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Based on the notes by Iain Gordon, Sections 3.1 - 3.4

1 Recap: Groups
A group is a set satisfying 4 conditions under a given operation *. The group axioms are:

1. Closure:
gheG = gxhed

2. Associativity:
g, hkeG@ = gx(hxk)=(gxh)xk

3. Identity:
Jeg € G:Vge Gegxg=g*xeg =g

4. Existence of Inverse:
geG@ = g_leG:gg_lzg_lg:eG

A group is called abelian if * defines a commutative operation:

gxh=hxg

2 Rings
2.1 Defining Rings
e What is a ring?
— a special set armed with 2 operations: addition and multiplication
(R, +,)
— rings have the following properties:
1. (R,+) is an abelian group, with identity Or
2. (R,-) is a monoid:

*x multiplication is associative
* R contains an identity element 1p satisfying:

VoeR : a-lgr=1g-a=a
3. the distributive law holds in R:

a-(b+c)=(a-b)+(a-c)
(a+b)-c=(a-c)+(b-¢)

e What is a commutative ring?

— a ring for which multiplication is also commutative:
a-b=b-a
e What is the zero ring?

— the ring:
R={0}
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— any ring that is not a zero ring is a non-zero ring
e How do rings differ from vector spaces?

— the key difference is that rings are defined with a set multiplication operation

— on the other hand, vector spaces define scalar multiplication over a field
e Do elements in rings have inverses?

— additively, rings are a group, so there is always an additive inverse

— however, multiplicatively, we only require R to be a monoid, so a multiplicative inverse might
not exist

e What is a unital ring?

— some definitions treat the above definition as a unital ring

— in said definitions, the set (R, -) is not a monoid, but rather a semigroup: multiplication is still
associative, but an identity element need not exist

2.1.1 Examples: Rings
e Z is a prime example of a ring, with addition and multiplication defined in the standard way.

— indeed, Z is an example of a commutative ring

— it also exemplifies how rings don’t require a multiplicative inverse (since for example 2 has no
such inverse, as 1 ¢ Z)

o standard sets like R, C, Q are all commutative rings, and in fact, have multiplicative inverses

o the set Mat(n; R) of n X n matrices with entries in the ring R is also a ring (with operations as matrix
addition and multiplication)

— if n > 2, Mat(n; R) is not commutative

2.1.2 Examples: Non-Rings
e N under standard addition and multiplication is not a ring
— addition doesn’t define an abelian group (for example, 2 has no additive inverse, since —2 ¢ N)
o R? is not a ring under vector addition and the dot product, since the dot product is a mapping R? — R

e R? is not a ring under vector addition and the cross product, since the cross product doesn’t satisfy

associativity:
1 0 0 -1 0 1 0 0
ol x[1fx|1]=]o0o[#|o]=]ox|[|1[x]1
0 0 0 0 0 0 0 0
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2.2 The Integers Modulo m

Most of the following is taken from here: Lecture 11 - Congruence and Congruence Classes

e When are integers said to be “congruent modulo m”?

— let a,b,m € Z
— we say that a and b are congruent modulo m if m divides b — a

— we write this using:
a=b (mod m)

— this indicates that a,b have the same reminder when divided by m

e What are the rules of congruences?

1.

a =a (mod m)
2.

m =0 (mod m)
3.

a=b(modm) = b=a (modm)
4.
a=b(modm)&b=c(mod m) = a=c (modm)
D.
a=b(modm) & c=d(modm) = a+c=b+d (modm)

6.

a=0b(modm) & c=d(modm) = ac=bd (modm)

e What is a congruence class?

the set of all integers which are congruent to a € Z modulo m € Z. In other words, the set:

a={bla=0b(mod m) < a—-b=knkeZ}

for example, if m = 2, then 0 is the set of all even numbers; 1 is the set of all odd numbers

if @ = b, then a = b (mod m)

using the above rules of congruences, it is easy to see that:

a+b=a+b
ab = ab
e What are the integers modulo m?
— a ring written as:
Z/mZ

— Z/mZ is the set containing the m congruence classes modulo m:
Z/mZ={0,1,...,m — 1}

— this is a ring, since it inherits the properties of the integers
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— notice, the following are equivalent notations:
Z/mZ =T,
e How can we work in this ring?

