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Based on the notes by Iain Gordon, Sections 4.5 - 4.7

1 Eigenvalues and Eigenvectors
1.1 Definition of Eigenstuffs

• What is an eigenvalue?

– let V be an F -vector space, and define an endomorphism:

f : V → V

– λ ∈ F is an eigenvalue of f , if:
∃v ∈ V : f(v) = λv

• What is an eigenvector?

– any vector v ∈ V such that f(v) = λv

– v is the eigenvector of f with eigenvalue λ

– eigenvectors are not unique; for example, if F = R, and v is an eigenvector, then 2v is also an
eigenvector of the same eigenvalue

• What is an eigenspace?

– the set of all eigenvectors of endomorphism f with eigenvalue λ ∈ F :

E(λ, f) = {v | v ∈ V, f(v) = λv}

1.1.1 Examples

• the set of all fixed points of f (i.e all x with f(x) = x) is the eigenspace corresponding to λ = 1

• the set of non-zero elements in ker(f) is precisely the eigenspace of non-zero eigenvectors with λ = 0

• if f is the endomorphism rotating the plane by 90º, this only has eigenvalues in C

• if f is the endomorphism representing a reflection on a line, the associated eigenvalue is 1, and the
eigenvectors are all the eigenvectors which lie on the line (so the line is the eigenspace)

• if f is the endomorphism representing a 180º rotation, this will have eigenvalue −1 (since this rotation
maps a point to a point diametrically opposite)

• real polynomial differentiation only has λ = 0, with eigenvectors as the non-zero constant polynomials:

p ∈ R[x], deg(P ) = 0 =⇒ D(p) = 0 = 0p

For the rest of the chapter, to avoid confusion with matrices, polynomials will be denoted using x
(instead of X)

1.1.2 Exercises (TODO)

1. Let f : V → V be an endomorphism of an F -vector space V . Show that E(λ, f) is a vector
subspace of V , for any λ ∈ F
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1.2 Theorem: Eigenvalues and Characteristic Polynomials
• What is the characteristic polynomial?

– consider a commutative ring R, and let A ∈ Mat(n;R)

– the characteristic polynomial of the matrix A is the polynomial:

XA(x) := det(xIn −A)

– for example,

A =

 2 3

−6 1

 =⇒ xIn−A =

2− x 3

−6 1− x

 =⇒ XA(x) = (2−x)(1−x)+18 = x2−3x+20

Let F be a field, and let A ∈ Mat(n;F ).
The eigenvalues of the linear mapping:

A : F n → F n

are precisely the roots of XA. [Theorem 4.5.8]

Proof. For any λ ∈ F , λ is an eigenvalue of A if and only if:

∃v 6= 0 : Av = λv

⇐⇒ ∃v 6= 0 : (λIn −A)v = 0

⇐⇒ ker(λIn −A) 6= 0

If the kernel is non-zero, then notice that we have a non-zero v:

(λIn −A)v = 0

If (λIn −A)−1 existed, then:
v = (λIn −A)−10 = 0

which is a contradiction. Thus, (λIn−A) can’t be invertible. In other words, λ is an eigenvalue if and only
if:

det(λIn −A) = 0 =⇒ XA(λ) = 0

1.2.1 Exercises (TODO)

1. Let F be a field, and A ∈ Mat(n;F ). Show that:

XA(x) = xn − tr(A)xn−1 + (−1)ndet(A) +

n−1∑
i=2

aix
n−i
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1.3 Remark: Defining the Characteristic Polynomial of Endomorphisms

Consider an endomorphism f : V → V . If we have ordered bases:

A = (v1, . . . , vn) B = (w1, . . . , wn)

then we could define matrices A,B ∈ Mat(n;R):

A = (aij) = A[f ]A B = (bij) = B[f ]B

where the jth columns of the matrices satisfied:

f(vj) =
n∑

i=1

aijvi f(wj) =
n∑

i=1

bijwi

The change of basis matrix, P ∈ GL(n;R):

P = (pij) = A[idV ]B wj =
n∑

i=1

pijvi

allowed us to define the trace of an endomorphism, independent of a ba-
sis, since it allowed us to see A,B as conjugate matrices:

