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Based on the notes by Iain Gordon, Sections 4.1 - 4.4

1 The Sign of a Permutation
1.1 The Symmetric Group

• What is the nth symmetric group?

– the group of permutations of n elements Sn

– group under composition
– has n! elements

• What is a transposition?

– a permutation which only swaps to elements:
– for example, (3 4) ∈ S5 represents the permutation which swaps 3 and 4, and leaves 1,2,5 un-

changed

1.2 Theorem: Permutations as Products of Tranpositions

Any permutation:
(a1 a2 . . . an)

can be written as a product of transpositions.
In particular, 2 methods are:

(a1 a2 . . . an) =
n∏

i=2

(a1 ai)

(a1 a2 . . . an) =
n−1∏
i=1

(ai ai+1)

Proof. We prove by induction.

1 Base Case

Trivial for (a1 a2)

2 Inductive Hypothesis

Assume true for n = k. In other words, any permutation of k elements can be written as a product of
transpositions.

3 Inductive Step
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Consider a permutation of n = k+1 elements. We can use a single transposition to “place” ak+1. Then,
we have k elements left to place in the permutation, but by the inductive hypothesis, these can be written
as a product of transpositions. Hence, a permutation of k + 1 elements can be written as a product of
transpositions.

Hence, by induction, any permutation can be expressed as a product of transpositions.

The specific examples provided can be easily proven by using an inductive argument.

1.3 The Sign of a Permutation: Original Definition
• What is the sign of a permutation?

– the parity of the number of transpositions required to express a permutation
– symbolically, if n(σ) is the number of transpositions used to build σ:

sgn(σ) = (−1)n(σ)

• What is an even permutation?

– a permutation with sgn(σ) = 1

– in other words, a permutation which can be expressed as a product of evenly many transpositions

• What is an odd permutation?

– a permutation with sgn(σ) = −1

1.4 The Sign of a Permutation: HAlg Definition
• What is an inversion of a permutation?

– say σ ∈ Sn

– an inversion is a tuple:
(i, j)

such that:
1. 1 ≤ 1 < j ≤ n

2. σ(i) > σ(j)

Figure 1: We can visualise the number of inversions by drawing the mappings. In particular, the number of
inversions is given by the number of crossings. Intuitively this makes sense: if there is a cross, we have
an arrow going from left to right (so i < σ(i)) and from right to left (so σ(j) < j) such that also i < j and
σ(i) > σ(j), which is precisely the condition for an inversion.
In this diagram, we have that for example (1, 3) is an inversion, since 1 → 2 and 3 → 1.
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• How do we define the length of a permutation?

– the length of a permutation is the number of inversions of the permutation:

l(σ) = |{(i, j) | i < j ∧ σ(i) > σ(j)}|

• What is an alternative way of defining the sign of a permutation?

– the sign can be defined as the parity of the number of inversions (length of a permutation):

sgn(σ) = (−1)l(σ)

1.4.1 Examples

• the identity is the only permutation with length 0

• a transposition swapping i, j has length:
2|i− j| − 1

This is because i forms an inversion with each of i+1, i+2, . . . , j. Similarly, j forms an inversion with
each of j − 1, j − 2, . . . , i. If we remove the duplicate inversion (i, j), we get the desired figure. This
can be easily seen diagrammatically:

Notice, this says that transpositions are odd permutations, which coincides with the original idea of
sign.

1.5 Lemma: Multiplicativity of the Sign of a Permutation

For each n ∈ N, the sign of a permutation produces a group homo-
mophism:

sgn : Sn → {1,−1}
In particular, it follows that:

sgn(στ) = sgn(σ)sgn(τ), ∀σ, τ ∈ Sn

Proof. The proof in the notes is not nice or intuitive. I much prefer this one. We can decompose σ, τ into
transpositions. Then, it is clear that στ can be decomposed into n(σ) + n(τ) transpositions, so:

sgn(στ) = −1n(σ)+n(τ) = (−1)n(σ)(−1)n(τ) = sgn(σ)sgn(τ)

as required.
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1.6 The Alternating Group
• What is the alternating group?

