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Based on the notes by Iain Gordon, Sections 5.1 - 5.2

1 Introducing Inner Product Spaces
1.1 Real Inner Product Spaces

• What is an inner product?

– let V be a vector space over R
– an inner product on V is a mapping:

(∗, ∗) : V × V → R

such that:
1. (λx+ µy, z) = λ(x, z) + µ(y, z)

2. (x, y) = (y, x)

3. (x, x) ≥ 0, and (x, x) = 0 ⇐⇒ x = 0

• What is a real inner product space?

– real vector space endowed with an inner product

• How are inner products related to multilinear forms?

– recall how we defined symmetric bilinear forms:

A bilinear form is a mapping:

H : U × V → W

where U, V,W are F-Vector Spaces, satisfying:

H(u1 + u2, v) = H(u1, v) +H(u2, v)

H(λu, v) = λH(u, v)

H(u, v1 + 12) = H(u, v1) +H(u, v2)

H(u, λv) = λH(u, v)

A bilinear form is symmetric if:

H(u, v) = H(v, u), ∀u, v ∈ U

– definition of inner product isn’t explicit about linearity of the second entry, but this follows by
using the symmetric property (2):

(x, λy + µz) = (λy + µz, x) = λ(y, x) + µ(z, x) = λ(x, y) + µ(x, z)

– hence, an inner product is a symmetric bilinear form, which is positive definite (from
condition 3)

Page 2



1.1.1 Examples

• Consider a mapping:
(x, y) = x1 + y1 + 2x2y2

This is not an inner product: it fails property 1. Indeed:

((0, 0), (1, 0)) = 0 + 1 + 2(0)(0) = 1

However, notice that if λ = 0, property 1 tells us that:

(λx, y) = λ(x, y) = 0 =⇒ (0, y) = 0

independently of the inner product used.

• Consider a mapping:
(x, y) = x1y2 + 2x2y1

This is not an inner product: it fails property 2. Indeed:

((1, 0), (0, 1)) = (1)(1) + 2(0)(0) = 1

but:
((0, 1), (1, 0)) = (0)(0) + 2(1)(1) = 2

So:
((1, 0), (0, 1)) 6= ((0, 1), (1, 0))

• Consider a mapping:
(x, y) = x1y1 + 2x1y2 + 2x2y1 + 3x2y2

This is not an inner product: it fails property 3. This is typically the hardest property to verify.
Typically, it is shown by putting the inner product in terms of squares, since these satisfy the property.
However, consider:

(x, x) = x2
1 + 2x1x2 + 2x2x1 + 3x2

2

= x2
1 + 4x1x2 + 3x2

= (x1 + 2x2)
2 − x2

2

But now notice, if we pick:
x = (−2x2, x2)

We get that:
(x, x) = −x2

2 < 0,∀x2 ∈ R \ {0}

• Consider a mapping:
(x, y) = x1y1 + x1y2 + x2y1 + 3x2y2

This is a inner product. We check each property:

1.

(λx+ µy, z)

=(λx1 + µy1)z1 + (λx1 + µy1)z2 + (λx2 + µy2)z1 + 3(λx2 + µy2)z2

=λx1z1 + λx1z2 + λx2z1 + λ3x2z2 + µy1z1 + µy1z2 + µy2z1 + µ3y2z2

=λ(x, z) + µ(y, z)
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2.

(x, y) = x1y1 + x1y2 + x2y1 + 3x2y2

= y1x1 + y2x1 + y1x2 + 3y2x2

= y1x1 + y1x2 + y2x1 + 3y2x2

= (y, x)

3.

(x, x) = x1x1 + x1x2 + x2x1 + 3x2x2

= x2
1 + 2x1x2 + 3x2

2

= (x1 + x2)
2 + 2x2

2

≥ 0

If x1 = x2 = 0, this is 0, so indeed, (x, x) ≥ 0, with equality when x = 0

• the dot product:

x · y =

n∑
i=1

xiyi = xT · y

is an inner product

1.1.2 Exercises (TODO)

1. Confirm the following:
(a) The following is an inner product:

(x, y) = x1y1 + 4x2y2

(b) The following is an inner product:

(x, y) = 2x1y1 + x1y2 + x2y1 + x2y2

(c) The following is not an inner product:

(x, y) = x1y1 + 2x1y2 + 2x2y1 + x2y2

(d) The following is an inner product, for a, b ∈ R, a < b, P,Q ∈ R[X]<n:

(P,Q) =

∫ b

a

P (X)Q(X)dX

1.2 Complex Inner Product Spaces
• How are complex inner products defined?

– let V be a vector space over C
– an inner product on V is a mapping:

(∗, ∗) : V × V → C

such that:
1. (λx+ µy, z) = λ(x, z) + µ(y, z)
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2. (x, y) = (y, x)

3. (x, x) ≥ 0, and (x, x) = 0 ⇐⇒ x = 0

– here z̄ denotes the complex conjugate

• How does the notion of (x, x) ≥ 0 make any sense for complex numbers?

– the complex inner product always maps to the reals
– this follows from the second property:

(x, x) = (x, x) ⇐⇒ (x, x) ∈ R

• What is a complex inner product space?

– a complex vector space endowed with an inner product

• Is the complex inner product a symmetric bilinear form?

– no: it fails linearity in the second element:

(z, λx+ µy)

=(λx+ µy, z)

=λ(x, z) + µ(y, z)

=λ̄(z, x) + µ̄(z, y)

• How can we define the complex inner product?

– it is sesquilinear (it is linear in the first element, and skew-linear in the second element, since
f(λv1) = λ̄f(v1))

– it is hermitian (since (x, y) = (y, x))
– it is positive definite (property 3)

• What is a real Euclidean vector space?

– finite dimensional real inner product space

• What is a pre-Hilbert space/unitary space?

– a complex inner product space

• What is a finite dimensional Hilbert space?

– a finite dimensional complex inner product space

1.2.1 Examples

• Consider the mapping:
((x), y) = x1y1 + x1y2 + x2y1 + 3x2y2

This is not a complex inner product. It fails property 2:

((1, 0), (i, 0)) = (1)(i) + (1)(0) + (0)(i) + 3(0)(0) = i

((i, 0), (1, 0)) = ((−i, 0), (1, 0)) = (−i)(1) + (−i)(0) + (0)(1) + 3(0)(0) = −i

So ((1, 0), (i, 0)) 6= ((i, 0), (1, 0)). It also fails property 3:

((i, 0), (i, 0)) = i2 = −1 < 0

Page 5



• Consider the mapping:
(x, y) = x1ȳ1 + x1ȳ2 + x2ȳ1 + 3x2ȳ2

We show this satisfies the third property of the inner product (it also satisfies the first 2, but it is less
interesting):

(x, x) = x1x̄1 + x1x̄2 + x2x̄1 + 3x2x̄2

= (x1 + x2)(x1 + x2) + 2x2x̄2

= |x1 + x2|2 + 2|x|2

≥ 0

• Consider the vector space V = Mat(n;C), and the mapping:

(A,B) = Tr(AT B̄)

where B̄ is the matrix B with all the entries changed by applying the complex conjugate.
Then, (A,B) is a inner product.

1.

(λA+ µA′, B) = Tr((λA+ µA′)T B̄)

= Tr(λAT B̄ + µA′T B̄)

= Tr(λAT B̄) + Tr(µA′T B̄)

= λTr(AT B̄) + µTr(A′T B̄)

= λ(A,B) + µ(A′, B)

2.

(A,B) = Tr(AT B̄)

= Tr((B̄TA)T )

= Tr(B̄TA)

= Tr(BT Ā)

= Tr(BT Ā)

= (B,A)

where we use the fact that Tr(A) = Tr(AT ), since taking the transpose doesn’t change the
diagonal elements.
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3.

(A,A) = Tr(AT Ā)

= Tr(AT Ā)

=

n∑
i=1

(AT Ā)ii

=

n∑
i=1

 n∑
j=1

(AT )ij(Ā)ji


=

n∑
i=1

 n∑
j=1

(A)ji(Ā)ji


=

n∑
i=1

n∑
j=1

|(A)ji|2

≥ 0

with equality holding if and only if Aji = 0 ⇐⇒ A is the 0 matrix, as required.