B = P−1AP

and the trace of conjugate matrices is the same.
In a similar vein, the characteristic polynomial of conjugate matri-
ces is the same, so we can define the characteristic polynomial of an
endomorphism, by using its representing matrix, with respect to any
basis.
To see this:

XB = det(xIn −B) = det(xIn − P−1AP )

Notice that:

det(P−1(xIn − A)P ) = det(xP−1InP − P−1AP ) = det(xInP
−1AP )

So:
XB = det(P−1)det(xIn − A)det(P ) = det(xIn − A) = XA

Thus, the eigenvalues of f are the roots of Xf , the characteristic
polynomial of f . [Remark 4.5.9]

1.3.1 Exercises (TODO)

1. Show that every endomorphism of an odd dimensional real vector space has a real eigen-
value. Show furthermore that if the determinant of the endomorphism is a positive real
number, then the endomorphism even has a positive real eigenvalue.
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1.4 Remark: Existence of Upper Triangular Representing Matrix
The following remark might look weird here, but it is useful in the next section, when triangularisation of
matrices is discussed.

Consider the endomorphism of an n:-dimensional F -vector space:

f : V → V

Let W be a vector subspace of V , with f(W ) ⊆ W . Then, define the fol-
lowing endomorphisms:

g : W → W w → f(w)

h : V /W → V /W W + v → W + f(v)

We can construct a basis for V using a basis for W :

A = (w1, . . . , wm)

B = (w1, . . . , wm, vm+1, . . . , vn)

Moreover, the basis of V /W can be constructed by applying the canonical
map can : V → V /W to the elements vj of the basis B (we don’t need to
consider the w1, since W + wi = W + 0 under the canonical map):

C = (can(vm+1), . . . , can(vn))

Now, turns out that we can write:

[f ]B =

A[g]A A[e]C

0 C[h]C

 =

(aij) (cik)

0 (bjk)


where the components aij of A[g]A satisfy:

f(wj) =
m∑
i=1

aijwi

and we have coefficients bjk, cik satisfying:

f(vk) =
m∑
i=1

cikwi +
n∑

j=m+1

bjkvj

Moreover:

e : V /W → W W + vk →
m∑
i=1

cikwi

[Remark 4.5.10]
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The above is also useful in telling us that:

Xf = XgXh

(Informally, think that V /W ·W → V ).
To see why, notice that:

xIn − B[f ]B =

xIm − A[g]A −A[e]C

0 xIn−mC[h]C


and since the determinant of block diagonal matrices is the product of the
determinants of the diagonal blocks:

Xf (x) = det(xIn−B[f ]B) = det(xIm−A[g]A)det(xIn−mC[h]C) = Xg(x)Xh(x)

1.5 Example of Remark
Consider the mapping:

f(xe1 + e2y) = (2x+ ay)e1 + ye2

where we are using V = S(2).
We can pick W = 〈e1〉, since:

f(e1) = 2e1 =⇒ f(W ) ⊆ W

Then, we can define the basis of W as:
A = {e1}

Moreover, define g : W → W as:

∀w ∈ W, g(w) = f(w) = f(λe1) = 2(λe1) = 2w

In other words, the representing matrix A[g]A which maps elements from basis A to basis A is simply:

A[g]A = (2)

Now, we define the basis B for V , by extending A:

B = {e1, e1 + e2}

Similarly, we define the basis C as a basis for V /W :

C = {can(e1 + e2)} = {W + (e1 + e2)}

Then the mapping:

h : V /W → V /W h(W + v) = W + f(v) = W + f(e1 + e2) = W + (2 + a)e1 + e2 = W + e2

since (2 + a)e1 ∈ W . However, notice that:

W + e2 = (W + e2) + (W + 0) = (W + e2) + (W + e1) = W + (e1 + e2)

Hence:
h(W + v) = W + v
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In particular, this means that:
C [h]C = (1)

(we are mapping from C to C by using the identity. The last step is to consider the map:

e : V /W → W

via:
e(W + (e1 + e2)) = c11e1

Here, c11 comes from:
f(e1 + e2) = c11e1 + b11(e1 + e2)