– a subgroup of Sn

– contains all even permutations of Sn, and is denoted An

– it’s a subgroup, since An is the kernel of the group homomorphism:

sgn : Sn → {1,−1}

(since 1 is the identity of {1,−1}, and only even permutations get mapped there)

1.6.1 Exercises (TODO)

1. Show that the permutation mapping ai to a1, and with aj → aj+1, j ∈ [1, i − 1] has i − 1
inversions:

2 Defining the Determinant
2.1 Leibniz Formula

• What is the Leibniz formula for the determinant of a matrix?

– the determinant is a mapping:
det : Mat(n;R) → R

where R is a ring
– the determinant is computed using the Leibniz Formula:

∑
σ∈Sn

sgn(σ)

n∏
i=1

a1σ(i)

In other words, it sums over all possible products of permutations of the diagonal elements of the
matrix

– for an “empty matrix” (n = 0), the determinant is 0

• What does the determinant tell us about its corresponding linear transformation?

– if we have a region L which gets mapped to U under a linear transformation A, then:

area(U) = det(A)area(L)

That is, the determinant is an area scaling factor
– the sign of the determinant indicates whether the linear transformation preserves or inverts

orientation
– you can better understand this by playing with this applet
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2.1.1 Examples

• if n = 1:
A =

(
a
)

=⇒ det(A) = a

• if n = 2:

A =

a b

c d

 =⇒ det(A) = ab− cd

(there are only 2 permutations: the identity and a transposition)

• for n = 3 there are 6 terms: 3 positive and 3 negative, corresponding to the 3 even and 3 odd
permutations of S3.

Figure 2: We can use this “trick” to compute the determinant: we multiply along the lines, and add the
products; bold lines are positive, dashed lines are negative

• the determinant of diagonal, upper triangular and bottom triangular matrices is the product of
the diagonal entries.

– for upper triangular matrices, notice that:

aij =

{
0, i > j

∗, j ≥ i

– notice, for the determinant, each summand considers:∏
i=1

aiσ(i)

– this is non-zero if and only if:
σ(i) ≥ i, ∀i ∈ [1, n]

– the only permutation which ensures this is the identity permutation; otherwise, we will always
have at least one term which leads to σ(i) < i, in which case the product becomes 0

– hence,

det(A) =

n∏
i=1

aii

as required
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2.1.2 Exercises (TODO)

1. Show that the determinant of a block-upper triangular matrix with square blocks along
the diagonal is the product of the determinants of the blocks along the diagonal:

A proof can be found here. It employs induction to prove a simple case, and then shows the general
case.

3 Determinants as Multilinear Forms
We now discuss multilinear forms. They are rather abstract, and seem unrelated to determinants, but
they provide an alternative way of characterising determinants and their properties, beyond the standard
definitions.

3.1 Bilinear Forms
• What is a bilinear form?

– a mapping:
H : U × V → W

where U, V,W are F-Vector Spaces (formally, a bilinear form on U × V with values in W )
– it is bilinear because it is a linear mapping in both entries:

H(u1 + u2, v) = H(u1, v) +H(u2, v)

H(λu, v) = λH(u, v)

H(u, v1 + 12) = H(u, v1) +H(u, v2)

H(u, λv) = λH(u, v)

• When is a bilinear form symmetric?

– when U = V and:
H(u, v) = H(v, u), ∀u, v ∈ U

• When is a bilinear form antisymmetric/alternating?

– when U = V and:
H(u, u) = 0
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3.2 Remark: Alternating Bilinear Forms

If H is an alternating bilinear form, then:

H(u, v) = −H(v, u)

If H is a bilinear form and

H(u, v) = −H(v, u)

then:
H(u, u) = 0 ⇐⇒ 1F + 1F 6= 0F

In other words, such a bilinear form is alternating if and only if 1F +
1F 6= 0F . [Remark 4.3.2]

Proof. The first part is clear. If H is alternating:

H(u+ v, u+ v) = 0

=⇒ H(u, u+ v) +H(v, u+ v) = 0

=⇒ H(u, v) +H(u, u) +H(v, u) +H(v, v) = 0

=⇒ H(u, v) +H(v, u) = 0

=⇒ H(u, v) = −H(v, u)

If H is a bilinear form and H(u, v) = −H(v, u), in particular:

H(u, u) = −H(u, u) =⇒ H(u, u) +H(u, u) = 0

We will have H(u, u) = 0 if and only if 1F + 1F 6= 0. This can happen, for example, with F = F2 = Z2

3.3 Multilinear Forms
• How are multilinear forms defined?

– multilinear forms generalise bilinear forms
– given F-vector spaces V1, . . . , Vn,W , a multilinear form is a mapping:

H : V1 × . . .× Vn → W

– it is a linear mapping in each entry; in other words:

Vj → W

vj → H(v1, . . . , vj , . . . , vn)

is a linear mapping (here the vi, i 6= j are fixed)
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• When is a multilinear form alternating?

– whenever we have vi = vj , i 6= j and:

H(v1, . . . , vi, . . . , vj , . . . , vn) = 0

– in other words, the mapping vanishes if it has (at least) 2 equal entries

3.4 Remark: Alternating Multilinear Forms

If H is an alternating multilinear form, then:

H(v1, . . . , vi, . . . , vj, . . . , vn) = −H(v1, . . . , vj, . . . , vi, . . . , vn)

In other words, if we swap 2 entries in an alternating multilinear
form, we negate the value of the mapping.
Conversely it H is a multilinear map, and

H(v1, . . . , vi, . . . , vj, . . . , vn) = −H(v1, . . . , vj, . . . , vi, . . . , vn)

then H is alternating if and only if:

1F + 1F 6= 0F

More generally, if σ is a permutation:

H(vσ(1), . . . , vσ(n)) = sgn(σ)H(v1, . . . , vn)

[Remark 4.3.5]

Proof. The first one is similar as in the case for bilinear forms.

The second one follows from the fact that every permutation can be written as a product of transpo-
sitions. Hence, applying σ can be viewed as applying many consecutive transpositions (n(σ) of them), from
which we see the result.
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3.5 Theorem: Characterisation of the Determinant

Let F be a field. The mapping:

det : Mat(n;F ) → F

is the unique alternating multilinear form on n-tuples of column
vectors with values in F , and which takes value 1F on the identity ma-
trix.
Notice, we treat elements in Mat(n;F ) as both matrices over F , and as
an ordered list of column vectors (namely the matrix columns),
such that:

det : F n ×× . . .× F n → F

(v1, . . . , vn) → det(Mat(v1, . . . , vn))

[Theorem 4.3.6]

Proof. 1. The Determinant is Multilinear This is pretty intuitive if we use the Leibniz formula, but
here is an example for the 2× 2 case

2. The Determinant Evaluates to 1F on the Identity Matrix The identity matrix is a diagonal
matrix with diagonal entries 1F , so its determinant is the product of these entreis, which is 1F .

3. The Determinant is Alternating Assume vi = vj . In particular, we must have that:

aki = akj

for any row k.

Now, let τ ∈ Sn be the transposition which switches vi and vj . Then:

aki = akj ∧ akj = akτ(i) =⇒ aki = akτ(i)

But then, for any σ ∈ Sn, we must have that:
n∏

i=1

aiσ(i) =

n∏
i=1

aiτσ(i)

By multiplicity of the sign:
sgn(τσ) = sgn(τ)sgn(σ) = −sgn(σ)

since sgn(τ) is a transposition, and so sgn(τ) = −1.

Furthermore, the subgroup of Sn generated by τ is:

H = {idSn , τ}
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and since cosets of subgroups partition a group (since they define equivalence classes; see here for
more), we must have that, if X is the set of right coset representatives of H:⋃

σ∈X

Hσ = Sn

where each Hσ is disjoint. In other words, each x ∈ X generates 2 (unique) elements in H, namely x
and τx. We can now put this together. By Leibniz:

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

a1σ(i)

Instead of iterating through Sn, we can iterate through the set of representatives X, and then include
the elements in Sn generated by each representative:

det(A) =
∑
x∈X

(
sgn(x)

n∏
i=1

a1x(i) + sgn(τx)

n∏
i=1

a1τx(i)

)

But recall from above that sgn(τx) = −sgn(x), and

n∏
i=1

aix(i) =
n∏

i=1

aiτx(i)

so it follows that:

det(A) =
∑
x∈X

(
sgn(x)

n∏
i=1

a1x(i) − sgn(x)

n∏
i=1

a1x(i)

)
= 0

Hence, det is alternating.