— an example is the ring of time:
L2

— we know that “4 hours after 10 0’clock is 2 o’clock” because:

10+4=14=2
— similarly “3 periods 8 hours long make up a day” because:

38=24=0

2.3 Proposition: Divisibility by Sum

A natural number is divisible by 8 precisely when the sum of its digits is
divisible by 3. The same applies when using 9. [Proposition 3.1.7]

Proof. Let n € N. If n is a k digit number with digits ag,a1,...,ar_1, it can be written as:

k—1
n= Z a; x 10
i=0

Notice:

10 =1 (mod 3)
(and

10° =1 (mod 9)

Hence:

k—1
n= Zai (mod 3)
i=0

It follows that n is divisible by 3 (or 9) precisely when the sum of its digits Zi:ol a; is also divisible by 3 (or
9).

O
2.3.1 Exercises (TODO)

1. Show that a natural number is divisible by 11 if and only if the alternating sum o fits digits
is divisible by 11.

2. Show that an integer of the form abcabe (such as 123123) is always divisible by 7.

3. Show that an integer congruent to 3 modulo 4 is never the sum of two squares. Show also
that an integer congruent to 7 modulo 8 is nver the sum of three squares.
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2.4 (Re)Defining Fields
e What is a field?

— a field is a non-zero commutative ring
— every non-zero element in a field has a multiplicative inverse:

acF = a'eF :aat=ata=1p

2.4.1 Examples
o the ring Zs is a field (which we have been calling F3), since:
1-1=1
2-2=1
« the ring Zi5 is not a field, since neither 3 nor 8 have inverses. The proof of this is pretty cool:

— notice that 3-8 =24 =10

— assume dJa € Zq, such that:

Al

wl
Il
=

— but then we must have:

applying associativity of ring multiplication:

(@-3)-8=a-(

wi

hence, no such a can exist

— we can use similar arguments for the right inverse

2.5 Proposition: Integers Modulo as Fields

Letm € Z". The commutative ring Z,, is a field if and only if m is
prime. [Proposition 3.1.11]

Proof. Suppose that Z,, is a field, and consider a € Z : 1 < a < m. Since a # 0, it follows that a € Z,, has
an inverse @~ !. Define:

Then:

In other words, by properties of congruences:
ab—1=km =— ab=km+1

Notice, the LHS and RHS must both be divisible by a. Since a can’t divide 1, the RHS can only be divisible
by a if a doesn’t divide km (if a divided km, km + 1 wouldn’t be divisible by a). Hence, it must mean that,
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in particular, a doesn’t divide m. Thus, m must be prime, since a was an arbitrary number between 1 and
m.

Alternatively, assume that m is prime. Then, for ¢ € Z,1 < a < m, we know that:
hef(a,m) =1
By the Euclidean Algorithm (this will be displayed in the exercise below), it follows that 3b, ¢ € Z such that:
ab+mec=1

In other words, ab — 1 divides m, so:

|
—

ab=1(modm) = ab=1 = a-b

So a has an inverse in Z,,.

2.5.1 Exercises

1. Find the inverse of 24 in the field Fj3;

Notice, 24 and 37 are coprime, so hcf(24,37) = 1. By the Euclidean Algorithm, we can find a,b € Z
such that:
37a+24b =1

We thus apply the Euclidean Algorithm:
37=24x1+13
24 =13 x1+11

13=11x1+2
11=2x5+1

We then backtrack:

11=2x5+1 = 1=11-2x5

13=11x1+42 = 1=11-(13-11)x5=11x6—-13x5
M=13x1+11 = 1=(24—13)x6—-13x5=24x6—13x 11
37=24x1413 = 1=24x6—(37—24)x 11 =24 x17-37x 11

Hence, we have that:
24x17-37Tx11=1

Working in Zs7 we get that:

24-17=1

So 17 is the inverse of 24 in Zg3y.

3 Properties of Rings

This section focuses on deriving the basic properties of rings. Most of the things are common sense, and
tedious to prove, so I won’t include many of these proofs.
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3.1 Lemma: Multiplying by Zero and Negatives

Let R be a ring and let a,b € R. Then:
1. 0a =0=a0

(=a)b = —(ab) = a(-b)

(—a)(—b) = ab

[Lemma 3.2.1]

2.
3.

