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Based on the notes by Iain Gordon, Sections 3.5 - 3.7

1 Equivalence Relations

1.1 Defining Equivalence Relations

e What is a relation?

— a relation R on a set X is a subset:
RCcXxX

— we describe an element (x,y) € R via:
xRy

¢ What is an equivalence relation?

— a relation, typically denoted ~, satisfying:

1. Reflexivity

2. Symmetry
T~Y = Yy~
3. Transitivity
T~y Ny~z — T ~Z

1.1.1 Examples
e simple equivalence relations include:

T~y = =y T~y = 2°=1y>

The first one is more “restrictive”, since in the second one tuples like (x, —y) and (—z,y) are allowed.
e congruence modulo m also defines an equivalence relation:
x~y <= x=y (modm)

— z =z (mod m) (reflexivity)
—xz=y (modm) < y=uz (modm) (symmetry)
—x=y (modm) N y==z(modm) = x ==z (modm) (transitivity)

e a more interesting example is that of matrix conjugacy:
A~B <= 3X:B=XAX"1, A, X,B € Mat(n; F)

—JAI''=A = A~A
- B=XAX"1 =— A=YBY"!, Y=x"1
—- B=XAX"1,0=YBY"! = C=ZzAZ"', Z=YX

This relates to the notion of similar matrices, discussed in W2, whereby basis matrices were similar.
That is, if N = g[f]s and N = 4[f]a, then N, M are similar in the sense that with T'= 4[idy]5:

N=T"'MT
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1.1.2 Exercises (TODO)
1. Show that the relation ~ on Mat(n x m; F), defined by:
A~B < 3dPeGL(n;F),Q € GL(m;F): B=PAQ
is an equivalence relation.
2. Show that isomorphism is an equivalence relation on finite dimensional vector spaces over

a field F.

1.2 Equivalence Classes

e What is an equivalence class?

— consider a set X with equivalence relation ~

— an equivalence class for z € F is a subset £ C X such that:
Exz)={z|xz~z ze€ X}

e What is a representative of an equivalence class?
— an element e € E(x)
e What is a system of representatives?

— a subset Z C X

— it contains excatly one element from each equivalence class F(z),z € X
e What are some properties of equivalence classes?

— the following notions are equivalent:

1. x~y
2. E(z) = E(y) (this follows from (1) 4+ symmetry)
3. E(x)N E(y) # 0 (this follows from (1) + reflexivity, which means that x € F(x),z € E(y))

1.2.1 Examples

o if X is a set of students, with equivalence relation “same degree”, each equivalence class contains all
students which pursue the same degree

e if X =R, then the equivalence relation:
T~y <= x—yEl
has equivalence classes like:
E1.2)={...,-28,-1.8,-0.8,0.2,1.2,2.2,...}
More generally, if z € Z, the equivalence relation tells us that:
YyEE(@x) = y—r=2z = y=z+z — E@)={z+z|2xeX,z€Z}

(here we have used symmetry)
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o if we define:
x~y <= x=y (modm)

then the equivalence classes are familiar:
E@)=z={x+mz|2z€Z}

Furthermore, if m > 0, a system of representatives will contain an element of each equivalence
class, which can be:
{0,1,2,...,m —1}

where 0 € E(0),1 € E(1), and so on. However, in general, we can pick:
{a,a+1,a+2,...,a+m—1}

where a € Z

1.2.2 Exercises (TODO)

1. Show that the n x m matrices over a field F' in Smith-Normal Form form a system of
representatives for the equivalence relation:

A~B < 3dPeGL(n;F),Q € GL(m;F): B=PAQ
2. Show that the set:
{F" | n€Zso}

is a system of representatives for the equivalence relation defined by an isomorphism on
finite dimensional vector spaces over a field F. Show that another system of representatives
for this equivalence relation is:

{F[X]<n | n € Z>o}

1.3 The Set of Equivalence Classes

¢ What is the set of equivalence classes?

— let X be a set, with equivalence relation ~

— the set of equivalence classes is a subset of the power set P(X)

it is the set containing all equivalence classes of X:
(X/ ~):={E() |z € X}
— this is also known as the quotient set

e What canonical mapping arises from this definition?

A canonical map is a map or morphism between objects that arises nat-
urally from the definition or the construction of the objects. In gen-
eral, it is the map which preserves the widest amount of structure, and it
tends to be unique.

— in this case, a canonical map is of the form:
can: X — (X/ ~)
can(z) = E(x)

— this is a surjection, since each equivalence class E(x) contains at least one element in X (so
“worst case”, each x € X maps to a unique E(x))
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1.3.1 Examples: Canonical Mappings Preserving Structure (as Homomorphisms)

1. Abelian Groups

A is an abelian group; B is a subgroup of A

define an equivalence relation.
T~y << z—yERDB

the equivalence classes are:
y—r=beB = E(@x)={x+b|be B}

(here we use the fact that the group is abelian, so « +b = b+ x)
the quotient set is A/B = A/ ~, an abelian group, defined by:

Ex)+E(y)=E(x+y)={x+y+b|be B}

the canonical mapping can : A — A/B is a surjective homomorphism, with kernel being B
(since 0 € A/B={0+b|be B} =B, and any element b € B will get mapped to this set)

A/B is the quotient abelian group of A by the subgroup B

2. Non-Abelian Group

G is a group, and H is a normal subgroup: that is, if h € H and g € G, then:
ghg~te H

define an equivalence relation:
T~y = zy e H

the equivalence classes are given by the left and right cosets:
E(z)=2H=HzxCG

This is because if zy~! € H, by symmetry, yz=! = h € H, so y = hx, meaning that E(z) =
{hz | h € H}. the equivalence relation is defined by

zy teH

. Moreover, since G is a group, and H is a normal subgroup, we know that g~ 'hg € H. Thus,
if zy~! € H, we must also have y~!(zy~ 1)y = y~'o € H. Hence, y~! ~ 271, and again by
symmetry, 7! ~y~! = a2 lye H = y=zh = E(z)=xH.

the quotient set G/ ~= G/H is the group with operations:
E(z)E(y) = E(xy)

the canonical surjective homomorphism can : G — G/H has kernel H, since hH = Hh = H,
so Vh € H,can(h) = H, and H is the identity element in G/H

this relates to Lagrange’s Theorem, which states that:
|G| = |G/H|H|

which is proved by noting that each coset F(z) has exactly |H| elements (since it is given by
xH = Hz), and that G is the disjoint union of |G/H| cosets (the union is disjoint because
otherwise we’d have elements belonging to more than 1 equivalence classes; there are |G/H|
cosets because G/H is the set of all cosets).
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e G/H is the quotient group of G by the normal subgroup H

3. F-Vector Spaces

e let V be a F-Vector Space, with subspace W

¢ define an equivalence relation:
T~y = x—yew

e as in the first case, the equivalence classes are:
y—zrz=w = E@)={z+tw|lweW}l=z+W
o the quotient set is an F-Vector Space with:
AE(z) = E(\x)

 the canonical surjective homomorphism can : V. — V /W has kernel W (same reason as in
case (1))

e by the exercise below, we can show that if V is finite-dimensional:

dim(V /W) = dim(V') — dim(W)

V /W is the quotient vector space of V by the subspace W

1.3.2 Examples

e if ~ defines the congruence equivalence relation, modulo m, then:

(Z) ~) =2

This is easy to see, since as discussed above, the equivalence classes of ~ are the sets 0,1,...,m — 1,
and the set of all these elements is precisely Z,,

1.3.3 Exercises (TODO)

1.