We know that:
f(e1 + e2) = (2 + a)e1 + e2

So we must have that:
c11e1 + b11(e1 + e2) = (2 + a)e1 + e2

In particular, b11 = 1 (so that the equality of e2 matches), so:

c11e1 + e1 + e2 = (2 + a)e1 + e2 =⇒ c11 + 1 = 2 + a =⇒ c11 = 1 + a

Hence, once again, we must have that:
A[e]C = (1 + a)

The remark thus tells us that:

B[f ]B =

2 1 + a

0 1


We can verify this:

f(e1) = (2 + 0)e1 = 2e1 + 0(e1 + e2)

f(e1 + e2) = (2 + a)e1 + e2 = 2e1 + ae1 + e2 = (1 + a)e1 + (e1 + e2)

So

B[f ]B =

2 1 + a

0 1


as expected.

1.6 Theorem: Existence of Eigenvalues

Each endomorphism of a non-zero, finite dimensional vector
space over an algebraically closed field has an eigenvalue. [Theorem
4.5.4]

Proof. Notice, given any endomorphism, its characteristic polynomial Xf won’t be constant. This is a
polynomial, and we are operating over an algebraically closed field, so in particular this means that any
polynomial has at least one root. But then, by the remark above, the roots of a characteristic polynomial
are precisely eigenvalues, as required.

The wording used is necessary:
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• we require a non-zero vector space to ensure that an eigenvector will be non-zero

• we also require finite dimensionality, since, for example, the infinite dimensional polynomial space
V = C[x] contains endomorphisms with no eigenvalues, such as:

f(P ) = xP

2 Triangularisation
2.1 Proposition: Triangularisability

Let f : V → V be an endomorphism of a finite dimensional F-
vector space V .
The following are equivalent:

1. There exists an ordered basis:

B = {v1, . . . , vn}

such that:

f(vj) =

j∑
i=1

aijvi, i ∈ [1, n]

In particular, this means that B[f ]B will be a triangular matrix,
with entries aij:

A = B[f ]B =


a11 a12 . . . a1n

0 a22 . . . a2n
... ... . . . ...

0 0 . . . ann


This means that f is triangularisable.

2. The characteristic polynomial, Xf , decomposes into linear
factors in F [x]

[Proposition 4.6.1]

Proof. 1. Triangularisable Endomorphism Implies Characteristic Polynomial With linear Fac-
tors
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The determinant of an upper triangular matrix is the product of its diagonal entries. Hence:

det(xIn −A) =

n∏
i=1

(x− aii)

Thus, Xf decomposes into linear factors.

2. Characteristic Polynomial With Linear Factors Implies Triangularisable Endomorphism
This part is a bit more involved, and will proceed by induction. In particular, we consider n = dim(V )

1 Base Case: n = 1

In this case, we will have a 1 × 1 matrix, which is automatically a diagonal matrix, with any basis
B = {v1}:

f(v1) = a11v1

2 Inductive Hypothesis: n = k

Let’s assume our claim is true. That is, if dimV = k, then we can find a basis:

B = {v1, . . . , vk}

such that:

f(vj) =

j∑
i=1

aijvi, j ∈ [1, k]

and so that the matrix B[f ]B is upper triangular:

B[f ]B =


a11 a12 . . . a1k

0 a22 . . . a2k
...

...
. . .

...

0 0 . . . akk


3 Inductive Step: n = k+1

(a) Recapping Remark 4.5.10
We now consider what happens when n = k + 1. For this we want to use Remark 4.5.10 (1.4).
As a recap, to avoid having to scroll, this lovely remark tells us that there exists a basis, which
allows us to write a representing matrix as a upper triangular matrix, which is conveniently what
we try to prove.
To do this, it employs a subspace W ⊆ V , satisfying:

f(W ) ⊆ W

and produces homomorphisms:

g : W → W w → f(w)

h : V /W → V /W W + v → W + f(v)
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It also constructs a basis for V by extending the basis for W . Lastly, it tells us that we can
decompose the characteristic polynomial:

Xf (x) = Xg(x)Xh(x)

The assumption that Xf (x) decomposes into linear factors thus means that Xg(x),Xh(x) also
decompose into linear factors, which are precisely eigenvectors.