Notice, this can be extended to show that a square matrix with coefficients in a commutative ring
has det(A) = 0 whenever 2 columns are equal.

4. The Determinant is a Unique Such Mapping As we have seen before (Lemma 1.7.8), linear
mappings are completely determined by the values they take on a basis, so we only need to check the
values of mappings on the basis elements.

Assume there exists some other mapping:

d : Mat(n;F ) → F

with the properties of the theorem (multilinear form, alternating, maps identity to 1F ).

We consider the value of:
d(Mat(eσ(1), . . . , eσ(n)))

where σ : {1, . . . , n} → {1, . . . , n} (since we don’t care how each of the basis vectors are organised
within the matrix).

If σ(i) = σ(j), since d is alternating, we must have that:

d(Mat(eσ(1), . . . , eσ(n))) = 0 = det(Mat(eσ(1), . . . , eσ(n)))
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Thus, if σ is not bijective (in other words, σ 6∈ Sn), d(Mat(eσ(1), . . . , eσ(n))) = 0. Otherwise, if σ ∈ Sn,
then:

d(Mat(eσ(1), . . . , eσ(n))) = sgn(σ)d(Mat(e1, . . . , en))

since d is a multilinear form. Now notice, by assumption, we must have that:

d(Mat(e1, . . . , en)) = 1

so if σ ∈ Sn, then:
d(Mat(eσ(1), . . . , eσ(n))) = sgn(σ)

But notice, again if σ ∈ Sn and using the multilinearity of the determinant:

det(Mat(eσ(1), . . . , eσ(n))) = sgn(σ)d(Mat(e1, . . . , en)) = sgn(σ)

So it follows that:
d(Mat(eσ(1), . . . , eσ(n))) = det(Mat(eσ(1), . . . , eσ(n)))

as required.

3.5.1 Exercises (TODO)

1. Adapt the argument above to show that if:

d : Mat(n;F ) → F

is an alternating multilinear form on n-tuples of column vectors with values in F , then:

d(A) = d(Mat(e1, . . . , en))det(A), ∀A ∈ Mat(n;F )

4 Calculating With Determinants
4.1 Theorem: Multiplicativity of the Determinant

Let R be a commutative ring, and let A,B ∈ R. Then:

det(AB) = det(A)det(B)

[Theorem 4.4.1]

Proof. Recall, when multiplying 2 matrices together, entry (AB)ik is given by:

(AB)ik =

n∑
j=1

aijbjk

Let In be the set of all mappings from {1, . . . , n} to itself.
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From definition:

det(AB) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(AB)iσ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

n∑
j=1

aijbjσ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

(ai1b1σ(i) + ai2b2σ(i) + . . .+ ainbnσ(i))

Now, think about the expression above. For example, with n = 2:

2∏
i=1

2∑
j=1

aijbjσ(i) =

n∏
i=1

(ai1b1σ(i) + ai2b2σ(i))

= (a11b1σ(1) + a12b2σ(1))× (a21b1σ(2) + a22b2σ(2))

= a11b1σ(1)a21b1σ(2) + a11b1σ(1)a22b2σ(2) + a12b2σ(1)a21b1σ(2) + a12b2σ(1)a22b2σ(2)

But notice, each term can be characterised by an element of In. For example:

κ1(x) =

{
1, x = 1

1, x = 2
=⇒ a11b1σ(1)a21b1σ(2) = a1κ1(1)bκ1(1)σ(1)a2κ1(2)bκ1(2)σ(2)

κ2(x) =

{
1, x = 1

2, x = 2
=⇒ a11b1σ(1)a22b2σ(2) = a1κ2(1)bκ2(1)σ(1)a2κ2(2)bκ2(2)σ(2)

κ3(x) =

{
2, x = 1

1, x = 2
=⇒ a12b2σ(1)a21b1σ(2) = a1κ3(1)bκ3(1)σ(1)a2κ3(2)bκ3(2)σ(2)