Let R = F be a field, V and F-vector space, and W C V a subspace of V. The quotient
V /W is the quotient vector space, and can : V — V /W is a linear mapping. Assume that
dimV =m < co. By the Dimension Estimate for Vector Subspaces, dimW =n < m. Let:

{yla e 7Qn}
be a basis for W. Using the Steinitz Exchange Theorem, we can extend it to a basis of V:

{217"'7Qnyyn+1,...,ym}

Show that:
{yn—&-l +I/Vavym+W}

is a basis for the vector space V/W. Hence, deduce that:

dim(V /W) = dimV — dimW

Page 7



1.4 Remark: A Very Important Remark At That

Consider ~ as an equivalence relation on X, and let f : X — Z be a
mapping, such that:

v~y = f(r)=f(y)

In other words, whatever the equivalence relation is, it is such that all ele-
ments in the same equivalence class are mapped to the same value un-

der f

Then, there exists a unique mapping:
fr(X/~) =2

This mapping is simple to define:

such that: ~
f=focan

This can be summarised by the following diagram:

can

X~ (X/ ~)

f
Z

This is known as the universal property of the set of equivalence
classes
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A more interesting case occurs when
f:X—>2Z
is any mapping, and we define:
z~y <= f(x) = fy)
Then, we will have that:
Fi(X]~) = imf

is a bijection. This bijection is a prelude to the First Isomorphism
Theorem.

1.5 A Well-Defined Mapping
e When is a mapping well-defined?

— consider a mapping;:
g:(X/~)—>Z

— g is well-defined if there exists a mapping:
[ X—>Z

such that:
v~y = f(z)=f(y)
— here we recognise g = f

e Why are well-defined mappings important?

— they solidify the notion of equivalence
— they ensure that elements in the same equivalence class are mapped to the same value
— this means that equivalent elements in X are the same in Z

— more on this in Proof-Wiki

1.5.1 Examples

o recall the equivalence relation:
a~b < a—-beZ

with equivalence classes:
E(@)={...,a—2,a—1,aq,a+1,a+2,...}

Further consider:
fR—=R f(z) = cos(z)

g:R—=R f(z) = cos(2mx)

Then, f is not well-defined, since:

0~1  J(0)=1#f(1)
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However, g is well-defined. Indeed:
a~b = a=b+4+z,2€7Z

So:
g(a) = cos(2ma) = cos(2mb + 27z) = cos(27b) = g(b)

where we exploit the fact that cos is 27 periodic. Moreover, we can define:
g:(R/~) =R

via:

1.5.2 Exercises (TODO)
1. Define a relation ~ on X x N by:

(z,y) ~ (a,b) <= z+b=y+a

a) Show that ~ is an equivalence relation

(a)

(b) Let N= (N x N/ ~). Show that addition on N induces a well-defined addition on N

) _
)

(¢) Show that with this addition, N is an abelian group

(d) Show that

nat : N > N

is an additive mapping, where:
nat(a) = E((a+n,n)),Vn € N

That is:
nat(a + b) = nat(a) + nat(b)

(e) Show that N is isomorphic as a group to (Z,+)

Page 10



2 Factor Rings

2.1 DMotivation 1: Equivalence Relations From Kernels

We just showed that mappings between sets generate equivalence re-
lations. In particular, consider a ring homomorphism:

f:R—S
We can define an equivalence relation on R:
z~y = f@)=f(y)

By properties of homomorphism:

= x—yeker( )

This then defines the equivalence classes via:
y—x=keker(f) = y=x+k
so in particular:

E(x)=x+ker(f)={x+k|k € ker(f)}
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2.2 DMotivation 2: Equivalence Relations From Ideals

In fact, all the above generalises easily to ideals:

If I is an ideal of a ring R, and f : R — S, then the following is an equiv-
alence relation:
ri~Ty <= 11 —r9 €l

1.ry—r=0g €I <= 1 ~ry (since0 is always part of an ideal).
Hence, reflexivity holds.

2. ifry ~rq, then:
rr—19 €1

Since ideals are closed under substraction, it follows that:
—(r1—mry)=rg—r1 €1
so we have ry ~ ry. Thus, symmetry holds.
3. ifry ~ry and ry ~ r3, then:
rir—re €1

ro —rg €1

Ideals are closed under substraction/addition, so:
(7”1—7“2>+(7”2—7"3):7”1—T3 EI
so we have ry ~ r3. Thus, transitivity holds.

As above, the equivalence classes then become:
E(ri)=rm+I={rn+iliel}
and the quotient of R by I (the set of all equivalence classes) is:
R/I
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We have constructed R/I. We now go back, and discover that it is a ring.

2.3 Motivation 3: Quotients From Ideals are Rings

R/I is the set of all equivalence classes, constructed from the equiva-
lence relation:
ri~Ty < ri—r9€l

But if we think about it, this equivalence relation was originally defined as:
r~ry == f(r) = f(r2)

But now recall, such an equivalence relation lead to the following bijection:
f (R/I) = im(f)
F(E(r)) = f(r)

The existence of this bijection tells us that, since im(f) is a subring of S,
we should expect that R/I should also have a ring-like structure, since we
have a one-to-one correspondance between elements in R/S and a subring
(in fact, if f is an isomorphism, R/S would indeed be isomorphic to
the subring im(f)).
So if we have R/I as a ring, we better endow it with addition and multi-
plication:

E(T‘l) + E(’I"Q) = E(T‘l + 7‘2)

E(’f‘l’f‘g) = E(Tl)E(T2>

This section focuses on formalising the notion of R/I as a factor ring,
defines the Universal Property of Factor Rings results, and has a
grand finale in the First Isomorphism Theorem.
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2.4 Cosets of Rings

e What is a coset of a ring?

— let R be a ring, and I an ideal of R
— the coset of x with respect to I in R is the subset of R:

c+I={x+iliel}

— cosets in rings are special cases of cosets in groups
e Are cosets equivalence classes?