3.2 Remark: Consequences of the Distributive Axiom

If R is a ring, and a,b,c,d € R then:
1. (a +b)(c +d) =ac + ad + bc + bd
2. a(b-c)=ab-ac

Notice, since R is a ring we can’t assume that ac = ca: the order of multi-
plication matters! [Remark 3.2.2.1]

3.3 Remark: Additive Identity Equal to Multiplicative Identity

IfOr = 1g, then R is the zero ring. [Remark 3.2.2.2]

Proof.
a:a-lR:a~0R:OR

So any element in R must be Og.
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3.4 Lemma: Rules for Multiples

Let R be a ring, and a,b € R, with m,n € Z. Then:
1. m(a+b) = ma+mb
2. (m+n)a = ma+ na
3. m(na) = (mn)a
4. m(ab) = (ma)b = a(mb)

5. (ma)(nb) = (mn)(ab)
[Lemma 3.2.4]

4 Units

4.1 Defining the Unit

¢ What is a unit?

— let R be a ring
— @ € Ris aunit if a=! € R exists

— ¢ is invertible in R

4.1.1 Examples
o in R,C,Q all elements (except 0) are units
e in Z only 1 and -1 are units (and they are their own inverse)

o for any non-zero ring, 0 is never a unit, since:

b-0=0#1, VYbeR

4.2 Proposition: Units Form a Group

Let R* be the set containing all the units of R. Then, R* is a group,
called the group of units of the ring R. [Proposition 3.2.9]

Proof. We check the group axioms. Let a,b € R*
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1. Closure: consider ab. Since R is a ring, it is closed under multiplication, so ab € R. This is a unit
in R if and only if it has an inverse in R. Indeed, since a, b are units, then 3a—',b~! € R. Moreover,
b=ta"! € R too. But then:

(b~ ta ) (ab) = b7 b= 1g

(ab)(bra ) =aa"! =1

So in particular, b='a=! € R is the inverse of ab € R, so ab € R*. Hence, R* is closed under
multiplication.

2. Associativity: multiplication in a ring R is associative; R* C R, so multiplication is associative in
R* too.

3. Identity: since 1y is always its own inverse, it follows that 1z € R*, and 1y is the identity of R*.

4. Existence of Inverse: trivially, if a € RX, its inverse a~! must also be in R

4.2.1 Examples
e as discussed above, we have:

- 2% ={1,-1}
- R*=R\{0}

o for the ring of n x n matrices, Mat(n; R) we have:
Mat(n; R)* = GL(n; R)
the general linear group, composed of the invertible n x n matrices

o Z& ={1,3,5,7} - this is known as the Klein Four Group - a group of four elements which are their
own inverse

4.2.2 Exercises (TODO)

1. Let p be prime. We know that the group of units of the field F,, F, is an abelian group
of order p—1 (that is, it has p elements). Prove, like Gauss did at age 21, that F) is cyclic
(that is, it has a group element which generates the group).

5 Integral Domains
5.1 Zero-Divisors
o What is a zero-divisor (or a divisor of zero)?
— a non-zero element in a ring, which when multiplied by another non-zero element, is 0:
a,beR, ab#*0 = ab=0V ba=0
e Why are zero-divisors strange?
— they challenge intuitive notions (i.e a product is only zero when at least one of its elements is 0)

e Why are zero divisors interesting in Mat(n; R)?

— consider A € Mat(n; R)
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— if rank(A) = n, then A is invertible, so A is a unit
— if rank(A) < n, by the rank-nullity theorem, nullity(A) > 0

* what this means is that Jv such that:
Av=10

x now, define a matrix B, with n column vectors given by v:
B = (y v Q)

AB:(A’U Av ... AQ)

* then:

so AB is the zero matrix
* this then means that A is a zero-divisor

— what this shows is that all the elements in Mat(n; R) are either units or zero-divisors
— this is truly strange:

% in Z, there are no zero-divisors, and only 2 units (+1)
x in fields, every non-zero element is a unit, and there are no zero-divisors
5.1.1 Examples
o Zp: for example, in Zg, 2,3 are zero-divisors)

o Mat(n; R): for example,
-1 1 11 0 0
-1 1 1 1 0 0

5.2 Defining Integral Domains
e What is an integral domain?

— an integral domain is a non-zero commutative ring which contains no zero-divisors

— integral domains capture our intuitive notions of how rings “should” behave (that is, rings
which behave like integers)

e What intuitive properties do integral domains have?
— since there are no zero-divisors, then:
l.ab=0 = a=0[b=0
2. a,#0 = ab#0
5.2.1 Examples
e Z is an integral domain
e R, C,Q are integral domains
e any field is an integral domain, since every element is a unit, so they all have inverses

— if Ja € F then Ja~!
— ifdbe F : ab =0 then:

but



— hence, b must be 0 (since otherwise associativity wouldn’t be satisfied), so a can’t be a zero-divisor
o as discussed above, Zg and Mat(2; R) are not integral domains

o Zg is also not an integral domain, since 3-8 = 0

5.3 Proposition: Cancellation Law for Integral Domains

Let R be an integral domain with a,b,c € R. Then:
ab=acNa#0 = b=c

This is intuitive if we assume that every element in R has an inverse;
howewver, the cancellation law holds even when a has no inverse in R!