κ4(x) =

{
2, x = 1

2, x = 2
=⇒ a12b2σ(1)a22b2σ(2) = a1κ4(1)bκ4(1)σ(1)a2κ4(2)bκ4(2)σ(2)

Hence, we can succintly write:

2∏
i=1

2∑
j=1

aijbjσ(i) =
∑
κ∈I2

2∏
i=1

aiκ(i)bκ(i)σ(i)

Thus, generalising in the above:
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det(AB) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

(AB)iσ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

n∑
j=1

aijbjσ(i)

=
∑
σ∈Sn

sgn(σ)
∑
κ∈In

n∏
i=1

aiκ(i)bκ(i)σ(i)

=
∑
σ∈Sn

sgn(σ)
∑
κ∈In

(
n∏

i=1

aiκ(i)

)(
n∏

i=1

bκ(i)σ(i)

)

=
∑
κ∈In

∑
σ∈Sn

sgn(σ)

(
n∏

i=1

aiκ(i)

)(
n∏

i=1

bκ(i)σ(i)

)

=
∑
κ∈In

(
n∏

i=1

aiκ(i)

) ∑
σ∈Sn

sgn(σ)

(
n∏

i=1

bκ(i)σ(i)

)

Let Bκ be the matrix obtained from shuffling its rows by using κ (so bκ(i) is its ith row). Furthermore,
notice that:

det(Bκ) =
∑
σ∈Sn

sgn(σ)

(
n∏

i=1

bκ(i)σ(i)

)
If κ 6∈ Sn, we will have the det(Bκ) = 0 (where Bκ is the matrix resulting from applying κ to each of the rows
of B), since we will have at least 2 identical rows. Furthermore, if κ ∈ Sn, we know from the multilinearity
of the determinant that:

det(Bκ) = sgn(κ)det(B)

Thus:

det(AB) =
∑
κ∈In

(
n∏

i=1

aiκ(i)

) ∑
σ∈Sn

sgn(σ)

(
n∏

i=1

bκ(i)σ(i)

)

=
∑
κ∈In

(
n∏

i=1

aiκ(i)

)
det(Bk)

=
∑
κ∈Sn

(
n∏

i=1

aiκ(i)

)
sgn(κ)det(B), (since if κ 6∈ Sn we have det(Bk), so terms in sum vanish)

=

(∑
κ∈Sn

sgn(κ)

n∏
i=1

aiκ(i)

)
det(B)

= det(A)det(B)

as required.
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4.2 Theorem: Determinantal Criterion for Invertibility

The determinant of a square matrix with entries in a field F is non-
zero if and only if the matrix is invertible. [Theorem 4.4.2]

Proof. 1. Matrix is Invertible
If A is invertible, then:

∃B : AB = In

By multiplicativity of determinant:
det(A)det(B) = 1

Since det(A), det(B) ∈ F , this is only possible if det(A) 6= 0, since fields are integral domains

2. Matrix is not Invertible
A non-invertible matrix in particular won’t have full rank, so, without loss of generality, we can write
the first column vector of A as a linear combination of the other column vectors. That is:

a∗1 =

n∑
i=2

λia∗i, λi ∈ F

Then, we can exploit the multilinearity and alternating properties of the determinant:

det(A) = det(Mat(

n∑
i=2

λia∗i, a∗2, . . . , a∗n)

=

n∑
i=2

λidet(Mat(a∗i, a∗2, . . . , a∗n)

=

n∑
i=2

λi0

= 0

Where we use the fact that det is alternating, and so 0 whenever there is a repeated entry.
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4.3 Remark: Determinant and Similar Matrices

From the Theorem above, it is clear that:

det(A−1) = det(A)−1

By multiplicativity of determinants, and since we are working over com-
mutative rings, it thus follows that:

det(A−1BA) = det(A−1)det(B)det(A) = det(B)

[Remark 4.4.3]

4.4 Lemma: Determinant of the Transpose

If A ∈ Mat(n;R), and R is a commutative ring, then:

det(AT ) = det(A)

[Lemma 4.4.4]

Proof. From definition:

det(AT ) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aσ(i)i

Now, if τ = σ−1, then:
sgn(τ) = sgn(σ)