— as we saw above,
T~y = x—yel

defines an equivalence class:
Ex)=a+1

— so cosets are equivalence classes
e Given 2 cosets, how can they be related?

— we saw that if z ~ y, then:
E(x)=E(y)  E(x)NE(y)#0

— hence, depending on whether x ~ vy, 2 cosets x + I and y + I are related in one of 2 ways:

xr+l=y+1
xor (z+D)N(y+1)=0

2.5 Defining the Factor Ring

e What is a factor ring?

— let:

* R be a ring
x I be an ideal of R
* ~ the equivalence relation on R:

T~y = x—yel
o the factor ring of R by I is nothing but the quotient of R by I

o hence, the factor ring is R/I:

— the set of equivalence classes under ~

— the set of cosets of I in R
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2.6 Theorem: Operations on Factor Rings

For the factor ring to be a ring, we need to provide ring operations.

Let R be a ring, and I an ideal.
Then, R/I is a ring, with addition defined as:

(z+D+y+I)=(@+y)+ILVz,ye R
and multiplication defined as:
(x+1)-(y+I)=zy+I,Vz,y € R
[Theorem 3.6.4]

For the proof we need to be careful, and show that:
e R/I is an abelian group under addition

o addition is well-defined

e R/I is a monoid under multiplication

o multiplication is well-defined

o R/I satsifies the distributive axioms

This proves that R/I is a ring. It is important to emphasise the need to show that the operations are
well-defined:
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Consider R = Z and I = 15Z = {15z | z € Z}. The equivalence
classes, as discussed, are of the form:

E(r)={r+15z| 2 € Z}
The factor ring is our well known:
ZJ157 = Zq5
Now, consider the following products:
E(7)- E(9) = E(63) E(22) - E(9) = E(198)

Now, we know that 22 and 7 are congruent modulo 15, so obviously

E(7) = E(22) (they are the same equivalence class). The question now be-
comes: are E(63) and E(198) congruent modulo 152 How can we be sure?
This is the importance of having well-defined operations: we are work-
ing over equivalence classes, so we need to ensure that any arithmetic
we do doesn’t depend of our choice of representative of the equivalence

class.
In this example, any arithmetic we do shouldn’t depend on the number we
choose (i.e 7 and 22), but rather the remainder when dividing by 15.

Proof. 1. Addition is Well-Defined
To show that addition is well-defined, we need to show that if z,2’, 9,7y’ € R and:

E(x)=E(x)  E(y)=E()
(we use E(z) instead of z + I for ease of reading and writing) then:
E(x) + E(y) = E(2) + E(y')
Notice, by how addition is defined, this is equivalent to showing that:
E(x+y)=E@ +y)

which is equivalent to showing that the two are the same equivalence class. In other words, we need
to show that:
(+y) ~@'+y) = @+y - +y)el

We consider:

(z+y) - (@ +y)=(@-2)+(y-y)
By assumption, E(x) = E(z'), so x ~ 2, so x — 2’ € I. Similarly, y — ¢’ € I. Since ideals are closed
under addition/subtraction, it is clear that:

(@—a)+(y—y)el

Hence, addition is well-defined.
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2. R/I is an Abelian Group Under Addition

(a) Existence of Identity
E(0)+ E(z) =E(0+z)=FE(z) = E(x+0) = E(z) + E(0)
(b) Existence of Inverse
E(-2) + E(z) = E(—z + ) = E(0) = E(z — 2) = E(z) + B(~x)
(c) Associativity
(E(z)+E(y)+ E(2) = E(x+y)+ E(2) = E(z+y+2) = E(x)+ E(y+2) = E(x)+(E(y) + E(2))

(d) Closure This follows directly from the definition of addition.

(e) Abelian
E(z)+ E(y) = E(x +y) = E(y + ) = E(y) + E(z)

(using commutativity of R under addition)
Hence, R/I is an abealian group under addition.

3. Multiplication is Well-Defined Again ,consider x,z’,y,y with:

we need to show that:

Since E(z) = E(z'), we know that:

x~t = -2 cl = z=2'+i,i€el

Similarly:
y=y +jj€l
Hence:
E(z)E(y) = E(wzy)
=E((«"+ i)y + 1))
=By +2'5 + iy +1ij)
= E(2y) + E(2'j) + E(iy') + E(ij)

Now, notice that:
E(2'j) = E(iy') = E(ij) = E(0)

Since ij,4y’,x’j € I (since multiplying elements in R by elements in I produces elements in I), then:
ij—0el iy —0el 2j—0¢el

So ij ~ iy’ ~ x'j ~ 0, from which E(2'j) = E(iy’) = E(ij) = E(0) follows. Hence, we have shown
that:
E(x)E(y) = E(«"y') = E(x')E())

so multiplication is well-defined.

4. R/I is a Monoid Under Multiplication
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(a) Closure This follows directly from the definition of multiplication.

(b) Associativity
(E(z)E(y))E(z) = E(xy)E(2) = E(zyz) = E(x)E(yz) = E(z)(E(y)E(2))
(c) Existence of Identity
E(x)E(1) = E(z-1) = E(z) = E(1 - ) = E(1)E(x)

Hence, R/I is a monoid under multiplication.

5. R/I Satisfies Distributivity
E(x)(E(y)+E(2)) = E(2)E(y+2) = E(z(y+2)) = E(zy+az) = E(zy)+E(xz) = E(z)E(y)+E(r) E(2)

Hence, by all of the above, R/I is a ring, with well-defined operations.
O

2.6.1 Examples

o this is another way of seeing that Z/mZ = Z,, is a ring

o consider the ring R = Fo[X] (the ring of polynomials with coefficients 0 or 1), and the following 2
ideals:

I =p(X?*) = {pX?|pe R}
J=p(X?+X+1)={p(X® 4+ X +1)|peR}
How do we describe R/I and R/J?