[Proposition 3.2.15]

Proof. If ab = ac then a(b — ¢) = 0 by the distributivity of a ring. By the properties of an integral domain,
this is true if and only if:

e a=20
e and/or b=rc

Hence, if a # 0, we must have that b = c.

If R isn’t an integral domain, this won’t hold, since, for example, in Zg:

5.4 Proposition: Integers Modulo m as Integral Domains

Recall, a field is a non-zero commutative ring in which multiplicative inverses are defined for every
element, so in particular fields contain no zero-divisors.

Integral domains are non-zero commutative rings with no zero-divisors
Hence, every field is an integral domain.

We saw in (2.5) that Z,, is a field if and only if m is prime. This is a special case of the following
proposition:

Loy, is an integral domain if and only if m is prime. [Proposition 3.2.16]
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Proof. Let m be prime. Z, is a commutative ring, since Z is commutative.
Assume that k € Z,, is a zero-divisor. By definition:

. ];:750
e« W#0€Zy, : KI=0

In terms of congruences, we have:
kl =0 (mod m)

Hence, m divides kl. Since m is prime, m must divide either k or ! (or both). This then means that:

k=0 (modm) = k=0

or )
=0 (modm) = [1=0

However, this contradicts the fact that k, [ # 0, so no zero-divisors must exist in Z,,, so it must be an integral
domain.

Alternatively, assume that m is not prime. Then, we can write:
m = ab, 1<a,b<m

In particular, a,b are not divisible by m, so: -
a,b#0

However, clearly: -
ab=0

So a, b must be zero divisors. Hence, if m is prime, Z,, can’t be an integral domain.

5.5 Theorem: Integral Domains as Fields

According to Iain (and I completely agree), this is one of the coolest, sleekest theorems in this topic.

FEvery finite integral domain is a field. [Theorem 3.2.17

Notice, we saw before that every field is an integral domain. This tells us that every (finite) integral
domain must be a field!

Proof. Let R be a finite integral domain. For R to be a field, we must show that every element a € R has a
multiplicative inverse (since R by definition is already commutative).
For the first condition, we need to show that if a € R i non-zero, then 3b € R such that:

ab=1
To do this, lets define a mapping:
M :R— R
where:
Aa(b) = ab
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If we can show that A, maps to 1, then since a was an arbitrary element of R, every element of R will have
an inverse.

The key insight here is that R is finite. Moreover, A\, is a mapping between sets of equal cardinality.
Hence, if A\, is shown to be injective, it must mean that every element in R is mapped to a unique element
in R, so in particular, the mapping will be surjective. In other words, we will have found b € R : A, (b) = 1,
as required.

To see that A, is injective, notice that:
Aa(b1) = Aa(b2) = aby = aby
Since R is an integral domain, by the Cancellation Law, it must be the case that:
b1 = by

Hence, A\, is injective, so it is surjective, and so, we can find b € R such that ab = 1. Moreover, by
commutativity of R, we also have that ba = 1, so clearly, every a € R has an inverse in R.
O

6 Polynomials

6.1 Defining Polynomials
e What is a polynomial?
— we define polynomials over a ring R as expressions like:
P=ag+ a1 X +aX?+...+a, X"

where n € Nand a; € R
— the set of all such polynomials is denoted by:

R[X]
e What is the degree of a polynomial?

— the largest power of X appearing in P
— denoted deg(P)

e What is the leading coefficient of a polynomial?
— the coefficient a,, of X™, where n = deg(P)
e When is a polynomial monic?
— when the leading coefficient is 1
e Are polynomials rings?
— define addition as:
(a0 +ar1 X +asX? 4. . +a, X") 4+ (bg + 01X +by X2+ ... +b,X™) = (ag+bo) + (a1 +b))X +...
and multiplication as:

(a0+a1X+a2X2+. . +aan)(b0+le+b2X2+ . +anm) = a0b0+(a1b0+a0b1)X+. . .+anme"+m
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— then R[X] defines the ring of polynomials over R
— the zero and identity of R[X] are the zero and identity of R

e What is a constant polynomial?
— the polynomial which are R (in other words, polynomials with degree 0)
e When is R[X]| commutative?