1.2.2 Exercises (TODO)

1. Confirm the following:
(a) On C, this is a inner product:

(z, w) = z1w̄1 + 4z2w̄2

(b) Let V = CC[a, b] be the vector space of all continuous complex calud functions defined
on [a, b], with a < b. The mapping:

(f, g) =

∫ b

a

f(t)g(t)dt

is a inner product.

We can use the inner product as to bring geometric interpretations to vectors.

1.3 Inner Products, Geometry and Orthogonality
• How is the length of a vector defined?

– the length or inner product norm is:

‖v‖ =
√
(v, v)

• What is a unit vector?

– a vector with ‖v‖ = 1

• When are 2 vectors orthogonal?

– whenever (v, w) = 0

– we write:
v ⊥ w

• What are orthogonal sets?

– sets such that:
V ⊥ W ⇐⇒ ∀v ∈ V,w ∈ W, v ⊥ w

Page 7



1.3.1 Examples

• Inner products allow us to rediscover the Pythgaorean Theorem.
If v, w are orthogonal, then:

‖v + w‖2 = (v + w, v + w) = (v, v) + (v, w) + (w, v) + (w,w)

Since v ⊥ w, then (w, v) = (v, w) = 0, so:

‖v + w‖2 = (v, v) + (w,w) = ‖v‖+ ‖w‖

As a diagram:

v

wv + w

1.3.2 Exercises (TODO)

1. Show that in an inner product space V we have:

‖λv‖ = |λ|‖v‖

with λ ∈ R or λ ∈ C

1.4 Remark: Orthonormal Families
• What is an orthonormal family?

– a family of vectors {vi}i∈[1,n] such that:

∀i ∈ [1, n], ‖vi‖ = 1 and ∀i, j ∈ [1, n], i 6= j, (vi, vj) = 0

– alternatively,
(vi, vj) = δij

• What is an orthonormal basis?

– a basis which is an orthonormal family
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Let V be a inner product space, with a orthonormal basis {vi}.
Then, we can write w ∈ V via:

w =
n∑

i¡j=1

λivi

If we take the inner product with respect to vi:

(w, vi) =

(
n∑

j=1

λjvj, vi

)

=
n∑

j=1

λj (vi, vi)

= λi

since the summands are 0, except when i = j.
Thus, this gives us the coefficients to use when defining linear combina-
tions:

w =
n∑

i¡j=1

(w, vi)vi

[Remark 5.1.9]

1.5 Theorem: Existence of Orthonormal Basis

Every finite dimensional inner product space has a orthonormal
basis. [Theorem 5.1.10]

Proof. Consider a inner product space V over a field F (with F = R or F = C).
We prove this theorem by induction on n = dimF (V ).

1 Base Case: n = 0

In this case, we have V = {0}, whose only linearly independent set is {}, which is certainly orthonormal.

2 Inductive Hypothesis: n = k

Assume true for n = k: any vector space of dimension dimF (V ) = k > 0 has an orthonormal basis.

3 Inductive Step: n = k+1
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Now consider a vector space with dimF (V ) = k + 1. Then, we can find a vector v ∈ V . Scaling it into a
unit vector, define:

v1 =
v

‖v‖
Now, consider the linear mapping:

φ : V → F

defined by:
φ(w) = (w, v1)

Now recall the Rank-Nullity Theorem:

dim(V ) = dim(im(φ)) + dim(ker(φ)) =⇒ dim(ker(φ)) = dim(V )− dim(im(φ))

Notice that:
φ(v1) = (v1, v1) = 1

so in particular a basis for im(φ) is {v1} so it follows that dim(im(φ)) = 1 (since F can be generated by
〈1〉). Thus:

dim(ker(φ)) = k + 1− 1 = k

The inductive hypothesis thus applies to ker(φ) (since ker(φ) is a subspace of V , it is also an inner product
space), meaning that ker(φ) has an orthonormal basis of k vectors.
But now, recall that if w ∈ ker(φ), then:

φ(w) = 0 ⇐⇒ (w, v1) = 0

So in particular, ∀w ∈ ker(φ), w ⊥ v1. Hence, an orthonormal basis for V is given by:

ker(φ) ∪ {v1}

2 Orthogonal Complements and Projections
2.1 Proposition: Orthogonal and Complementary Sets

• What is an orthogonal set?