(b) Choosing a Basis W

To construct the W , we are told that there are 3 “obvious”. The choices rely on the existence of at
least one eigenvector (which we can assume, since Xf decomposes into linear factors), v1, which
satisfies f(v1) = λv1 ∈ V , and on the fact that we seek W,V /W with dim(W ) < dim(V ) = k+1
and dim(V /W ) < dim(V ) = k + 1, since this then allows us to employ the inductive hypothesis.
Using this, the “obvious” choices are:

i. W as the span of v1:
W = 〈v1〉 = {µv1 | µ ∈ F} ⊆ V

• We have that dim(W ) = 1, so by (1.4), we must have that dim(V /W ) = (k + 1)− 1 = k

– in (1.4) a basis for dim(V /W ) is constructed by applying the canonical map to the
vectors used to extend the basis for W

– this then means that dim(V /W ) = dim(V )− dim(W )

• since v1 is an eigenvector, f(W ) = {λµv1 | µ ∈ F} ⊆ W

• this choice of W then satisfies our 2 requirements ((1.4) and the inductive hypothesis can
be applied)

ii. W as:
W = ker(f − λ1V )

Thus, W contains all those eigenvectors with the same eigenvalue λ as v1 (since (f−λ1V )(v) =
f(v)−λv). Using similar arguments as above, we can see that f(W ) ⊆ W , and that dim(W ) ≥
1, dim(V /W ) ≤ k.

iii. W as:
W = im(λ1V − f)

• to see why f(W ) ⊆ W :

w ∈ W =⇒ f(w) = (λ1v − f)(w) + λw

Clearly, (λ1v − f)(w) ∈ W , and by hypothese w ∈ W , so f(w) ∈ W =⇒ f(W ) ⊆ W

• the mapping is:
λ1V − f : V → V

so by rank nullity:

dim(V ) = dim(W ) + dim(ker(λ1V − f)) =⇒ dim(W ) = k + 1− dim(ker(λ1V − f))

The kernel is non-zero (for example, v1 is in the kernel), so it follows that dim(W ) ≤ k.
Similarly, dim(V /W ) ≤ k.

(c) Applying the Inductive Step
For this, we will make use of:

W = 〈v1〉

with basis:
A = {v1}

where we shall relabel its eigenvalue (conveniently):

λ = a11
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such that:
f(v1) = a11v1

Now, as we defined g : W → W via:

w ∈ A =⇒ g(w) = f(w) = f(v1) = a11v1 = a11w

(recall, we can fully define a map based on the value it takes on the basis elements). Thus, it
follows that:

A[g]A =
(
a11

)
We also had a mapping:

h : V /W → V /W

By construction, dim(V /W ) = k, so the inductive hypothesis applies; in particular, V /W has an
ordered basis:

D = {u2, . . . , uk+1}

(we have conveniently labelled the basis elements), such that:

f(uj) =

j∑
i=2

aijui, j ∈ [2, k + 1]

and so:

D[h]D =


a22 a23 . . . a2(k+1)

0 a33 . . . a3(k+1)

...
...

. . .
...

0 0 . . . a(k+1)(k+1)


From (1.4), we have h defined as:

h(W + v) = W + f(v)

where W + v is nothing but the effect of applying the canonical map to v.
Now, for each uj , j ∈ [2, k + 1], let vj ∈ V such that:

can(vj) = W + vj = uj

Then:

h(uj) = h(W + vj) = W + f(vj) = W +

j∑
i=2

aijvi =

j∑
i=2

aij(W + vi) =

j∑
i=2

aijui

so it follows that:

h(uj)−
j∑

i=2

aijui = 0V /W ∈ V /W
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Now consider:

can

(
f(vj)−

j∑
i=2

aijvi

)
= can(f(vj)−

j∑
i=2

aijcan(vi)

= (W + f(vj)−
j∑

i=2

ui

= h(W + vj)−
j∑

i=2

ui

= h(uj)−
j∑

i=2

ui

= 0V /W ∈ V /W

But then it must be the case that, from the definition of the canonical mapping:

f(vj)−
j∑

i=2

aijvi ∈ W =⇒ ∃aij ∈ F : f(vj)−
j∑

i=2

aijvi = a1jv1, j ∈ [2, k + 1]

So rearranging:

f(vj) =

j∑
i=1

aijvi, j ∈ [1, k + 1]

Thus, we have proven the inductive step, and it follows that the ordered basis B = {v1, . . . , vn}
leads to the matrix:

B[f ]B =


a11 a12 . . . a1(k+1)

0 a22 . . . a2(k+1)

...
...