— by the definition of polynomial multiplication, R[X] is commutative precisely when R is commu-
tative

e Are polynomials functions?
— no - it is important that we think of them as rings as of now

— later on we will see that each polynomial can be associated with a function

6.1.1 Examples
« we can define X3 — X € Z3[X]. Notice, this polynomial is equivalent to 4X3 — 7X in Z3[X]
e the coefficients of polynomials can also be matrices:
(AX)(BX) = (AB)X?

where A, B € Mat(2;Q)

6.2 Lemma: Inheriting Properties from Rings

Let R be a ring, and let R[X] be a ring of polynomials over R. Then:

1. if R has no zero-divisors then R[X| has no zero-divisors, and:
deg(PQ) = deg(P) + deg(Q),  P,Q #0 € R[X]

2. if R is an integral domain, so is R[X]
[Lemma 3.5.5]

For the first part, we provide 2 illustrative examples. Consider the polynomials:
P=2X+4 Q=3X+1

In R[X], we get that:
PQ=6X%+14X +4

In Zg[X], we get that:
PQ=6X?>+14X+4=2X+1

As we can see, in the first example, R has no zero-divisors and:

deg(PQ) = 2 = deg(P) + deg(Q)
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However, in the second example, Zg has zero-divisors (namely 2,3 and:

deg(PQ) = 1 # deg(P) + deg(Q)

Proof. For the first claim, and as illustrated by the example above, if R has no zero-divisors, then the leading
coeflicient of PQ is the product of the leading coefficients of P and ). From this it is easy to see that we
will indeed have deg(PQ) = deg(P)+deg(Q). Moreover, it is clear that PQ # 0 if and only if P Z0AQ # 0
(since no possible multiplication of coefficients can be 0).

For the second claim, we note that if R is commutative, R[X] is commutative. From the claim above, if
R has no zero-divisors, R[X] doesn’t either. An integral domain is a commutative ring with no zero-divisors,
so if R is an integral domain, so is R[X].
O
6.2.1 Exercises (TODO)
1. Show that if R is an integral domain, then:

R[X]* = R*

Show by counterexample, that this is not the case if R is not an integral domain.

6.3 Theorem: Division and Remainder of Polynomials

The following theorem describes how a polynomial can be decomposed into smaller polynomials. It also gives
us an understanding of how polynomial division can be carried out.

Let R be an integral domain, and let P,QQ € R[X| where Q is monic (so
its leading coefficient is 1).
Then, there exists unique A, B € R[X] such that:

P=AQ+B
and:
deg(B) < deg(Q)
or:
B=0
[Theorem 3.34]

Proof. Pick A to minimise deg(P — AQ). This is always possible, since the degree of any polynomial is
always non-negative.

Assume that after this:
deg(P — AQ) > deg(Q)
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That is, we have:
T
P—AQ = Z a; X’
i=0
and r > d = deg(Q).

Now consider:
P—(A+a,X"HQ=P—-AQ —a, X" +...

As we can see deg(P — (A + a, X"~ %)Q) = deg(P — AQ) — 1. This contradicts the fact that our choice of A
lead to deg(P — AQ) > deg(Q), meaning that we must have deg(P — AQ) < deg(Q).

Thus, we have found A and B = P — AQ), with deg(B) < deg(Q) such that:
B=P-AQ = p=AQ+B
as required.

We now show that these choices are indeed unique. Suppose that A’ B also satisfy the conclusions (so
P=AQ+ B’ and deg(B’) < deg(Q). Then:

0=P-P=(A-A)Q+(B- B
Notice:
o (A— A")Q will have degree greater than (or equal to) Q
e B — B’ has degree less than Q

But the polynomial should have degree 0. This is only possible if A — A’ =0 = A= A’ (since B could
have degree 0).

But then notice that:
B=P-AQ=P-AQ=D0

Thus, the choice of A, B is unique.

6.4 Examples
We illustrate polynomial long division given:
P=X°—7X*-16X%-17X +2
Q=X3-5X+4

The following was produced using the package polynom. The documentation can be found here.