– consider a inner product space V , with T ⊆ V an arbitrary subset.
– the orthogonal to T is the set:

T⊥ = {v | v ⊥ t,∀t ∈ T, v ∈ V }

Let V be an inner product space, with finite dimensional subspace U .
Then, U,U⊥ are complementary:

V = U ⊕ U⊥
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Proof. For this, we make use of what we proved in week 1. That is 2 subspaces are complementary if:

V = U + U⊥ U ∩ U⊥ = 0

Consider v ∈ U ∩ U⊥. This means that v is orthogonal to itself, so:

(v, v) = 0

But the properties of the inner product say that this is only possible if v = 0, as required.

Now we need to show that ∀v ∈ V we can find p ∈ U, r ∈ U⊥ such that:

v = p+ r

Intuitively this makes sense:

p ∈ U

r ∈ U⊥

v ∈ V

Now, since U is a subset of V , it is a inner product space, so it has an orthonormal basis, say:

v1, . . . , vn

such that:

p =

n∑
i=1

λivi

Since p is a projection of v onto U , we have that λi = (v, vi).
In other words, it is sufficient to show that:

r = v − p = v −
n∑

i=1

λivi

or alternatively, that r = v −
∑n

i=1 λivi is perpendicular to any of the basis elements vj

Thus, we compute:
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(r, vj) =

(
v −

n∑
i=1

λivi, vj

)

=
(
v, vj

)
−

(
n∑

i=1

λivi, vj

)

=
(
v, vj

)
−

n∑
i=1

λi

(
vi, vj

)
=
(
v, vj

)
−

n∑
i=1

λiδij

=
(
v, vj

)
− λj

= 0

so as required, r is orthogonal to each of the basis vectors, so it is orthogonal to any element in U .

2.2 Proposition: Orthogonal Projections

Let U be a finite dimensional subspace of the inner product space V .
Define πU as the orthogonal projection from V to U as the map:

πU : V → V

defined by:
πU(v) = πU(p+ r) = p

Then:

1. πU is a linear mapping and:

im(πU) = U ker(πU) = U⊥

2. if {v1, . . . , vn} is an orthonormal basis of U , then:

πU(v) =
n∑

i=1

(v, vi)vi

3. π2
U = πU (its idempotent)

[Proposition 5.2.4]
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In general, if we have 2 vectors u, v, and the inner product is the dot prod-
uct. we can define the projection of v onto u via:

proju(v) =
(u · v
‖u‖2

u

This exploits the fact that:

u · v = ‖u‖‖v‖ cos(θ)

2.2.1 Examples

Consider the vector space:
V = R[X]<4

with inner product:

(P,Q) =

∫ 1

0

P (x)Q(X)dX

Consider the subset:
T = {1, X}

Then its orthogonal complement is the set:

T⊥ =

{
A |

∫ 1

0

AdX = 0 ∧
∫ 1

0

AXdX = 0, A ∈ V

}
So for example, consider:

A(X) = aX3 + bX2 + cX + d

Then: ∫ 1

0

AdX =

∫ 1

0

aX3 + bX2 + cX + ddX =
a

4
+

b

3
+

c

2
+ d∫ 1

0

AXdX =

∫ 1

0

aX4 + bX3 + cX2 + dXdX =
a

5
+

b

4
+

c

3
+

d

2

Thus, we require that:
a

4
+

b

3
+

c

2
+ d = 0 =

a

5
+

b

4
+

c

3
+

d

2

This system has infinitely many solutions, so we can parametrise the solution, using a = s, b = t, such that:

s

4
+

t

3
+

c

2
+ d = 0 =

s

5
+

t

4
+

c

3
+

d

2

We then just need to solve for c, d. The first equation says that:

d = −s

4
− t

3
− c

2

whilst the second one says that:
d = −2s

5
− t

2
− 2c

3
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So:

− s

4
− t

3
− c

2
= −2s

5
− t

2
− 2c

3

=⇒ 2c

3
− c

2
= −2s

5
− t

2
+

s

4
+

t

3

=⇒ c

6
= −3s

20
− t

6

=⇒ c = −18s

20
− t

=⇒ c = −9s

10
− t

So then:

d = −s

4
− t

3
− c

2

=⇒ d = −s

4
− t

3
+

9s

20
+

t

2

=⇒ d =
4s

20
+

t

6

=⇒ d =
s

5
+

t

6

Hence, if for example we pick s = 1, t = 0, we’d get that:

A(X) = X3 − 9

10
X +

1

5
∈ T⊥

2.3 Theorem: The Cauchy Schwarz Inequality

Let v, w be vectors in an inner product space. Then:

|(v, w)| ≤ ‖v‖‖w‖

with equality if and only if v and w are linearly dependent.