(the inverse of a transposition is itself, so the inverse of σ will be composed of the same number of transpo-
sitions, just “reflected” in their order)

Moreover, since we operate over a commutative ring, we must have that:
n∏

i=1

aσ(i)i =

n∏
i=1

aiτ(i)

Thus:

det(AT ) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aσ(i)i =
∑
τ∈Sn

sgn(τ)

n∏
i=1

aiτ(i) = det(A)
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4.4.1 Exercises (TODO)

4.5 ILA Definition of Determinants: The Cofactor
• What is the cofactor of a matrix?

– let A ∈ Mat(n;R), where R is a commutative ring
– the (i, j) cofactor of A is:

Cij = (−1)i+jdet(A〈i, j〉

where A〈i, j〉 is the matrix obtained by removing row i and column j of A
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4.6 Theorem: Laplace’s Expansion of the Determinant

Let A = (aij) ∈ Mat(n;R), where R is a commutative ring.
For a fixed i the ith row expansion of the determinant is:

det(A) =
n∑

j=1

aijCij

For a fixed j the jth column expansion of the determinant is:

det(A) =
n∑

i=1

aijCij

[Theorem 4.4.7]

Proof. Since det(A) = det(AT ), it is sufficient to only prove the column expansion. Moreover, moving the
jth column to the first position (as in (1.6.1)) is the same as applying the permutation:

σ = (1 j)(12)(23) . . . (j − 1 j)1

so it will change the determinant by a factor of sgn(σ) = (−1)j−1.

Thus, it is sufficient to show that det(A) =
∑n

i=1 aijCij for expansion along the first column, j = 1.

Say we have:
A = Mat(a∗1, . . . , a∗n)

We write the first column as a linear combination of basis vectors:

a∗1 =
n∑

i=1

ai1ei

We can then apply multilinearity of the determinant:

det(A) = det(Mat(a∗1, . . . , a∗n)) =

n∑
i=1

ai1det(Mat(ei, . . . , a∗n))

Notice, if we move the ith row of Mat(ei, . . . , a∗n) to the first row, we will obtain the matrix:

(Mat(a∗1, . . . , a∗n) is A without the j = 1 column, and moving the ith row is equivalent to removing the
ith row of A) In doing this, we will change the value of the determinant by a factor of (−1)i−1

1When writing this I cam up with this permutation on the spot, and I’m pretty proud of that yeet
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Now recall the exercise in which we show that the determinant of a block-upper triangular matrix is the
product of the determinants of the matrices in the main diagonal. In other words:

det(Mat(ei, . . . , a∗n)) = (−1)i−1det(A〈i, j〉) = Ci1

Thus, as required, if we expand along j = 1:

det(A) =

n∑
i=1

ai1Ci1

If we do this for an arbitrary j, we first need to move the jth column to the first column, so we would
get:

det(Mat(ei, . . . , a∗n)) = (−1)j−1(−1)i−1det(A〈i, j〉)
= (−1)i+j−2det(A〈i, j〉)
= (−1)i+j(−1)−2det(A〈i, j〉)
= (−1)i+jdet(A〈i, j〉)
= (−1)i+jCij

4.7 Defining the Adjugate Matrix
• What is an adjugate matrix?

– let A ∈ Mat(n;R), where R is a comuutative ring
– the adjugate matrix is:

adj(A) ∈ Mat(n;R) adj(A)ij = Cji

4.8 Theorem: Cramer’s Rule

Let A ∈ Mat(n;R), where R is a commutative ring.
Then:

A · adj(A) = (det(A))In

Proof. From the matrix product formula, the ik entry of A · adj(A) is:

n∑
j=1

aijadj(A)jk
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Hence, we need to show that:
n∑

j=1

aijadj(A)jk = δikdet(A)

But adj(A)jk = Ckj so we require:
n∑

j=1

aijCkj = δikdet(A)

Thereare 2 cases to consider:

1. i = k Then, δik = 1, so we require:
n∑

j=1

aijCij = det(A)

which is nothing but the ith row expansion of the determinant, so it is correct.

2. i 6= k Now define the matrix Â, which is identical to A, except for the fact that the kth row of Â is
the same as the ith row of A. In other words, each entry âkj is given by aij .