Applying the division:

X2 —7X —11
X?—5X +4) X°-7X*-16X3 —17X +2
— X5 +5X3 —4Xx?
—7X4 - 11X3 —4X?2 17X
7X4 —35X%2 428X
—11X3%-39X%2+11X +2
11X3 — 55X + 44

—39X? — 44X + 46
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In other words, we have:
A=X?-7X 11

B=—-39X? — 44X + 46

As we can see, deg(B) =2 < 3 = deg(Q).

6.5 Evaluating Polynomials

e Why do we think of polynomials as functions?

— because there exists a mapping:
R[X] — Maps(R, R)

— this mapping is given by evaluating a polynomial P € R[X] at A € R to produce:

P

— P(X) is obtained by replacing all X in P by A
¢ What is a root of a polynomial?

— A € R such that P(A\) =0

6.5.1 Examples
o recall our polynomial P = X3 — X € Z3[X]. Then:

PO)=0°—0=0

P1)=1*-1=0

In other words, P can be mapped to the zero function

o the polynomial P = X3 + 1 € C[X] has a roots:

6.5.2 Exercises (TODO)
1. Show that the mapping R[X]| — Maps(R, R) as described above is not injective when R = Z,,
with p prime. Hint: Fermat’s Little Theorem:

a? = a (mod p)

If a is not divisible by p this becomes:

a?~!' =1 (mod p)
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6.6 Proposition: Roots of Polynomials

Let R be a commutative ring, with \inR and P(X) € R[X].
A is a root of P(X) if and only if (X — \) divides P(X).

Proof. If X — X divides P, we can write:

SO:

So A is a root.

Alternatively, if A is a root, we know that:

P(X) = zn: arX¥ € RX], P\ =0
k=0

We can factorise a difference of 2 powers (see here for the proof) via:

o, k=0

Then,

P(X)=P(X) - P(\)
= zn:aka — zn:akAk
k=0 k=0
= Z ak(Xk - /\k)
k=0

n k—1
=Y ap((X = X)) NXFIT
k=0 §=0

n k—
=X -2 ( ijk—j—l)

k=0 7

—

Thus, (X — A) divides P(X).
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6.7 Theorem: Number of Roots of Polynomials

A consequence of the above theorem is the following:

P e R[X]\ {0}

Let R be an integral domain. A non-zero polynomial:

has at most deg(P) roots in R. [Theorem 3.5.10]

Proof. Consider m distinct roots Aq, ..., A, of a polynomial P. We know that X — A; must divide P, such

that:
P=(X-X\)A

where A € R[X],deg(A) = deg(P) — 1.
This equality holds for A;,i € [2,m]:
P(Xi) = (A = A1) A(N)

Since ); is a root of P, we must have:
N —M)AMN) =0

The roots are distinct, so (A; — A1) # 0. Hence, it follows that Ay, ..

Applying induction, the theorem is proven.

6.8 Theorem: Fundamental Theorem of Algebra
e What is an algebraically closed field?
— consider a field F' and a non-constant polynomial:
Pe FX|\F

— if P has a root in F, then F' is algebraically closed

., Ay, must be m — 1 distinct roots of A.

O

The field of complex numbers C is algebraically closed. [Theorem 3.3.15]

6.8.1 Examples

o R is not algebraically closed, since X2 + 1 has no root in R

o Zs is not algebraically closed, since X2 + X + 1 has no root in the binary numbers

« any finite field is not algebraically closed. If F' = {ay,...,a,} then the polynomial:

n

1 +H(X—ai)

i=1

has no roots in F'

Page 21



6.9 Theorem: Decomposing a Polynomial Into Linear Factors

If F is an algebraically closed field, then every non-zero polynomial:
P € F[X] {0}
decomposes into linear factors:
P=c(X—=XM)(X=X2)...( X = \»)

wherec € F*,n > 0,\; € F. This decomposition is unique. [Theorem
3.3.14]

Proof. If P is constant, nothing to do.

F' is algebraically closed, so P has a root A € F, so in particular we can write:
P=(X-)MA

We then apply an inductive argument on A.

7 Ring Homomorphisms

7.1 Defining Ring Homomorphisms

e What is a ring homomorphism?
— a mapping between rings R, S satisfying:
fle+y) =f@)+ fy)
flzy) = f(@)f(y)

e Do ring homormophisms preserve the identity?

