λ1v1 | . . . | λnvn)
= Pdiag(λ1, . . . , λn)

which directly implies that:
P−1AP = diag(λ1, . . . , λn)

3.4 Unitary Matrices
• What is a unitary matrix?

– let P ∈Mat(n;C)
– P is a unitary matrix if:

P̄TP = In

– alternatively, a complex matrix with:
P−1 = P̄T
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3.4.1 Exercises (TODO)

1. Show that the condition:
P̄TP = In

is equivalent to the columns of P forming an orthonormal basis for C with its standard
inner product.

2. Show that the set:
{P | P̄TP = In, P ∈Mat(n;C)}

is a group (called the unitary group, U(n)).

3.5 Theorem: The Spectral Theorem for Hermitian Matrices

Let A ∈ Mat(n;C), and let A be a hermitian matrix:

A = ĀT

Then:

∃P ∈ Mat(n;C) : P−1AP = P̄ TAP = diag(λ1, . . . , λn)

where:

• P is an unitary matrix

• λ1, . . . , λn are the real eigenvalues of A (including those with
repeated multiplicity)

[Corollary 5.3.15]

Proof. Identical to the one above, but using the fact that P̄TP = In.

4 Workshop
1. True or false. Consider R2 equipped with the usual inner product. The orthogonal com-

plement to the set:
U = {(x, y) | xy = 1} ⊂ R2

is {(0, 0)}
This is true.

Solutions:

• for any set U⊥ = 〈U〉⊥ (that is, the orthogonal complement of a set is
the orthogonal complement of its spanning vectors)

• the span of U is R2

• the only vector which is orthogonal to all R2 is 0
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Notice, U contains the following vectors: 1

1

 ,

2

1
2


These vectors span R2, since they are linearly independent, and dim(R2) = 2. Then, if v ∈ U⊥, in
particular it is orthogonal to these vectors, which means that it is orthogonal to any vector in R2, since
if w ∈ R2 then ∃a, b such that:

w = a

1

1

+ b

2

1
2


so that (v, w) = 0. The only vector which is orthogonal with all of R2 is 0, so we must have that v = 0.

2. Let V be the finite dimensional real inner product space, and suppose T is an endomorphism
of V .
(a) Show that

T + T ∗

2

is self-adjoint.
We just compute, applying linearity and symmetry of the inner product:((

T + T ∗

2

)
v, w

)
=

1

2
(Tv + T ∗v, w)

=
1

2
((Tv,w) + (T ∗v, w))

=
1

2
((v, T ∗w) + (v, Tw))

=
1

2
(v, (T + T ∗)w)

=

(
v,

(
T + T ∗

2

)
w

)

Hence, T+T∗

2 is self-adjoint.
(b) Show that there is an orthonormal basis {v1, . . . , vn} of V consisting of eigenvectors of

T+T∗

2 such that the eigenvalue corresponding to vi is (Tvi, vi).
By the Spectral Theorem:

Let V be a finite dimensional inner product space.
Define the self-adjoint endomorphism:

T : V → V

Then, V has an orthonormal basis, consisting of eigenvectors of T .
[Theorem 5.3.9]

So since T+T∗

2 is self-adjoint, its eigenvectors form an orthonormal basis for V . Call them {v1, . . . , vn}.
The eigenvalues satisfy: (

T + T ∗

2

)
vi = λivi
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If we take the inner product with vi of both sides:((
T + T ∗

2

)
vi, vi

)
= (λivi, vi)

Now, since we have an orthonormal basis:

(λivi, vi) = λ(vi, vi) = λi

Moreover: ((
T + T ∗

2

)
vi, vi

)
=

1

2
(Tvi + T ∗vi, vi)

=
1

2
((Tvi, vi) + (T ∗vi, vi))

=
1

2
((Tvi, vi) + (vi, T vi))

=
1

2
((Tvi, vi) + (Tvi, vi))

= (Tvi, vi)

where we have used the symmetry of a real inner product.
Thus:

(Tvi, vi) = λi

(c) What happens to the answers if V is a complex inner product space instead?
If V were complex, symmetry wouldn’t apply in the same way. Then:

((
T + T ∗

2

)
vi, vi

)
=

1

2
(Tvi + T ∗vi, vi)

=
1

2
((Tvi, vi) + (T ∗vi, vi))

=
1

2
((Tvi, vi) + (vi, T vi))

=
1

2

(
(Tvi, vi) + (Tvi, vi)

)
=

1

2
(2R[(Tvi, vi)])

= R[(Tvi, vi)]

So we’d get that:
R[(Tvi, vi)] = λi

Intuitively, this makes sense, since a property of self-adjoint operators is that their eigenvalues are
real. (Theorem 5.3.7)

3. (a) Let A ∈Mat(n;R) be an orthogonal matrix. Show that det(A) ∈ {±1}.
Since A is an orthogonal matrix, by definition:

AT = A−1 =⇒ ATA = In

So then:
det(ATA) = det(In) = 1

However:
det(ATA) = det(AT )det(A) = det(A)det(A) = det(A)2
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Thus:
det(A)2 = 1

Since we operate over R this is only possible if:

det(A) = ±1

as required.
(b) Let A ∈Mat(n;C) be a unitary matrix. Show that det(A) lies on the unit circle in C.

Since A is unitary, by definition:

A−1 = ĀT =⇒ ĀTA = In

So then:
det(ĀTA) = det(In) = 1

However:

det(ĀTA) = det(ĀT )det(A) = det(Ā)det(A) = det(A)det(A) = ‖det(A)‖2

Thus:
‖det(A)‖2 = 1 =⇒ ‖det(A)‖ = 1

which is precisely the definition of det(A) lying on the unit circle.
(c) Find a non-zero nilpotent symmetric matrix A ∈Mat(2;C). Can you find one with real

entries?

Here, I just used a general matrix:

A =

a b

b c


, squared it, and sought a, b, c which ensured that entries were 0.
However, this won’t work: if A is nilpotent, ∃d such that Ad is the 0-
matrix - d need not be 2 however. In this particular case, since we consider
2 × 2 matrices, this will work. However, the method from the solutions is
much more robust, so I use that here.

For this question, we begin by showing that if A is nilpotent, such that if Ad = 0, then the
characteristic polynomial will be xd:

Av = λv =⇒ Adv = λdv =⇒ λd = 0

In this case, since we have a 2× 2 symmetric matrix, the characteristic polynomial will have degree
2, so we expect:

pA(x) = x2

if A is nilpotent. Consider:

A =

a b

b c


This has characteristic polynomial:

pA(x) = (x− a)(x− c)− b2 = x2 − x(a+ c) + (ac− b2)
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Thus, we seek:

a = −c ac− b2 = 0 =⇒ −a2 − b2 = 0 =⇒ a = ±b
√
−1

And so, we can pick a = 1, c = −1, b =
√
−1:

A =

 1
√
−1

√
−1 −1



At this stage, I would say that the above already tells us that we can’t have
this work for real, non-zero matrices, but the solutions give a much more
rigorous argument, which is quite neat.

Now, lets assume that we can come up with real a, b, c such that A is nilpotent and symmetric.
Notice that by the Corollary of the Spectral Theorem applied to real, symmetric matrices:

Let A ∈ Mat(n;R), and let A be a symmetric matrix:

A = AT

Then:

∃P ∈ Mat(n;R) : P−1AP = P TAP = diag(λ1, . . . , λn)

where:

• P is an orthogonal matrix

• λ1, . . . , λn are the real eigenvalues of A (including those with
repeated multiplicity)

[Corollary 5.3.14]

A is diagonalisable, and will have the same characteristic polynomial as its conjugate matrix. The
only diagonal matrix with characteristic polynomial x2 is the 0-matrix, so A is similar to the zero
matrix, and only the 0 matrix is conjugate to the 0 matrix, so A will have to be the 0 matrix.