1. Elements in the Factor Rings
(a) Elements in R/I For p € R, We denote:

Ei(p)=p+1
Then, we can consider the equivalence classes, given by the relation:

pL~p2 = pi—p2€l

that is p; ~ po if p1 — po has X? as a factor. Consider the constant polynomials first (only 2
of them)

E/(0)={i|iel} El)={1+i|iel}
Clearly, 0 £ 1, since 0 — 1 = 1 (we operate in Fy) which is not divisible by X2. Hence, E;(0)
and E;(1) are different equivalence classes. Now considering linear polynomials:

Ef(X)={X+i|liel} E(X+1)={X+1+i|iel}

Then:

- X-0¢1

- X-1¢1

- (X+1)-0¢1I
- (X+1)-1¢1
- (X+1)—-X¢gI
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Hence, we have 2 more equivalence classes:

Now, consider a polynomial p € R with deg(p) > 2. We can factorise it as:

Er(X)

Er(X+1)

p(X) = q(X)X? +r(X)

such that deg(r) < deg(X?) = 2. Then notice that:

p—r=q¢X?’cl = p~r

Thus, any polynomial is in the equivalence class of its remainder. Since the remainder r has
degree 0 or 1, it means that p is in one of E7(0), Er(1), Er(X), Er(X + 1). Thus:

(R/I)={E1(0), E1(1), E1(X), Er(X + 1)}

(b) Elements in R/J Working in a similar, we will see that:

(R/J) ={E,(0), E;(1), E;(X), E;(X + 1)}

2. Behaviour of Elements We have reduced the elements of R/I to a set of 4 elements. We now
need to see hwo they interact with each other througha multiplication table:

E;(0) Er(1) Er(X) Er(X +1)
E;(0) E;(0-0) = Ef(0) E1(0-1) = Ef(0) E1(0-X) = E;(0) Er(0- (X +1)) = Ef(0)
Er(1) E;(1-0) = Ef(0) Er(1-1) = Ef(1) Ei(1-X)=FEi(X) | BEt(1- (X +1)) =Er(X +1)
Er(X) Er(X -0) = Er(0) Er(X 1) = E/(X) E(X?) = Ef(0) Er(X*+ X) = Er(X)
Erx(X+1) | Brf(X+1)-0)=E;(0) | Er(X+1)-1)=E(X+1) | Ex(X*+X)=Fr(X) | Er(X*+2X+1)=E:(1)

Table 1: Here we use facts like X2 ~ 0 and X2 + X ~ X to simplify. Also, don’t forget that 2 = 0 in Fs.

E;(0) E,(1) E;(X) E;(X 41)
E,(0) E;(0-0) = E;(0) E;(0-1) = E;(0) E;(0-X) = E;(0) E;(0-(X +1)) = E;(0)
E;(1) E;(1-0) = E;(0) E;(1-1)=E;(1 E;j(1-X)=E;(X) | E;(1-(X+41)=E;(X+1)
E;(X) E;(X -0) = E;(0) Ej(X-1)=E;(X) E;(X?) =E;(X +1) E;(X?+X)=FE;(1)
EjX+1) | E;(X+1):00=E;0) | E;(X+1)-1)=E;(X+1) | E;(X*+X)=E,(1) | E;(X*+2X+1)=E,(X)

Table 2: Here we use facts like X? ~ X + 1 (since X2 - (X +1)=X?2-X-1=X?+X+1¢€ J and
X2+ X ~1 (since X2+ X —1=X2+ X +1¢€J) to simplify. Also, don’t forget that 2 =0 in Fs.

Now notice: in R/.J every non-zero element has an inverse, so R/J is a field with 4 elements. On
the other hand, R/I is not, since it has a zero-divisor (for example E;(X)).

2.6.2 Exercises (TODO)

1. Let R be a ring, and I an ideal of R. Show that if R is commutative, then so is R/I.

2. Let R be a ring, and I an ideal of R. Show that R/I is a non-zero ring if and only if I # R.

3. Let R be a ring, and I a proper ideal of R (so I # R. Show that if r € R*, then E(r) € (R/I)*,
and (E(r))~! = E(r ).

Page 19




2.7 Theorem: The Universal Property of Factor Rings

In the Very Important Remark (1.4) (the universal property of the set of equivalence classes,
we showed how there are 2 ways to go between sets X, Z: one that is direct (f : X — Z) and one that is
indirect (g: X — X/ ~— Z, with g = g o can, where g is a unique mapping g(E(r)) = f(r)). This theorem
considers the same case, but adapted to rings.

Let R be a ring, and I an ideal of R.
1. The canonical mapping:
can: R — (R/I) can(r) = E(r),Vr € R

is a surjective ring homomorphism, with kernel:

ker(can) = I
2. If
f:R—S
is a ring homomorphism and:
f) ={0s}
so that I C ker(f), then there is a unique ring homomorphism:
f:(R/I)— S
such that: -
f=focan
can

[Theorem 3.6.7]
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Proof. 1. The Canonical Mapping is a Surjective Ring Homomorphism With Kernel [

(a) Surjective Mapping This easy to see. Any E(r) is produced by at least one element in R. By
the pigeonhold principle, every possible E(r) must be mapped to by some element in R.

(b) The Kernel is I If i € I, then by properties of ideals:
i—-0pel = i~0 = E(i)=FEQ0)=0g/;
Any other ¢ ¢ I won’t have an equivalence relation with 0. Hence, ker(can) = I.

(¢) The Mapping is a Ring Homomorphism This follows from how addition and multiplica-
tion are defined in the factor ring R/I:

can(z) + can(y) = E(x) + E(y)
can(z)can(y) = E(x)E(y) = E(xy) = can(wy)

E(z +y) = can(z +y)

2. Existence of Unique Ring Homomorphism f
(a) Existence of Unique Mapping f Since f(I) = {05}, then:
FE@) ={flz+i) |iel} ={f(x)+ () [ie I} ={f(2)}
Define:

such that: )
f(E(x)) ={f(E(x))}
Then, f is the only mapping satisfying f = f o can.
(b) f is a Ring Homomorphism

J(E@)+E@y) = f(E(x+y) = fle+y) = [(2) + fy) = [(E@)) + [(Ey)

FE@)E(y)) = f(E(zy)) = f(zy) = f(2)f(y) = f(E@))f(E(y))

2.8 Theorem: First Isomorphism Theorem for Rings

Let R and S be rings.
Then, every ring homomorphism:

f:R—S
induces a ring tsomorphism:
f+ (R/ker(f)) — im(f)

This isomorphism is nothing but:

f(r+ker(f)) = f(r)

[Theorem 3.6.9]
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Proof. Notice, ker(f) is an ideal, so R/I is a ring; similarly, ém(f) is a subring, so a ring. Moreover, by
definition of the kernel, we must have that f(ker(f)) = {0s}. Hence, by the universal property of factor
rings, we have that f is a homomorphism.

Clearly, it is also surjective (each f(r) € im(f) is produced by at least one element in each equivalence
class r + ker(f)).

~ Moreover, ker(f) = 0+ker(f) = ker(f) (recall 0+ ker(f) is nothing but E(0). If E(r) = ker(f), clearly
f(E(r)) = f(r) = 0g, by definition of the kernel. No other equivalence class achieves this. Hence, since the
kernel only contains the additive identity, the homomorphism must be injective.

Thus, f is a bijective homomorphism - an isomorphism.