. . .
...

0 0 . . . a(k+1)(k+1)


In terms of the matrix in (1.4):

B[f ]B =

A[g]A A[e]C

0 C [h]C


where:

e : V /W → W e(uj) = aijv1
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2.2 Remark: Triangularisability and Conjugacy

In general, an endomorphism:

A : F n → F n

is triangularisable if and only if A is conjugate to an upper triangu-
lar matrix B, such that for invertible P :

B = P−1AP

[Remark 4.6.3.1]

2.3 Remark: Triangularisability and Algebraic Closure

Algebraic closure of C means that any endomorphism of a finite di-
mensional C-vector space can be decomposed into linear factors, so in
particular, any such endomorphism is triangularisable.
On the other hand, R-vector fields are not all triangularisable. For exam-
ple, the endomorphism representing a θº anticlockwise rotation is given
by: cos θ − sin θ

sin θ cos θ


with characteristic polynomial:

X (x) = x2 − 2x cos θ + 1

which has no real roots (except if θ = nπ), so this endomorphism isn’t
triangularisable (unless θ = nπ). [Remark 4.6.3.2]

2.4 Remark: Triangularisability and Embedded Subspaces

An endomorphism f : V → V of an n-dimensional F -vector space V is
triangularisable if and only if there is a sequence of subspaces:

V0 = {0} ⊂ V1 ⊂ . . . ⊂ Vn = V

such that dim(Vi) = i and f(Vi) ⊆ Vi [Remark 4.6.3.3]
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2.5 Remark: Importance of Triangular Matrices

Given an invertible upper triangular matrix, it is straightforward to
compute the solution to a system of simultaneous equations, where we
can solve for xi by using x1, . . . , xi−1, and x1 can be “read off”. [Remark
4.6.3.4]

3 Diagonalisability
3.1 Diagonalisable Endomorphisms

• What is a diagonalisable endomorphism?

– let f : V → V be an endomorphism
– f is diagonalisable if and only if a basis for V is composed entirely of eigenvectors of f

• How can we think of diagonalisable endomorphisms, in terms of matrices?

– consider a finite dimensional V
– then, f is diagonalisable if and only if V has an ordered basis B, with B[f ]B a diagonal matrix
– in particular, the diagonal entries of B[f ]B will be the the eigenvalues corresponding to the

eigenvectors in B

• When is a square matrix diagonalisable?

– a square matrix A ∈ Mat(n;F ) is diagonalisable if and only if its corresponding linear
mapping A◦ : Fn → Fn is diagonalisable

– in particular, this means that A will be diagonalisable if and only if it is conjugate to a diagonal
matrix; in fact, ∃P ∈ GL(n;F ) such that:

P−1AP = diag(λ1, . . . , λn)

where P is a matrix of the eigenvectors of A, and λi are the corresponding eigenvalues

3.1.1 Examples

• the only diagonalisable nilpotent matrix is the 0 matrix. If A is nilpotent, then ∃k such that:

Ak = 0

Assuming that A is a diagonalisable, then:

P−1AP = D =⇒ (P−1AP )k = Dk =⇒ Dk = 0

Since D is diagonal, Dk is a diagonal matrix with the entries of D to the power of k. Hence, (Dii)
k =

0 ⇐⇒ Dii = 0. Thus, D must be the 0 matrix. But then:

P−1AP = 0 ⇐⇒ A = P0P−1 =⇒ A = 0

• consider the matrix:

A =

 7 2

−18 −6


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with characteristic polynomial:

(7− x)(−6− x) + 36 = x2 − x− 6 = (x− 3)(x+ 2)

A has eigenvalues λ = 3,−2. If λ1 = −3, then consider:

A− 3In =

 4 2

−18 −9


This means that there is an eigenvector:

v1 = 〈−1, 2〉

Similarly, for λ2 = 2, an eigenvector is 〈2,−9〉. We can then construct the matrices:

P =

−1 2

2 −9

 P−1 =
1

5

−9 −2

−2 −1


So computing:

P−1AP =
1

5

−9 −2

−2 −1

 7 2

−18 −6

−1 2

2 −9

 =
1

5

−27 −6

4 2

−1 2

2 −9

 =
1

5

15 0

0 −10

 =

3 0

0 −2


as expected.