If V is a vector space over a field F , we define the dual vector space
V ∗ to be the space of linear mappings:

V ∗ = HomF (V, F )

In Exercise 15, we show that this is a vector space: if θ, φ ∈ V ∗, v ∈ V, λ ∈
F then:

(θ + φ)(v) = θ(v) + φ(v) (λθ)(v) = λ(θ(v))
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4. Assume that V is an inner product space.
(a) Let v ∈ V . Show that the mapping:

(−, v) : V → F

w → (w, v)

is an element of V ∗. Call it εv.
In simple words, this just wants us to show that εv is a homomorphism of the form V → F .
We check the properties. Let a, b ∈ V and λ ∈ F . Then:

εv(a+ b) = (a+ b, v) = (a, v) + (b, v) = εv(a) + εv(b)

εv(λa) = (λa, v) = λ(a, v) = λεv(a)

So indeed, εv is a homomorphism.
(b) Show that the mapping:

∆ : V → V ∗

v → εv

is injective.
If ∆ is injective, then ∀v1, v2 ∈ V if ∆(v1) = ∆(v2) then v1 = v2.
If ∆(v1) = ∆(v2), then:

εv1
= εv2

⇐⇒ ∀v ∈ V, εv1
(v) = εv2

(v)

This is true if and only if ∀v ∈ V :

(v, v1) = (v, v2)

=⇒ (v1, v) = (v2, v)

=⇒ (v1 − v2, v) = 0

=⇒ (v, v1 − v2) = 0

In particular, if we choose v = v1 − v2 then:

(v1 − v2, v1 − v2) = 0 ⇐⇒ v1 − v2 = 0

so indeed, if ∆(v1) = ∆(v2) then v1 = v2, and so, ∆ is injective.
(c) Is ∆ linear?

We consider if it satisfies the properties. Let v1, v2 ∈ V, λ ∈ F . Then, ∀v ∈ V , consider:

∆(v1 + v2)(v) = εv1+v2
(v)

= (v, v1 + v2)

= (v1 + v2, v)

= (v1, v) + (v2, v)

= (v, v1) + (v, v2)

= εv1
(v) + εv2

(v)

= ∆(v1)(v) + ∆(v2)(v)

= (∆(v1) + ∆(v2))(v)
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∆(λv1)(v) = ελv1
(v)

= (v, λv1)

= (λv1, v)

= λ(v1, v)

= λ̄(v, v1)

= λ̄εv1
(v)

= (λ̄∆(v1))(v)

Hence, this means that if the underlying field is R, ∆ will be linear; if however it is complex, it
won’t be linear.

5. Assume that V is a finite dimensional F -vector space.
(a) Let A = (v1, . . . , vn) be an ordered basis of V . Show that (θ1, . . . , θn)) is an ordered basis

of V ∗, where I define:
θi : V → F

θi

 n∑
j=1

λjvj

 = λi

This is called the dual basis to A.
We first show that the set is linearly independent. Indeed, let αi ∈ F such that ∀v ∈ V we have:(

n∑
i=1

αiθi

)
(v) = 0

so by linearity:
n∑

i=1

αiθi(v) = 0

In particular, if we pick v = vj :
n∑

i=1

αiθi(vj) = 0

But by definition of θi, we have that:
θi(vj) = δij

Thus:
n∑

i=1

αiθi(vj) = αj = 0

Hence, ∀j ∈ [1, n] we have that αj = 0, and so, the θi are linearly independent.

Now we check if the θi are spanning. Consider φ ∈ V ∗ and let v ∈ V such that:

v =

n∑
j=1

αjvj
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Then:

θ(v) = θ

 n∑
j=1

αjvj

 =

n∑
j=1

αjθ(vj)

Now, consider the linear combination
∑n

i=1 λiθi. Then:

n∑
i=1

λiθi(v) =

n∑
i=1

λiθi

 n∑
j=1

αjvj


=

n∑
i=1

λiθi

 n∑
j=1

αjvj


=

n∑
i=1

λiθi

 n∑
j=1

αjθi(vj)


=

n∑
i=1

λiαi

In particular, if we let λi = θi(vi), we get that ∀v ∈ V :

θ(v) =

(
n∑

i=1

λiθi

)
(v)

so the θi are spanning.
(b) Let W be a finite dimensional F -vector space and f : V → W a linear mapping. Show

that the mapping f∗ :W ∗ → V ∗ defined by:

f∗(θ)(v) = θ(f(v)), θ ∈W ∗, v ∈ V

is linear. This is called the dual mapping to f .