2.8.1 Examples

o if R = R[X] and I = g(X? + 1) (the ideal generated by X2 + 1, or in other words, the set of all
polynomials with X2 + 1 as a factor), then R/I is not only a ring, but it is isomorphic to the
complex numbers

— we can factorise polynomials uniquely (P = AQ + B, with P,Q € R, deg(B) < deg(Q))

— in particular, we can write P € R as:
P=AX*+1)+B
— since Q = X2 + 1, and deg(B) < deg(Q) we must have:
B =a+0bX, a,beR
— now consider the evaluation homomorphism:
f:RX]—=C

defined by evaluation P € R[X] at v/—1
— clearly, f(P) = f(B), since v/—1 is a root of X2 + 1, so:

J(P) = f(B) =a+b/—1

— clearly, f is surjective

— moreover, P € ker(f) if and only if a = b = 0, which in particular means that:

ker(f) = r[X](X* +1)

by the first isomorphism theorem for rings, we thus have an isomorphism:

fRIX]/rix(X2+1)) = C

3 Modules

Just as rings are the generalisation of fields, we introduct modules as the generalisation of vector spaces.
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3.1 Defining Modules
e What is a left module?

— a left module is defined over rings

— it consists of an abelian group:
M = (M, +)

armed with a mapping:
RxM—M

(r,a) =>r-a
— left modules must satisfy: . .
r(a+b) = (ra)+(rd)
(r+s)a = (ra)+(sa)
r(sa) = (rs)a
lpa=a
e What is an R-Module?
— a module defined over the ring R
e How do right modules differ from left modules?
— a module in which multiplication by rings is defined via:
(r,a) > a-r
e What is the trivial module?
— the singleton {0} for any ring R
e What is a direct sum?

— given R-modules:
M17M27"~aMn

their cartesian product:
M1XM2><...XMn

alongside:
(a1,...,an)+ (b1, bp) = (a1 +b1,...,an +by)
r(a,...,an) = (rag,...,ray,)
is an R-module

— denoted:
MioMy&...& M,

is the direct sum
e How do R-Modules and F-Vector Spaces differ?

— since modules are defined over rings, multiplication by R might not have inverses defined

— this means that if for example:
rm =0

we can’t assume that » = 0 or m = 0. For example, if:
R=17Z, (M, +)=(Zs+)
then:
2:2=4=0
— amongst other things, this means that the notion of linear independence no longer makes sense
in modules, since linear combinations can be 0, with not all ring scalars being 0
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3.1.1 Examples

e F-vector spaces are just R-modules in which the ring R is a field F/
e Z-modules are abelian groups. Indeed, any abelian group M is a Z-module.

e if I is an ideal of a ring R, then [ is an R-module, under multiplication in the ring. In fact, R is an

R-module.

— for example, Z and Zg are both modules

— ideals exploit the fact that if an element of r € R multiplies ¢ € R, then ir,ri € I

3.1.2 Exercises (TODO)

1.

Let S be a ring, and let R = Mat(n;S). Let M = S™. Show that M is an R-module under
the operations of componentwise addition and amtrix multiplication.

Let V be an F-vector space for some field F and let ¢ € End(V) be an endomorphism of V.

Show that V is an F[X]-module under the operation:

(Z aiX> 0= a;¢"(v)
=0 =0

For better understanding, we are multiplying a vector v by a polynomial with coefficients
in a field. This multiplication then needs to result in a vectors in the vector space. We

denote the F[X]-module via Vj.

As an example for this, consider:
R = C[X] (M,4+)=C"

We can define the endomorphism ¢ as:
p(v)=Av  veEm,AE Mat(n;C)

and then define ring multiplication as:

As a concrete example, define:

0 1
A =
0 0
and
g X)=X?+2X +3
Then:
q(A) = A +2A + 3] =
0 3
Such that:
0 2
a(X)- (0 1) = -
0 3 1 3
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3.2 Lemma: Module Hygiene

Let R be a ring, and M an R-module.
1. Og - a = 0y, Ya € M
2. r0p = 0y, Vr e R
3. (—=r)a=r(—a) = —(ra), Vre R,ae M

3.3 Module Homomorphisms

¢ What is a module homomorphism?

— let R be a ring, and let M, N be R-modules

— a R-homomorphism is a mapping:
f:M—N

satisfying:
fla+b) = f(a) + f(b)

f(ra) =rf(a)
e What results from composing module homomorphisms?
— you obtain another homomorphism
e What is an R-Module Isomorphism?
— a bijective homomorphism
e« What is the kernel of an R-homomorphism?

— the set:
ker(f)={ae M| f(a)=0n} C M

e What is the image of an R-homomorphism?
— the set:
im(f) ={f(a) |a € M} C N

3.3.1 Examples
o the mapping f(a) = Oy is always an R-homomorphism
o if R is a field, module homomorphism are the standard linear mappings
e any group homomorphism between abelian groups is also a Z-homomorphism
o consider R = C[X], and consider 2 modules:
M=C% N=C%

where:
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We can then define a homomorphism:
f:C4 = C%
defined by:
v — T, veM,Te Mat(2;C)

Recall, multiplication in the module is defined by replacing each X in the polynomial in C[X] by the
given matrix (A or B). Hence, the homomorphism is defined by:

f(Xv) = f(Av) = T(Av)
But notice, this must be an element in N. By properties of homomorphisms:
f(Xv) = X[f(v) = B(Tv)

Hence, if T exists, it must satisfy:

TA =BT
Let:
a b
T —
c d
Then:
0 a
AT =
0 ¢
2a—c 2b—d

TB =
4a —2¢c 4b—2d

Hence, we have 4 variables, and 4 sets of linear equations:
20—c=0 = c=2a
4da —2c=0 = c=2a
4b—2d =c¢
2b—d=a

Notice, the last 2 equations coincide with the fact that ¢ = 2a. Overall, this system has infinitely many
solutions, such that:

2b—d b
4b—-2d d

3.3.2 Exercises (TODO)
1. Let F be a field, and let V = F? and W = F? be F-vector spaces. Define:

010
0 1

¢ = =10 0 1
0 0

0 00
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and consider the F[X]-modules V,,, W,. Show that:

xX
X
f:V¢—>W¢, —
Y
X
z
fIW¢—>V¢, y | —
0
X

are F[X]-homomorphisms

3.4 Submodules

¢ What are submodules?