— in general, if f : R — S is a ring homomorphism, it is not the case that:
f(1r) =1s

7.1.1 Examples

o the inclusion (i.e a mapping f(z) = 2 where € A and f(z) € B and A C B) given by:
Z—Q

is a ring homomorphism
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e the mapping:
defined by:

is a ring homomorphism

e the mapping:

defined by:

is a ring homomorphism (just check the properties). This is a prime example of how f(1g) # 1s.

o the mapping:
f:R — Mat(2;R)

defined by:

is not a ring homomorphism (just check the properties - it satisfies additive linearity, but not multi-
plicative)

e the mapping:
f:R— Mat(2;R)

defined by:

0 0

is not a ring homomorphism (it doesn’t satisfy additive linearity)

7.1.2 Exercises (TODO)

1. Let R be a commutative ring, and A € R. The mapping f : R[X] — R defined by f(P) =
P()\), VP e R[X] is a ring homomorphism.

2. Let R be a commutative ring, n a positive integer, and M € Mat(n; R). The mapping
f: R[X] = Mat(n; R) defined by:

t t
f (ZGZX1> = ZaiMi
=0

=0

is a ring homomorphism.
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7.2 Lemma: Properties of Ring Homomorphisms

The following are properties that follow from the fact that a ring is a group under addition, so any property
of group homomorphisms must apply to ring homomorphisms under addition:

o fa") = flw-a-...-x) = (f(z))"
[Lemma 3.4.5 & Remark 3.4.6]
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8 Ideals and Kernels

Ideals are the generalisation of kernels for rings. To develop an idea for ideals, we first note some
properties of kernels for ring homomorphisms.

Consider the ring homomorphism:
f:R—S
Then, the kernel of the homomorphism is:
ker(f) ={r|reR : f(r) =0s}
Notice that:
1. the kernel is non-empty since:

f(0gr) = 0g

2. ifx,y € ker(f):
flx=y) = f(@) - f(y) =0s — 05 =0s

s0:
r—y € ker(f)

3. the kernel is closed under multiplication:
flzy) = f(@)f(y) = 0s - 0s = Og
4. more than that, if = € ker(f) andr € R:
flar) = f(@)f(r) = 0s - f(r) = 0s
f(rz) = f(r)f(z) = f(r) - 0s = 0s

hence, xr,rx € ker(f)

All these properties are used to define a special subset of a ring, called an
ideal. Kernels are just a special type of ideal.

8.1 Defining Ideals
e What is an ideal?
— a subset I of a ring R
— satisfies:

1. I#0

2. I is closed under substraction
3. Viel,Vre R,ri,irel
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— an ideal is denoted with:

8.1.1 Examples
o if Ris aring, {0}, R are ideals

o mZ (set of multiples of m) is an ideal of Z: ma € mZ,b € Z then:
b(ma) = m(ba)

and commutativity of integers gives us (ma)b = m(ba)

()
I = C Mat(2;R
0 d

is not an ideal, since it fails closure under multiplication by elements in Mat(2;R.

k1 0 b 0 kb+l1d
= el
m n 0 d 0 mk4+nd

— however, ir ¢ I, since for example:

—-rmel,Viel:

8.2 Proposition: Generating Ideals

Let R be a commutative ring, and let T' C R. Then:
r(T)

is the smallest ideal of R containing T
Here g(T) is the ideal of R generated by T', defined as:

r(T) = span(T) = Zﬁ'ti |r; e Rt €T

=1

[Proposition 3.4.14]

Proof. The first step is to show that (T is an ideal:

1. 0 € (T, so it is non-empty
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2. if t,t' € gr(T), then subtracting them is equivalent to doing componentwise subtraction, so the result
will be in zr(T) too:

m

i?‘iti — i’l‘;ti = Z(’I"l — T;)ti < R<T>
=1 =1

i=1

3. clearly, and using distributivity and commutativity:

rZritl- = Z(Tri)ti S R<T>
=1 =1
(i Titi> r= iritir = i(?"fl‘)ti S R<T>
=1 =1 =1

The second step is showing that it is the smallest ideal containing 7". This follows from the fact that any
ideal I containing ti,...,t,, € I must contain > ., r;t;, as otherwise closure (both under subtraction and
over elements of R) would be violated.

O
8.2.1 Examples
o if m € Z, then z(m) = mZ

o if P € R[X], then:
rix)(P) = {AP | A € R[X]}
Thinking about this, this is the set of all polynomials in R[X] which are divisible by P.