Proof. If w = 0, then (v, w) = 0 = ‖v‖‖w‖, as expected, since w is linearly dependent with all vectors.

Thus, consider non-zero w. In particular, consider the subspace generated by w:

U = 〈w〉

and define:
x = v − πU (v)

It is the case that x ⊥ U . This is easy to see diagrammatically:
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πU (v)

v − πU (v) = x

v

Then, we can apply the Pythgorean Theorem:

‖v‖2 = ‖x+ πU (v‖2 = ‖x‖2 + ‖πU (v)‖2

Notice, {w} is an orthogonal basis for U , so {w/‖w‖} is an orthonormal basis. Call w′ = w/‖w‖. It
follows from (2.2) that:

πU (v) = (v, w′)w′

So then:

‖πU (v)‖2 = (‖ (v, w′)w′‖)2

= |(v, w′)|2‖w′‖2

=

∣∣∣∣(v, w

‖w‖

)∣∣∣∣2 ∥∥∥∥ w

‖w‖

∥∥∥∥2
=

|(v, w|2‖w‖2

‖w‖4

=
|(v, w)|2

‖w‖2

Thus:
‖v‖2 = ‖x‖2 + ‖πU (v)‖2 = ‖x‖2 + |(v, w)|2

‖w‖2
≥ |(v, w)|2

‖w‖2

Equality only occurs when x = 0; that is, when v = πU (v) =⇒ v ∈ U =⇒ v = λw. Multiplying
through by ‖w‖2:

‖v‖2‖w‖2 ≥ |(v, w)|2

Finally, taking the square root of both sides:

‖v‖‖w‖ ≥ |(v, w)|
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Clasically the Cauchy-Schwarz inequality is presented as:

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2i

where the inner product uses the standard dot product.

2.4 Inner Products for Geometry: The Angle
• What is the angle between 2 vectors?

– notice, from Cauchy-Schwarz:

‖v‖‖w‖ ≥ |(v, w)| =⇒ |(v, w|
‖v‖‖w‖

≤ 1 =⇒ −1 ≤ (v, w

‖v‖‖w‖
≤ 1

– thus, we can find some unique θ ∈ [0, π] such that:

cos(θ) = (v, w)

‖v‖‖w‖

– this θ can be defined as the angle between v and w

2.5 Corollary: Properties of the Norm

The norm on an inner product space V satisfies the follow, ∀v, w ∈
V, λ ∈ F :

1. ‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0

2. ‖λv‖ = |λ|‖v‖

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖

Proof. 1. Follows directly from axiomso f an inner product:

(v, v) ≥ 0 =⇒ ‖v‖2 ≥ 0 =⇒ ‖v‖ ≥ 0

2. This was an exercise

3. We compute:
‖v + w‖2 = (v + w, v + w) = ‖v2‖+ ‖w‖2 + 2Re((v, w))

We have that:
2Re((v, w)) ≤ 2|(v, w)|

So by Cauchy-Schwarz:
2Re((v, w)) ≤ 2‖v‖‖w‖

Thus:
‖v + w‖2 ≤ ‖v2‖+ ‖w‖2 + 2‖v‖‖w‖ = (‖v‖+ ‖w‖)2

The result follows by taking the square root
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2.6 Theorem: The Gram-Schmidt Process

Let:
v1, . . . , vk

be a linearly independent set of vectors in an inner product space V .
Then, there exists an orthonormal family:

w1, . . . , wk

such that:
wi ∈ vi + 〈vi−1, . . . , v1〉, i ∈ [1, k]

That is, each wi is composed by considering the sum of vi and an element
of the i− 1th dimensional subspace generated by the v1, . . . , vi−1.

Proof. We know that we can decompose any vi using complementary (orthogonal) subspaces:

vi = p
i
+ ri

where:
p
i
= πU (vi), U = 〈v1, . . . , vi−1〉

and ri ∈ U⊥.