3.2 Lemma: Linear Independence of Eigenvectors

Let f : V → V be an endomorphism of a vector space V , and let:

v1, . . . , vn

be eigenvectors of f with pairwise different eigenvalues:

λ1, . . . , λn

Then, the eigenvectors are linearly independent. [Lemma 4.6.9]

Proof. Suppose that:
n∑

i=1

αivi = 0

Consider the endomorphism:
(f − λ2idV ) ◦ . . . ◦ (f − λnidV )
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In particular:

(f − λ2idV ) ◦ . . . ◦ (f − λnidV )(vi)

=(f − λ2idV ) ◦ . . . ◦ (f − λn−1idV )((f − λnidv)(vi))

=(f − λ2idV ) ◦ . . . ◦ (f − λn−1idV )(f(vi)− λnvi)

=(f − λ2idV ) ◦ . . . ◦ (f − λn−1idV )(λivi − λnvi)

=(λi − λn)(f − λ2idV ) ◦ . . . ◦ (f − λn−1idV )(vi)

=

n∏
j=2

(λi − λj)vi

In particular, if i 6= 1, the product becomes 0, whilst if i = 1 it will be non-zero. Thus, if we apply the
endomorphism to

∑n
i=1 αivi = 0, it results in:

α1

n∏
j=2

(λ1 − λj)v1 = 0

Since the eignevalues are all distinct, this will only be true if α1 = 0. Employing similar endomorphisms
(with the term (f − λkidV ) missing from the composition), will imply that ak = 0,∀k ∈ [1, n]. Thus, the
vectors will be linearly independent.

4 The Cayley-Hamilton Theorem
4.1 Theorem: The Cayley-Hamilton Theorem

Let A ∈ Mat(n;R) be a square matrix, with entries in a commuta-
tive ring R.
Then, evaluating its characteristic polynomial XA(x) at the matrix
A results in 0.

4.1.1 Examples

Consider the matrix:

A =


14 8 3

−17 −9 −3

1 0 0


This has characteristic polynomial:

XA(x) = x3 − 5x2 + 7x− 3

Calculating:
A3 − 5A2 + 7A− 3I = 0

5 Workshop
1. True or false. Any R-linear mapping f : R5 → R5 has an eigenvalue.

This is true. This is because the characteristic polynomial of f will be of degree 5, so over R, it can get
factored into linear terms and irreducible quadratics. The linear terms always have a root in R, so f
will have at least one real eigenvalue. (Exercise 78 of the Notes)
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2. (a) Show that the matrices: 2 3

0 2

 2 1

0 2


are similar/conjugate.

Recall, 2 matrices are similar if we can find an (invertible) matrix T such that:

A = T−1BT =⇒ TA = BT

For this case, notice, the first column is common between the 2, and the 2 are upper triangular.
This means we seek:

T =

1 a

0 b


We compute:

TA =

1 a

0 b

2 3

0 2

 =

2 3 + 2a

0 2b


BT =

2 1

0 2

1 a

0 b

 =

2 2a+ b

0 2b


Hence, we require:

3 + 2a = 2a+ b =⇒ b = 3

and a is free. We can thus pick: 1 0

0 3


and T is invertible, since det(T ) = 3.

(b) Show that the matrices 
2 1 2

0 2 −4

0 0 3



2 1 0

0 2 0

0 0 3


are similar/conjugate.

This time, the first column, second column and the last row are the same. Both of them are upper
triangular. Hence, we seek:

T =


1 0 a

0 1 b

0 0 1


We compute:

TA =


1 0 a

0 1 b

0 0 1



2 1 2

0 2 −4

0 0 3

 =


2 1 2 + 3a

0 2 3b− 4

0 0 3


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BT =


2 1 0

0 2 0

0 0 3



1 0 a

0 1 b

0 0 1

 =


2 1 2a+ b

0 2 2b

0 0 3


Hence, we require:

3b− 4 = 2b =⇒ b = 4

2 + 3a = 2a+ b =⇒ a = 2

Hence:

T =


1 0 2

0 1 4

0 0 1


which is invertible, since det(T ) = 1.