Then, we can compute the determinant of Â using the kth row expansion:

det(Â) =

n∑
j=1

âkjCkj =

n∑
j=1

aijCkj

But notice,
∑n

j=1 aijCkj = δikdet(A), so we need to show that:

det(Â) = δikdet(A) = 0

since δik = 0, as i 6= k. But this is true, since Â has rows i and k equal, so by the alternating property
of the determinant, det(Â) = 0, as required.

4.9 Remark: Cramer’s Rule to Solve Linear Equations

Cramer’s Rule can also be stated in the context of solving a linear sys-
tem:

Ax = b

where:
xi =

det(Mat(a∗1, . . . , b, . . . , a∗n))

det(A)
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4.10 Corollary: Cramer’s Rule and the Invertibility of Matrices

A ∈ Mat(n;R), where R is a commutative ring is invertible if and
only if:

det(A) ∈ R×

That is, det(A) must be a unit in R (so it has a multiplicative in-
verse in R). For instance, matrices over Z will be invertible only when
det(A) = 1,−1, whilst matrices over fields will be invertible whenever
det(A) 6= 0 (since every element in a field has a multiplicative inverse
except 0). [Corollary 4.4.11]

Proof. 1. A is Invertible Then, ∃B ∈ Mat(n;R) such that:

AB = In =⇒ det(A)det(B) = 1R

Hence, det(A) must be a unit in R.

2. det(A) is a Unit in R Recall, we need to show the existence of 2 matrices B,C ∈ Mat(n;R) such
that:

AB = CA = In

In the first case, if we have B̂ = adj(A), then Cramer’s Rule says:

AB̂ = (det(A))In

Since det(A) is a unit, it has an inverse, so:

A(det(A)−1B̂) = In

Thus, setting B = det(A)−1B̂ satisfies the first condition.

Since det(AT ) = det(A), then det(AT ) must also be a unit. Again applying Cramer’s Rule with
Ĉ = adj(AT ):

AT Ĉ = (det(AT ))In =⇒ AT (det(A)−1Ĉ) = In

If we then take the transpose:
(det(A)−1ĈT )A = In

Hence, setting C = det(A)−1ĈT satisfies the second condition.

5 Workshop
1. True or false. Let R be an integral domain and let A ∈ Mat(n,R) be a matrix with non-zero

determinant. Then A is invertible.

This is false. By Corollary 4.4.11:
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A ∈ Mat(n;R), where R is a commutative ring is invertible if and
only if:

det(A) ∈ R×

That is, det(A) must be a unit in R (so it has a multiplicative in-
verse in R). For instance, matrices over Z will be invertible only when
det(A) = 1,−1, whilst matrices over fields will be invertible whenever
det(A) 6= 0 (since every element in a field has a multiplicative inverse
except 0). [Corollary 4.4.11]

Hence, it is sufficient to find an integral domain R, such that det(A) 6∈ R×. Picking R = Z, then
R× = {−1,+1}. Consider the matrix:

A =

1 0

0 2


Then, det(A) = 2 so clearly det(A) 6∈ R×. We can confirm that A−1 6∈ Mat(2, R) since:

A−1 =
1

2

2 0

0 1


2. Let:

π =

1 2 3 4 5

4 5 3 2 1


(a) Write π as a product of disjoint cycles.

We get:
π = (1 4 2 5)

(b) Write each nontrivial disjoint cycle of π as a product of transpositions.

We get:
(1 5)(1 2)(1 4)

(c) Write each transposition in the previous part as a product of transpositions of the
form (i, i+ 1).

This is definitely not trivial. The key is to exploit the fact that a transpo-
sition is its own inverse.

We can write:
(1 5) = (4 5)(3 4)(2 3)(1 2)(2 3)(3 4)(4 5)

This ensures that if a 5 goes in, we “cascade” down the transposition chain, until we reach (1 2),
which is the only transposition with a 1, and so returns 1. Alternatively, if 1 goes in, we “cascade”
up the transposition chain, and return 5. All other numbers will get mapped to themselves.
We can write:

(1 4) = (3 4)(2 3)(1 2)(2 3)(3 4)

Hence, we have that:

π = (4 5)(3 4)(2 3)(1 2)(2 3)(3 4)(4 5)(1 2)(3 4)(2 3)(1 2)(2 3)(3 4)
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3. (a) Evaluate the following determinant:

∆n :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1 x2 . . . xn−1

y1 1 0 . . . 0

y2 0 1 . . . 0
...