We can then just define:
wi =

ri
‖ri‖

In this way, we ensure that anything spanned by v1, . . . , vk is also spanned by w1, . . . , wk, since each wi

is a linear combination of vi and p
i

(and each p
i

is projected into the subspace spanned by v1, . . . , vi−1).
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2.6.1 Worked Example: Applying the Gram-Schmidt Process to Construct an Orthonormal
Basis

Consider R4 endowed with the standard dot product. Consider a subspace V with basis:

v1 = (1, 1, 0, 0) v2 = (1, 0, 1, 1) v3 = (1, 0, 0, 1)

We use Gram-Schmidt to construct an orthonormal basis {w1, w2, w3}.

1 w1

The simplest step: we just convert v1 into a unit vector

w1 =
1√
2
(1, 1, 0, 0)

2 w2

Any element in the space spanned by v1 can be written as λv1, so we seek λ such that:

w′
2 = v2 − λv1 = (1− λ,−λ, 1, 1)

is orthogonal to w1. Computing the dot product:

(w′
2, w1) =

1√
2
(1− λ− λ) = 0 =⇒ λ =

1

2

Thus:
w′

2 =

(
1

2
,−1

2
, 1, 1

)
=⇒ w2 =

1√
10

(1,−1, 2, 2)

3 w3
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In a similar vein:
w′

3 = v3 − λ1w1 − λ2w2

(whilst we could use the formula, it is good to do it in this way, since it is general, and so, more didactic
for future cases).

We now need to compute 2 dot products, ensuring that they are 0:

(w′
3, w1) = (v3, w1)− λ1 =

2√
2
− λ1 =⇒ λ1 =

1√
2

(here I used the fact that (w1, w1) = 1 and (w1, w2) = 0)

(w′
3, w2) = (v3, w2)− λ2 =

3√
10

− λ2 =⇒ λ2 =
3√
10

Thus:
w′

3 =
1

5
(1,−1,−3, 2) =⇒ w3 =

1√
15

(1,−1,−3, 2)

3 Workshop
1. True or false. Let h : Mat(2;C) → Mat(2;C) be the mapping given by the conjugate trans-

pose:
h(M) = M

T

Then h is a ring homomorphism.
This is false. It fails linearity of multiplication. If A,B ∈ Mat(2;C) then:

h(AB) = (AB)T = (ĀB̄)T = B̄T ĀT = h(B)h(A) 6= h(A)h(B)

This is an example of a ring antihomomorphism, which reverses the order of multiplication.

2. Which of the following are inner products on R2?

For this, when disproving I showed that they failed the inner product ax-
ioms in general (using variables); however, in the solutions, specific coun-
terexamples are used, which I think is faster, so I will use that.
In terms of coming up with counterexamples, you can just intuitively see
which of the properties can be failed (i.e symmetry will fail if there are
non-symmetric terms; linearity might fail if the constants are affected by
some non-linear function, etc...).

(a) (x, y) = x2
1y

2
1 + x2y2

The presence of squares throughout indicates that sesquilinearity might fail. For example, consider
x = 2(1, 0)T = (2, 0) and y = (1, 0). Then:

(x, y) = 22 × 12 = 4 6= 2× (12 × 12)

(b) (x, y) = x1y2 − x2y1

The terms are not symmetric, so this might fail symmetry. Indded, with x = (1, 0)T , y = (0, 1)T :

(x, y) = 1− 0 = 1

(y, x) = 0− 1 = −1

So:
(x, y) 6= (y, x)
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(c) (x, y) = x1y1 + x1y2 + x2y1 − 3x2y2

This one will fail positivity. For example, with x = (0, 1)T :

(x, x) = −3 < 0

(d) (x, y) = x1y1

This also fails positivity, since if x = (1, 0)T :

(x, x) = 0

but x 6= 0.
(e) (x, y) = 3x1y1 − x1y2 − x2y1 + x2y2

This one will be an inner product.
1 Sesquilinearity

(λx+ y, z) = 3(λx1 + y1)z1 − (λx1 + y1)z2 − (λx2 + y2)z1 + (λx2 + y2)z2

= λ(3x1z1 − x1z2 − x2z1 + x2z2) + 3y1z1 − y1z2 − y2z1 + y2z2

= λ(x, z) + (y, z)