(c) Put:

A =


1 −1 0

1 3 0

5 7 0


into triangular form. Show that by conjugating your answer, if necessary, this may be
put in the form: 

0 0 0

0 2 1

0 0 2



For this one, the solutions and I diverge in result, but we both produce a
triangular matrix which is similar to the one provided.
I’ll include both (they both apparently follow Example 4.6.4, but that is
very weirdly written - or at least I find it hard to understand).

We need to compute the characteristic polynomial:

|A− xI3| =

∣∣∣∣∣∣∣∣∣
1− x −1 0

1 3− x 0

5 7 −x

∣∣∣∣∣∣∣∣∣
= −x[(1− x)(3− x) + 1]

= −x[x2 − 4x+ 3 + 1]

= −x(x− 2)2

From solutions: we now compute the eigenvectors. If λ = 0, then the associated eigenvector is:

v1 = (0, 0, 1)T

Page 18



If λ = 2 then:
v2 = (−1, 1, 1)T

We now construct a basis for im(A− λI3). If we pick λ = 2, then:

A− 2I3 =


−1 −1 0

1 1 0

5 7 −2


im(A− λI3) is spanned by the LiD columns of A− 2I3. In the solutions they pick the eigenvectors
as a basis, so that works. Then:

Av1 =


1 −1 0

1 3 0

5 7 0



0

0

1

 = 0 = 0v1 + 0v2

Av2 =


1 −1 0

1 3 0

5 7 0



−1

1

1

 =


−2

2

2

 = 0v1 + 2v2

We need to extend this basis to a basis for R3. For this we can just use e1. We compute:

Ae1 =


1 −1 0

1 3 0

5 7 0



1

0

0

 =


1

1

5

 = 4v1 + v2 + 2e1

Using this basis, we construct the representing matrix B:
0 0 4

0 2 1

0 0 2


which is indeed upper triangular.
We can show that this is similar to the matrix that they give us. Notice, they are practically
identical, except for the first row. This tells us to seek:

T =


1 0 a

0 1 0

0 0 1


and: 

1 0 a

0 1 0

0 0 1



0 0 4

0 2 1

0 0 2

 =


0 0 4 + 2a

0 2 1

0 0 2



Page 19




0 0 0

0 2 1

0 0 2



1 0 a

0 1 0

0 0 1

 =


0 0 0

0 2 1

0 0 2


Thus, we pick a = −2:

T =


1 0 −2

0 1 0

0 0 1


which is invertible, since det(T ) = 1

As a basis, I just picked the first and third columns of the matrix:

v1 = (0, 0,−2)T v2 = (−1, 1, 5)T

Then:

Av1 =


1 −1 0

1 3 0

5 7 0




0

0

−2

 = 0 = 0v1 + 0v2

Av2 =


1 −1 0

1 3 0

5 7 0



−1

1

5

 =


−2

2

2

 = 4v1 + 2v2

To extend to a basis of R3, we can pick e2, so we compute:

Ae2 =


−1

3

7

 = −v1 + v2 + 2e2

Using this basis, we obtain the representing matrix:
0 4 −2

0 2 1

0 0 2


This is identical to the matrix they give us, except for the 2 top-right entries. We thus look for:

T =


1 a b

0 1 0

0 0 1


So: 

1 a b

0 1 0

0 0 1



0 4 −2

0 2 1

0 0 2

 =


0 4 + 2a −2 + a+ 2b

0 2 1

0 0 2


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
0 0 0

0 2 1

0 0 2



1 a b

0 1 0

0 0 1

 =


0 0 0

0 2 1

0 0 2


Hence, we require:

4 + 2a = 0 =⇒ a = −2

and:
−2 + a+ 2b = 0 =⇒ 2b = 4 =⇒ b = 2

So we can pick:

T =


1 −2 2

0 1 0

0 0 1


3. There are 215 students registered for Honours Algebra. Let M ∈ Mat(215;R) be the matrix

with Mij = 1 if student i and student j have met each other, and 0 if they haven’t. Here
we assume that Mii = 0.
(a) Let u ∈ R215 be the vector each of whose entries is 1. What does the vector Mu

represent?