— non-empty subsets of an R-module, which are themselves R-modules, with respect to the oper-
ations in the R-module

3.4.1 Examples

e a submodule of an F-vector space is a subspace
o the submodules of a Z-module are the subgroups of its corresponding group
e the submodules of a ring are its ideals

« consider a field F' and the F[X]-module W, defined using the matrix:

010
=0 0 1
00 0

(recall Wy, is an F[X]-module, where its elements are in '3, and multiplication by a matrix F[X] is
defined as multiplication of v € F® by F[¢]). Then the subspaces:

— (&) = {0}
— {e1,65) = {0} U {ke, | k € F'} (since ey = €7, and ¢e; = 0)

are F[X]-submodules of Wy, but (e,) (since ¢e, = e;, but e; is not part of the generating set).

e again, consider:
R=C[X] M=C3%

where multiplication by polynomials in M is defined by multiplying v € M by:

A—
0 0

The question to consider is: the 1-d subspace of C? given by:

L={Az,y) [ e C}
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is definitely closed under addition and scalar multiplication; is it closed under multiplication by poly-
nomials? That is, is it a submodule of M? Consider p(X) = Y ;p;X € C[X]. Moreover, notice

that:
A? = Mat(0) = A* = Mat(0), Vke[2,n]
Thus:
Po P
p(A) =pola +p1A=
0 po
Hence, we ask whether:
bPo D1 x Pox + p1y
p(A)(z,y) = = el
0 po) \v Doy
We thus need to find suitable x,y, such that:
por+pry\ [ Az
Poy Ay

Since the second entry only depends on y, we focus on that first. There are 2 cases to consider:

1. y # 0 In this case, and since C is an integral domain, we must have that po = A. Thus, in the
first entry:
Por+py=Ir = I+py=ir = py=0

Now, since y # 0, this is only possible if p; = 0. But we need to consider every possible polynomial
in C[X], so this is not possible. Hence, the only alternative is that y = 0.

2. y = 0 In this case, pg can be anything in C. Then:
DT+ DY =Ar = por=Ar = Py =A

Thus, for any z, and for y = 0, L defines a submodule.

3.5 Proposition: Test for a Submodule

Let R be a ring, and M a module over R.
A subset M C M is a submodule if and only if:

1. 0py € M’

2.a,be M — a—be M
3. reRaeM =— raeM
[Proposition 3.7.20]
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Proof. It M’ is a submodule, these properties hold (since they are properties of modules). Alternatively,
assume that M’ satisfies the conditions. Then, recall the test of a (finite) subgroup. If G is a group, H is a
subgroup if and only if:

« H+(
e ke H = hk‘ecH

Condition (1) means that M is not empty, and condition (2) ensures that a —b € M’. Hence, M’ is a
subgroup of M. By (3), we know that we have:

Rx M — M

The remaining properties of a module are satisfied by the fact that M’ is a subset of M. Hence, M’ must
be a submodule.

O

3.6 Lemma: Kernel and Image as Submodules

Let:
f:M—N

be a module homomorphism. Then:

o ker(f) is a submodule of M

o im(f) is a submodule of N
[Lemma 3.7.21]

Proof. 1. The Kernel is a Submodule

o since f(0pr) = On, Ops € ker(f)
o ifa,b € ker(f) then:

fla)—fb)=0y = fla—b)=0 = a—>¢cker(f)
o if r € Rya € ker(f):
rf(a) =m0y =0y = f(ra) =0y = ra € ker(f)
Hence, by the test for a submodule, the kernel is a submodule.
2. The Image is a Submodule

o since f(Op) = On, On € im(f)
o ifa,b€im(f), then 3a’,b’ € M such that:

fld)y=a  f())=0
But then, by properties of the homomorphism:
fl@=b)y=a-b
Since a’ — b’ € M (by definition of a module), it follows that a —b € N

Page 29



o if r € R,a € im(f), then 3a’ € M such that:
fla') =a

But then:
rf(a’)=ra = f(ra’)=ra

so ra € im(f)

Hence, by the test for a submodule, the image is a submodule.

3.7 Lemma: Injectivity and Kernel

Let R be a ring, with M, N as R-modules.
Let:
f:M— N

be a module homomorphism. Then, f is injective ¢f and only if:

ker(f) = {Oa}
[Lemma 8.7.22]

Proof. This follows directly from the fact that this property is true for group homomorphisms.

3.8 Generating Submodules

e What is a generated module?

— consider a ring R, with R-module M, and a subset T C M
— the submodule of M generated by T is the submodule:

R<T> = {Zriti ‘ ri € R, t; € T}

i=1
— if T = (), then g(T) contains 0ps

e What is a finitely generated module?

— a module generated by a finite set:
M = r(T)

e What is a cyclic module?

— a module generated by a single element:

M:R<t>, teM
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3.8.1 Examples
e a cyclic Z-module is equivalent to a cyclic abelian group

e the ideal generated by a subset T' of a commutative ring R is equivalent to a submodule of R
generated by T

e a principal ideal of R is equivalent to a cyclic submodule of R
o if F'is a field, and Wy, is defined as above, then wy, is a cyclic F[X]-module generated by e;

e 0y is generates a cyclic submodule {0,,} of any module

3.9 Lemma: Smallest Submodule Containing a Subset

IfT C M, then:
r(T)
is the smallest submodule of M containing T'. [Lemma 3.7.28]

3.10 Lemma: Intersection of Submodules

The intersection of any collection of modules is a module. [Lemma
3.7.29]

3.11 Lemma: Addition of Submodules

If My, My are submodules of M, then:
My + My = {m1 -+ Mo | mq € My, my € Mg}
is also a submodule of M. [Lemma 3.7.30]

3.12 Theorem: Factor Modules

¢ What are cosets in modules?

— let:

* R be a ring
* M be a module
*+ N a submodule of M

— similarly to before, we can define an equivalence relation:
a~b < a—beN, a,be M

— for a € M, the equivalence class of this relation is the coset of ¢ with respect to N in M:

E(a@)=a+N={a+n|ne N}
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« How are factor modules defined?

— the factor of M by N (or the quotient of M by N is the set:
M/N=M/~

of all cosets/equivalence classes of N in M.

3.12.1 Examples

Let R=R, M =R* and:
N = {(x1,22,x3,24) | ©1 = 23, w2 = 424}

What is M/N? We know its an R module over a field, so M /N is a vector space. First, lets consider what
the bases of M, N are. For N its simple:
{(2,0,1,0),(0,4,0,1)}
For M, we can extend the basis for N:
{(2,0,1,0),(0,4,0,1),(1,0,0,0),(0,1,0,0)}
Indeed, this is a basis, since the vectors are linearly independent, and:
(21,2, 3, 24) = 23(2,0,1,0) + 24(0,4,0,1) + (z1 — 223)(1,0,0,0) + (x2 — 424)(0, 1,0, 0)

Now, recall that:
a~b < a—-beN

We claim that a basis for M /N is given by:
{(1,0,0,0) + N, (0,1,0,0) + N}
For this we need 2 things:
1. Generation Take any element in M /N:
(z1,72,73,74) + N

Then, it is clear that:

(w1, x2, 23, £4)+N)—(((x1—223)(1,0,0,0)+N)+((x2—424)(0,1,0,0)+N)) = (x3(2,0,1,0)+N)+(x4(0,4,0,1)+N)