...
...

. . .
...

yn−1 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

We claim that:

∆n = −
n−1∑
i=1

xiyi

We work by induction.
1 Base Case: n = 1

We see that trivially ∆1 = 0 = −
∑0

i=1 xiyi.
2 Inductive Hypothesis: n = k

Assume true for n = k. Then:

∆k = −
k−1∑
i=1

xiyi

3 Inductive Step: n = k + 1

We compute ∆k+1:

∆k+1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1 x2 . . . xk

y1 1 0 . . . 0

y2 0 1 . . . 0
...

...
...

. . .
...

yk 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

If we expand along the last row, we see that:

∆k+1 = (−1)k+1+1yk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xk

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

+∆k

Furthermore: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xk

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= (−1)k+1xkdet(Ik) = (−1)k+1xk
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Hence, we have that:

∆k+1 = (−1)k+1+1yk(−1)k+1xk −
k−1∑
i=1

xiyi = (−1)2k+3ykxk −
k−1∑
i=1

xiyi = −
k∑

i=1

xiyi

as required.

(b) Let A = (a1, . . . , am) ∈ Mat(n×m;F ), B = (b1, . . . , bm) ∈ Mat(n×m;F ) where ai, bj ∈ Fn. If
n > m, what is det(ABT )?

Notice,
im(ABT ) ⊆ im(A)

since im(ABT ) is just the image of A corresponding to vectors of the form BT v. This means that:

rank(ABT ) ≤ rank(A)

Moreover, since n > m, we must have that:

rank(A) ≤ m

In particular, this means that:
rank(ABT ) ≤ m

But notice, ABT is a n × n matrix, so if rank(ABT ) ≤ m < n, then ABT has linearly dependent
rows. In particular, this means that:

det(ABT ) = 0

(recall, the determinant is a bilinear form, so rows being equal tells us that the determinant is 0)
(c) Let ai 6= 0 ∈ R with i ∈ [0, n]. Prove that:

an +
1

an−1 +
1

. . .+
1

a1 +
1

a0

=
∆n

∆n−1

where:

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 1 0 . . . 0 0

−1 a1 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . an−1 1

0 0 0 . . . −1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

Again, we proceed by induction.
1 Base Case: n = 0

The result follows trivially.
2 Inductive Hypothesis: n = k
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Assume that:
ak +

1

ak−1 +
1

. . .+
1

a1 +
1

a0

=
∆k

∆k−1

3 Inductive Step: n = k + 1

We compute ∆k+1

∆k
. Indeed, we expand along the last row:

∆k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 1 0 . . . 0

−1 a1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

+ ak+1∆k

Again, if we expand along the last row:∣∣∣∣∣∣∣∣∣∣∣∣

a0 1 0 . . . 0

−1 a1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

= ∆k−1

so we get that:
∆k+1 = ak+1∆k +∆k−1

Dividing through by ∆k:

∆k+1

∆k
= ak+1 +

∆k−1

∆k
= ak+1 +

1
∆k

∆k−1

= ak+1 +
1

ak +
1

ak−1 +
1

. . .+
1

a1 +
1

a0

as required.

4. Given the linear equation:
Ax = b

where:
A = (a1, . . . , vn) ∈ Mat(n;F ) x = (x1, . . . , xn)

T b = (b1, . . . , bn)
T

we set:
Ai = (a1, . . . , b, . . . , an)

as the matrix A but with the ith column changed to b. Show that:

xi =
|Ai|
|A|
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Define Ii as the matrix obtained by changing the ith column of the identity matrix by x. Then:

AIi =
(
Ae1 . . . Ax . . . Aen

)
= Ai

Moreover, Ii is a diagonal matrix, so:
det(Ii) = xi

Hence:
AIi = Ai =⇒ |A|xi = |Ai|

so if |A| 6= 0 then:

xi =
|Ai|
|A|
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