2 Symmetry

(x, y) = 3x1y1 − x1y2 − x2y1 + x2y2

= 3y1x1 − y2x1 − y1x2 + y2x2

= (y, x)

3 Positivity

Solutions:
We have:

(x, x) = 3x2
1 − 2x1x2 + x2

2 = 2x2
1 + (x2

1 − 2x1x2 + x2
2) = 2x2

1 + (x1 − x2)
2 ≥ 0

with equality whenever x1 = x2 = 0.
Self:
We directly complete the square:

(x, x) = 3x2
1 − 2x1x2 + x2

2

= 3

(
x2
1 −

2

3
x1x2 +

1

3
x2
2

)
= 3

((
x1 −

1

3
x2

)2

− 1

9
x2
2 +

1

3
x2
2

)

= 3

(
x1 −

1

3
x2

)2

− 1

3
x2
2 + x2

2

= 3

(
x1 −

1

3
x2

)2

+
2

3
x2
2

≥ 0

with equality whenever x1 = x2 = 0.
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3. Consider R3 equipped with the usual inner product. By giving a basis, describe explicitly
the elements (x, y, z)T of the following subspaces:
(a) {(1, 2, 1)T }⊥

A basis for this is a basis for elements (x, y, z)T which are orthogonal to (1, 2, 1)T . Since we operate
over an inner product space, such vector must satisfy:

x+ 2y + z = 0 =⇒ z = −x− 2y

so any element in {(1, 2, 1)T }⊥ has the form (x, y,−x− 2y. Thus, a basis is:


1

0

−1

 ,


0

1

−2




(b) {(1, 2, 1)T , (0, 2, 0)}⊥

Again, any element (x, y, z)T ∈ {(1, 2, 1)T , (0, 2, 0)}⊥ must satisfy:

x+ 2y + z = 0 2y = 0

which means that:
x+ z = 0 =⇒ x = −z

Hence, a basis is: 


1

0

−1




(c) {(x, y, z)T | x2 + y2 + z2 = 1}⊥

Notice, we are seeking an orthogonal complement to all the points in a sphere. In particular, we
seek a collection of vectors which will all be perpendicular to the standard basis vectors (since these
are part of the unit sphere). However, in R3 the only such vector will be the 0 vector. Hence:

{(x, y, z)T | x2 + y2 + z2 = 1}⊥ = {0}

4. Cauchy’s Inequality asserts:
n∑

i=1

xiyi ≤

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2i

(a) Prove this by induction on n. The case n = 1 is trivial, so begin with n = 2.

For this, I failed to notice that when asked to use induction, you should
use induction as much as possible.

1 Base Case: n = 2

We want to show that:
x1y1 + x2y2 ≤

√
x2
1 + x2

2

√
y21 + y22
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Consider:
(x1y2 − x2y1)

2 ≥ 0 =⇒ x2
1y

2
2 + x2

2y
2
1 ≥ 2x1y1x2y2

Notice, assuming that x1y1 + x2y2 ≥ 0 (we can assume this, as otherwise the inequality is trivially
true), the Cauchy-Schwarz inequality is equivalent to saying that:

(x1y1 + x2y2)
2 ≤ (x2

1 + x2
2)(y

2
1 + y22)

If we expand both sides:

x2
1y

2
1 + x2

2y
2
2 + 2x1y1x2y2 ≤ x2

1y
2
1 + x2

2y
2
2 + x2

1y
2
2 + x2

2y
2
1

which is equivalent to saying that:

x2
1y

2
2 + x2

2y
2
1 ≥ 2x1y1x2y2

which we have shown above is true. Thus, the Cauchy-Schwarz inequality is true when n = 2.
2 Inductive Hypothesis