But notice, {(2,0,1,0),(0,4,0,1)} is a basis for N, so:

((x1,22,23,24) + N) — (((z1 — 223)(1,0,0,0) + N) + ((x2 — 424)(0,1,0,0) + N)) € N

or in other words, (21,2, 23,24) + N and ((x; — 223)(1,0,0,0) + N) + ((z2 — 424)(0,1,0,0) + N are
equivalent in the cosets, so:

(1,29, 23,24) + N = ((x1 — 223)(1,0,0,0) + N) + ((z2 — 424)(0,1,0,0) + N)
Hence, any element in M /N is generated by our claimed basis.
2. Linear Independence It is clear that if:
((1,0,0,0) + 5(0,1,0,0)) + N = (0,0,0,0) + N

we can only have o = 8 = 0, so the generating set is linearly independent.
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3.13 Theorem: Factor Module Operations

Let R be a ring, and let M, N be R-modules. Fora,b & M andr € R.
For the factor module M /N, define addition via:

(a+N)+(b+N)=(a+b)+N E(a)+ E(b) = E(a+b)
and multiplication via:
r(a+ N)=(ra)+ N
[Theorem 3.7.31]

Proof. As before, we need to show that not only M /N is a module, but also that addition and multipli-
cation are well-defined.

Addition is well-defined, since additively, modules are abelian groups, so the proof for factor rings

applies.

For multiplication, consider a,b € M, such that:

We need to show that:
rE(a) =rE(b)

By properties of modules, this means that a ~ b = a —b € N. Again by properties of modules,
r(a—b) € N = ra—rbe N. Hence:

E(ra) = E(rb) < rE(a) =rE()
Thus, multiplication is well-defined.
Lastly, we check that addition defines a group:
o E(0)+ E(a)=E(0+a)=E(a)=E(a+0)=E(a) + E(0)
o E(a)+ E(—a) = E(a—a) = E(0)
Hence, M /N is indeed a module.
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3.14 Theorem: The Universal Property of Factor Modules

Let R be a ring, with L and M as R-modules. Let N be a submodule of

M.
Then:

1. The canonical mapping:
can : M — M/N
can(a) = E(a) = a+ N, Va e M

is a surjective R-module homomorphism, with:

ker(can) =n

2. 1If:
f:M—L
is an R-homomorphism with:
f(N) ={0.}

(so then N C ker(f)), then there is a unique homomorphism:
FiM/N > L

f(E(a)) = f(a), VaeM
such that:

[Theorem 3.7.32]
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Proof. The proof is completely analogous to the proof of the universal property of factor rings (2.7)
O

3.15 Theorem: First Isomorphism Theorem for Modules

Let R be a ring, and let M, N be R-modules
Then, every R-homomorphism:

f:M— N
induces an R-isomorphism:

f: (M/ker(f)) — im(f)
[Theorem 3.7.33]

Proof. Again, completeley analogous to that of the first isomorphism theorem for rings (2.8) O

3.16 Remark: First Isomorphism Theorem for Vector Spaces

If we pick R = F to be a field, then the above gives us the First Isomor-
phism Theorem for Vector Spaces.
Similarly to before, we can show that:

dim(M /ker(f)) = dim(M) — dim(ker(f))
Moreover, due to the isomorphism f : (M /ker(f)) — im(f) we know that:
dim(M /ker(f)) = dim(im(f))

which gives us another proof of the rank-nullity theorem. [Remark
3.7.34]

3.17 Remark: First Isomorphism Theorem for Abelian Groups

If we pick R = Z, then the above gives us the First Isomorphism The-
orem for Abelian Groups, a special case of the First Isomorphism
Theorem for Groups. [Remark 3.7.35]
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1. Let N, K be submodules of an R—module M. Show that K is a submodule of N + K =
{b+c|beN,ce K} and NN K is a submodule of N. Show further that:

N+K_ N
N T NNK

This is the Second Isomorphism Theorem for Modules

2. Let N, K be submodules of an R—module M, where K C N. Show that N/K is a submodule
of M /K, and that:

M/K

N/K

This is the Third Isomorphism Theorem for Modules

~ M/N

4 Workshop
1. True or false. Although Q is not algebraically closed, the set:
Q-1 ={a+bvV-1|a,beQ}

(a subset of C) is algebraically closed.

This is false. Consider X2 — 2. This only has roots X = £+/2, but neither of these roots are in Q[/—1],
so this field isn’t algebraically closed.

2. Define an equivalence relation ~ on R by:

x~yifandonlyifr —y cZ

Let E(x) denote the equivalence class containing 2 € R. Which of the following operations
are well-defined where z,y € R?

(a) E(z) — e¥mV=1z

Assume that x ~ y (that is, F(z) = E(y)). When 3z € Z such that y = x + z. Then, this mapping

is well defined if:
e2ﬂ\/jlz —_ 6271'\/—713/

We compute:

e27r\/—1y _ 627r\/—1(7;+z) _ eQTr\/—lweQTr\/—lz 2w/ —1x

=€

where we use the fact that z € Z and so e2™V—1% =1

(b) (E(z),E(y)) = E(z +y)
This mapping is well defined if we can show that:
(E(x), E(y)) = (E(2'),E(y')) = E(z+y)=E@ +y)

Notice:
E(z)=E() = z-2'=2€Z
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Now, consider:

(z+y) - (@ +y)=@-a)+(y-y)=2+wel
Thus:

(z+y) (@ +y)€Z = Bla+y) =B +y)

(c) (E(z),E(y)) — E(zy)
Operating similarly as above, consider:
Ty — x/y'
If this difference is an integer, then F(zy) = E(x'y’), where:
E(x)=E@') = z—-2'=z2€Z

E(y)=Ey) = y-y =wel
Thus:
2y =(x+2)(y+w)=xy+ 2y + 2w+ zw
Hence:
xy — 2’y = —(2y + 2w + 2w)
This need not be an integer. For example, picking rational x,y can ensure this. Indeed, if z = %
and y = 1, then  — y € Z. Then:

| (o(0) 2 ()2
(:(2) 5 ()23
()5 ()

1

=5 #L

but

and:

since:

NNyt
N

3. Let:
I=cix(X?+1)

the principal ideal of C[X] generated by X?+1. Is the factor ring C[X]/I an integral domain?

This question relies on having a strong understanding of all the concepts
involved.

o I is the ideal containing all the polynomials which have X? + 1 as a
factor

o C[X]/I is a quotient ring, with 0 element E(0) given by I: that is,
E(0) is the set of polynomials with X* + 1 as a factor

e an integral domain is a non-zero commutative ring that has no
zero-divisors; that is, multiplying non-zero elements together never
produces the 0 element
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This claim is False. This is because we can find non-zero elements in C[X]/I which when multiplied
produce E(0).