We can note (and as is said in the solutions) that f ∗ = θ ◦ f . Since θ, f
are homomorphisms, then f ∗ will be a homomorphism. But this is less
fun.

We check the properties of homomorphism. Let θ, ψ ∈W ∗ and λ ∈ F . Then, ∀v ∈ V :

f∗(θ + ψ)(v) = (θ + ψ)(f(v)) = θ(f(v)) + ψ(f(v)) = f∗(θ)(v) + f∗(ψ)(v) = (f∗(θ) + f∗(ψ))(v)

f∗(λθ)(v) = (λθ)(f(v)) = λ(θ(f(v)) = (λf∗)(v)

Thus, f∗ is linear.
(c) Let A = (v1, . . . , vn) and B = (w1, . . . , wm) be ordered bases of V,W respectively. Let

A∗,B∗ be the dual bases of V ∗,W ∗. Show that:

A∗ [f∗]B∗ = (B[f ]A)
T

Let:
A∗ = (θ1, . . . , θn)
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B∗ = (ψ1, . . . , ψm)

Then, the jth column of A∗ [f∗]B∗ is given by the vector (aij)i∈[1,n], where:

f∗(ψj) =

n∑
i=1

aijθi

Similarly, the kth column of B[f ]A is given by the vector (btk)t∈[1,m], where:

f(vk) =

m∑
t=1

btkwt

Now, consider applying f∗(ψj) to vk, k ∈ [1, n]. Then:

f∗(ψj)(vk) = ψj(f(vk)) = ψj

(
m∑
t=1

btkwt

)
= bjk

Similarly: (
n∑

i=1

aijθi

)
(vk) =

n∑
i=1

aijθi(vk) =

n∑
i=1

aijδik = akj

Hence, we get that the matrices are such that akj = bjk, so it follows that:

A∗ [f∗]B∗ = (B[f ]A)
T

as required.

All of the following is directly from solutions, since this seemed like such a
bizarre and unnecessary question.

6. (a) Let V be a one-dimensional vector space. Pick a non-zero vector, call it v. This gives
a basis for V , so you can apply 4)a) to get a dual basis vector, θ ∈ V ∗. Show that the
mapping V → V ∗:

λv → λθ

is an isomorphism.
If we pick V = R, then we can let v = 1. Then:

θ(λ) = θ(λ · 1) = λθ(1) = λ

So θ is the identity mapping.
(b) Do the above question again, this time choosing a different non-zero vector. Is your

isomorphism exactly the same as before?
If we pick v = 2, then:

θ(λ) = θ(0.5λ · 2) = λ

2
θ(2) =

λ

2

So θ is the operation of halving.
Thus, we don’t get the same isomorphism.
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(c) Now, let V be an arbitrary finite dimensional vector space. Without ever picking a
basis, construct an explicit isomorphism V → (V ∗)∗

(V ∗)∗ is the set of homomorphisms of the form V ∗ → F . Define a mapping:

f : V → (V ∗)∗

via:
f(v) = fv

where:
fv(θ) = θ(v)

We begin by showing that this is a homomorphism:

fv+w(θ) = θ(v + w) = θ(v) + θ(w) = fv(θ) + fw(θ) = (fv + fw)(θ)

fλv(θ) = θ(λv) = λθ(v) = λfv(θ) = (λfv)(θ)

Moreover, it is injective. Assume that fv = fw. Then, ∀θ ∈ V ∗:

θ(v) = θ(w) ⇐⇒ θ(v − w) = 0

If we take θ as the identity mapping, this is true only when v = w, and so, the mapping is injective.
Now, since dim(V ) = dim(V ∗) = dim((V ∗)∗), this injective homomorphism must be surjective,
and so, it is an isomorphism.
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