Assume that the Cauchy-Schwarz is true ∀n ∈ [1, k], such that:

k∑
i=1

xiyi ≤

√√√√ k∑
i=1

x2
i

√√√√ k∑
i=1

y2i

3 Inductive Step: n = k + 1

Now, assume n = k + 1. Then:
k+1∑
i=1

xiyi =

k∑
i=1

xiyi + xk+1yk+1

≤

√√√√ k∑
i=1

x2
i

√√√√ k∑
i=1

y2i + xk+1yk+1

where we have used the inductive hypothesis with n = k.
But now notice, we have a sum of 2 products, so in particular the inductive hypothesis with n = 2
applies again, and so:

k+1∑
i=1

xiyi ≤

√√√√ k∑
i=1

x2
i

√√√√ k∑
i=1

y2i + xk+1yk+1

≤

√√√√√
√√√√ k∑

i=1

x2
i

2

+ x2
k+1

√√√√√
√√√√ k∑

i=1

y2i

2

+ y2k+1

≤

√√√√ k∑
i=1

x2
i + x2

k+1

√√√√ k∑
i=1

y2i + y2k+1

≤

√√√√k+1∑
i=1

x2
i

√√√√k+1∑
i=1

y2i

as required.
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(b) Let t be a variable and consider the quadratic polynomial in t:

n∑
i=1

(xit+ yi)
2

Use the fact that this is always positive to prove the Cauchy-Schwarz inequality.

This is such a simple, elegant and sleek proof, I am sad I couldn’t come up
with this by myself.

Notice:
(xit+ yi)

2 = t2x2
i + 2txiyi + y2i

So:
n∑

i=1

(xit+ yi)
2 = t2

(
n∑

i=1

x2
i

)
+ t

(
2

n∑
i=1

xiyi

)
+

(
n∑

i=1

y2i

)
Hence, if we let:

a =

n∑
i=1

x2
i b = 2

n∑
i=1

xiyi c =

n∑
i=1

y2i

We get:
n∑

i=1

(xit+ yi)
2 = at2 + bt+ c ≥ 0

Because of this, it follows that either
∑n

i=1(xit+yi)
2 has 0 as a repeated root, or it has 2 imaginary

roots. In particular this means that by the discriminant:

b2 − 4ac ≤ 0

So:

4

(
n∑

i=1

xiyi

)
− 4

n∑
i=1

x2
i

n∑
i=1

y2i ≤ 0 =⇒
n∑

i=1

xiyi ≤

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2i

as required.

5. Let T : V → V be an endomorphism of a finite-dimensional inner product space. Let T ∗ be
the adjoint of T

(a) Show that T ∗T is self-adjoint
Let v, w ∈ V . Then, using the fact that T is adjoint to T ∗:

(T ∗Tv,w) = (T ∗(Tv), w)

= (Tv, Tw)

= (v, T ∗Tw)

so it follows that:
(T ∗T )∗ = T ∗T

and so, T ∗T is self-adjoint.
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(b) Show that if T ∗T = 0, then T = 0

This question exemplifies the act that if you are working over an inner
product space, the inner product space axioms are extremely use-
ful.

Assume that T ∗T = 0. Then, ∀v ∈ V we have:

(T ∗Tv, v) = (Tv, Tv)

But since
T ∗T = 0

, then T ∗Tv = 0, so:
(Tv, Tv) = (0, v) = 0

(where we have used sesquilinearity, to “factor” the 0 out)
But by properties of inner product,

(Tv, Tv) = 0 ⇐⇒ Tv = 0

But since this will be true ∀v ∈ V , this can only be true if T = 0, as required.

6. Begin by making sure that you can see how to deduce from Cauchy’s inequality the fact
that:

∞∑
k=1

x2
k < ∞

∞∑
k=1

y2k < ∞

together imply that:
∞∑
k=1

|xkyk| < ∞

Now, prove this without using the Cauchy-Schwarz inequality:
(a) Can you find a C such that ∀x, y ∈ R:

xy ≤ C(x2 + y2)

(b) Now, apply this to x = |xk| and y = |yk| and sum over all k. Do you see a new inequality
looking different from Cauchy’s inequality?

7. Calculate the inequality you just produced with normalised variables:

x̂j =
xj

(
∑∞

k=1 x
2
k)

1
2

ŷj =
xj

(
∑∞

k=1 y
2
k)

1
2

Can you find a new interesting inequality out of this?

8. Let’s go back to Cauchy’s inequality. Precisely when do we get an equality between the 2
sides?

9. Has the notation that you’ve used been a pain? Lots of sums, infinities, and so on? Can
you find a concise say to write key statements down? What are the important properties of
numbers in the notation that you are using? Have you just invented an axiomatic system?
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