Notice, we can write:

X?+1=(X+V-1)(X —V-1)
This means that:

E(X +V-1)E(X —v/—-1) = E(X?+1) = E(0)

We just need to show that neither of the two are 0. This is clear, since these are both polynomials of
degree 1. The ideal I contains only elements of degree at least 2 (since they are obtained by multiplying
non-zero polynomials by X2+ 1, and since C is an integral domain, if P = Q(X)(X?+1) then deg(P) =
deg(Q) + 2 > 2). Hence, E(X ++—1) # E(0), E(X —v—1) # E(0).

. Let n € Z with n > 2 and let I = zx|(n, X), an ideal of Z[X]. Show that Z[X]/I is isomorphic
to Z,,

We need to realise 2 things:

o [ is an ideal generated by using combinations of the constant
polynomial n and the linear polynomial X

e to show the isomorphic nature of the 2 rings, we first need to come up
with a ring homomorphism (f : Z[X]| — Z,) which must be
surjective, so thatim(f) = Z,. Then, if we can show that I = ker(f)
then f leads to an isomorphism from Z[X]/I to Z,.

Z[X] is the ring of polynomials with integer coefficients. It makes intuitive sense to define a mapping:
fan X"+ ...+ ap) =70

We verify that it is a ring homomorphism. Consider 2 polynomials:
P(X)=> a;X' PX)=> bX'
i=0 i=0

Then:

f(P“FQ):f(Z(ai‘Fbi)Xi) =a; +b; =@ +b; = f(P)+ f(Q)

i=0
f(PQ) = aib; = @b; = f(P)f(Q)

Moreover, f is clearly surjective, since if Z € Z,, then the constant polynomial P(X) = x is such that:

f(P) =z
The final step is to show that I = ker(f). It is clear that I C ker(f), since:

Now, suppose that:
P(X)=> a;X" P(X)=)Y bX"€ker(f)
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This means that:
ap = nz, z€Z

since then f(nz) = 0. But then:
n—1 )
P(X) =nz+ X <Z CLH_le)
i=0

so clearly:
P(X)el = ker(f)CI

Hence, I = ker(f). Then, by the first isomorphism Theorem we have that:
Z[X]/ker(f) = im(f) = ZIX]/I =Ly
5. Let V be the real vector space of polynomials R[X].4 of degree less than 4. Let:
U={PeV | PB)=0}

(a) Show that U is a subspace of V.

We check the 3 properties of a subspace:
@ Contains 0 Element

If P(X) =0, then clearly P(3) =0,s00 € U.
(2) Closed Under Addition

Let P(X),Q(X) € U. Then:
(P+@Q)3)=P3)+QB)=0 = P+QeU
@ Closed Under Scalar Multiplication

Let P(X) € U, A € R. Then:
(A\P)(3) = AP(3) =0 = APeU

Hence, it follows that U is a subspace of U.

(b) Find a basis for U and extend it to a basis for V. Express P € V explicitly in terms of
this basis.

When I did this, as a basis I picked:
{(X _ 3)a (X - 3)27 (X _ 3)3}

which certainly worked, but it makes the calculations a bit harder. The so-
lutions pick a simpler basis, so I will use their ansers below.

As a basis we can pick:

{(X-3),X(X-3),X*(X-3)}={X-3X%-3X,X°-3Xx?}
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Clearly, each element is linearly independent (they differ by factors of X). Intuitively, it will span,
since any linear combination of these will have 3 as a root. In particular, consider P € U, then, we
can write:

P(X)=(aX*+bX +¢)(X —3)
=aX?—3aX?+bX? - 3bX +cX — 3¢
a(X3 —3X?) +b(X? - 3X) +¢(X - 3)

so the set is spanning.
Again, it is intuitive that to produce a basis of P, we just need control over the constant term (since
the current basis already “handles” all the powers of X, except for 0). Hence, for P, we consider
the basis:

{1,X —3,X% -3X, X3 -3X?}

Now, consider P € V. Then:
P=aX34+bX?+cX +d
=aX®—-3aX?>+3aX?+bX?+cX +d

=a(X?-3X%)+ (Ba+b)X*+cX +d

=a(X®-3X%) +(Ba+b)X?-3(3a+b)X +33a+bX +cX+d

=a(X3—=3X%) + Ba+b)(X?—3X)+ (9a+3b+ )X +d

=a(X®-3X%) +(3a+b)(X*—3X)+ (9a+3b+c)X —3(9a+3b+c)+3(9a+3b+c)+d
= a(X3—3X%) + (3a+b)(X?—3X)+ (9a+3b+¢)(X —3) + (27a + 9b + 3¢ + d)

So we can see that this basis is LiD and spans V, as required.

Using my basis, these calculations were a true pain, but I got very similar
results (albeit not checked, so just stick to the above).

Write down a basis for V/U.

This is very similar to an exercise for the notes, which tells us that the ba-
sis for V' /U is obtained by applying the canonical mapping to the elements
used to extend U to V.

We claim that:
{1+U}
is a basis for V/U.
To verify this, consider P+ U € V/U. In particular, by the exercise above, we know that we can
find a,b,c,d € R such that:

P=a(X?-3X")+b(X?>-3X)4+c¢(X -3)+d=(X-3)(aX?+bX +¢c)+d

Then, it is clear that:
P+U=d+U=d(1+U)

Hence, the basis spans V' /U. Moreover, it contains a single element, so it is linearly independent.
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(d) Write down the matrix that represents the canonical mapping:
can:V =V /U

which sends P to P+ U, in terms of the (ordered) basis {X3, X2 X, 1} of V, and the one
you chose in (3) for V/U.

We have that (14 U) is the basis vector of V' /U. Recall, the representing matrix of the mapping is
defined by the coefficients used to write can(P) in terms of (1 4+ U). Notice, in part b), we showed
that:

P(X)=aX?+bX*+cX +d

can be written as:
P(X)=a(X?®-3X% + (3a+b)(X?—3X)+ (9a+3b+c)(X —3) + (27a + 9b + 3¢ + d)
This is great, since then:
can(P) =P+ U = (27a+ 90+ 3c+d)+U

Hence, we compute:
can(l) =1+U =1(1+70)

If we set ¢ = 1, and everything else to 0:
can(X)=X+U=34+U=3(1+0)
If we set b =1, and everything else to 0:
can(X?) =X*+U=9+U=9(1+0)
If we set a = 1, and everything else to 0:
can(X?) = X3+ U =27+U =271+ U)

Hence, we get that the representing matrix is:

{1+U}[Can}{x3,x2,x,1}:(27 9 3 1)
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