The ith component of Mu represents the number of people which student i has met.

(b) What information is contained in M2?

If i 6= j, (M2)ij denotes the number of people which are known by both i and j. Otherwise, if i = j,
(M2)ii denotes the total number of people which student i has met.
To formalise this:

(M2)ij =

215∑
k=1

MikMkj

Now, MikMkj is non-zero only if i knows k and k knows j. Hence,
∑215

k=1 MikMkj counts all the k
which are known by both i and j.

(M2)ii =
215∑
k=1

MikMki

Now, MikMki is non-zero only if i knows k, so
∑215

k=1 MikMki is all the students k which i knows.

4. Let:

A =

7 2

1 6


(a) Find the 2 eigenvalues of A.

We compute the characteristic polynomial:∣∣∣∣∣∣7− x 2

1 6− x

∣∣∣∣∣∣ = (7− x)(6− x)− 2 = x2 − 13x+ 40 = (x− 5)(x− 8)

Hence, the 2 eigenvalues are:
λ1 = 5 λ2 = 8
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(b) Find eigenvectors for both eigenvalues.

For λ1 = 5: 2 2

1 1

 v1 = 0 =⇒ v1 =

 1

−1


For λ2 = 8: −1 2

1 −2

 v2 = 0 =⇒ v2 =

2

1


(c) Find an invertible matrix P such that P−1AP

We can pick P to be the matrix with eigenvectors as columns. Then:

P =

 1 2

−1 1


means that:

P−1AP = D

where:

D =

5 0

0 8


5. Each year 1

4 of the haggises outside Scotland move in, and 1
8 of the haggises inside Scholand

move out. Let hk be the number of haggis in Scotland in year k, and let gk be the number
of haggis outside of Scotland in year k, where k ≥ 0.
(a) Write down a matrix equation that describes the number of haggises inside and outside

in year 1, in terms of h0 and g0. The matrix you write should have the following 2
properties:

• each column sums to 1
• each entry is non-negative

Notice, we have 2 equations:
h1 =

7

8
h0 +

1

4
g0

g1 =
1

8
h0 +

3

4
g0

So we consider the matrix equation:

1

8

7 2

1 6

h0

g0

 =

h1

g1


Notice, the columns must add to 1 and be positive because the represent the proportions of haggises
which enter or leave Scotland.
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(b) Write down a matrix equation that describes the number of haggises inside and outside
in year k, in terms of h0 and g0. This matrix should satisfy the same properties as the
matrix above.

For hk, gk, we just need to consider powers of the matrix:

1

8k

7 2

1 6

kh0

g0

 =

hk

gk


The columns still represent proportions, so they will still add up to 1, and be positive.

(c) Use a variation on your solution to Exercise 3 to solve this.

We notice that our equation matrix is 1
8A from exercise 3, so in particular it is diagonalisable and:

1

8k

7 2

1 6

k

=
1

8k
(P−1DP )k

=
1

8k
P−1DkP

=
1

3× 8k

1 −2

1 1

5k 0

0 8k

 1 2

−1 1


=

1

3× 8k

5k −2× 8k

5k 8k

 1 2

−1 1


=

1

3× 8k

5k + 2× 8k 2× (5k − 8k)

5k − 8k 2× 5k + 8k



So then: hk

gk

 =
1

3× 8k

5k + 2× 8k 2× (5k − 8k)

5k − 8k 2× 5k + 8k

h0

g0


=

1

3× 8k

h0(5
k + 2× 8k) + g0(2× (5k − 8k))

h0(5
k − 8k) + g0(2× 5k + 8k)


=

 h0

3

((
5
8

)k
+ 2
)
+ 2g0

3

((
5
8

)k − 1
)

h0

3

((
5
8

)k − 1
)
+ g0

3

(
2
(
5
8

)k
+ 1
)


(d) What do you expect the proportion of haggises inside and outside Scotland to be in
the long run?

As k → ∞, we get that: hk

gk

→

 2
3 (h0 + g0)

1
3 (h0 + g0)


Since h0 + g0 is the total number of haggis, we expect that 2

3 of the total haggis stays in Scotland,
and that 1

3 leaves Scotland.
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