8.3 The Principal Ideal
e What is a principal ideal?
— an ideal generated by a single element in the ring:

I=(t), teR

8.3.1 Examples
e 0 is a principal ideal, generated by Or

e R is a principal ideal, generated by 1g

8.4 The Kernel of a Ring homomorphism
e What is the kernel of a ring homomorphism?

— let f: R — S be a ring homomorphism
— the kernel is an ideal of R given by:

ker(f)={r|r €R, f(r)=0s}
— for example, if f : Z — Z,, is the homomorphim f(a) = a then:
ker(f)={a|a€Z, f(a) =0}
which is nothing but the set of all a divisble by m. In other words:
ker(f) = mZ

We now introduce lemmas derived in a similar way to those derived for the kernel in groups/vector spaces.
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8.5 Lemma: Injectivity and Kernels

f is injective if and only if ker(f) = {0}. [lemma 3.4.20

8.6 Lemma: Intersection of Ideals

The interesection of an collection of ideals of a ring R is an ideal of R.
[Lemma 3.4.21]

8.7 Lemma: Addition of Ideals

Let I, J be ideals of a ring R. Then another ideal of R is:
I+J={a+blaclbe J}

9 Subrings and Images

Similarly to how kernels are a special type of ideal, images of ring homomorphisms are a special type of
subring. We outline properties of subrings by outlining properties of images.
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Consider the ring homomorphism:
f:R—S
Then, the image of the homomorphism is:
im(f) ={f(r)|re R}
Notice that:

1. the image is non-empty since:
f(0g) = 0s
2. ifx,y € im(f) then 3s,t € R such that:

fle)=z  flH)=y

So:
z—y=f(z)—f(t)=f(s—1)
Hence:
z —y € im(f)

3. the kernel is closed under multiplication:

zy = f(s)f(t) = f(st)
soxy € im(f)

4. unlike with ideals, the image isn’t closed under multiplication by
elements in R. If s = f(x) € im(f) andt € R, we ask whether f(z)t
ortf(z) areinim(f). This is only the case if Iy € R: f(y) =t.
This is exemplified by:

f R — Mat(2;R)

z 0
f(x) =
0 0
Then:
1 0 ) 0 1
€ im(f) €ER
0 0 0 0
but:
1 0 0 1 1 ‘
- g im(f)
0 0 0
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9.1 Defining Subrings
e What is a subring?

— a subset R of a ring R
— R/ itself is a ring under addition and multiplication (as defined in R)

9.1.1 Examples
e 0, R are subrings of any ring R

o Mat(m; F) is a subring of Mat(n; F'), provided that m < n and F is a field. We can think of Mat(m; F)

as a zero-padded subset of
Mat(n; F)

9.2 Proposition: Test for a Subring

A subset R’ of a ring R is a subring if and only if
1. R’ has a multiplicative identity
2. R’ is closed under substraction

3. R is closed under multiplication

[Proposition 3.4.26]

The above test thus shows that im(f) is a subring.

Proof. If R’ is a subring, the properties hold by properties of a ring.

Assume the 3 conditions hold. The first 2, along the subgroup test tell us that R’ is a subgroup of R
under addition. Hence, R’ is abelian (since subgroups of abelian groups are abelian). Associativity also
holds in R’, so alongside with (1) and (3), we see that R’ is a monoid under multiplication. Distributivity

holds in R’, since it holds in R. Thus, R’ is a ring, and so, a subring.
O

9.2.1 Examples
« ideals are not typically subrings: they tend to fail property (1) (existence of multiplicative identity).

— as an example, mZ only has a multiplicative identity with m =0 or m =1
o even if R’ is a subring, it can happen that:

This is shown in the example involving Mat(m; F) and Mat(n; F)
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9.2.2 Exercises (TODO)

1. Show that:
Z[i|={a+1ib | a,be Z}

is a subring of C. This subring is known as the Gaussian Integers.

9.3 Proposition: Properties of Subrings

Let R, S be rings, with:
f:R—S

a ring homomorphism. Then:
1. if R' is a subring of R, f(R') is a subring of S
2. if
« f(1r) = f(1s)
e zisaunitin R
then:

o f(z)is a unit in S

« (fl@) ' =f=)

o f is restricted to a group homomorphism:
f: R — S~
[Proposition 3.4.28]

Proof. The first part follows by using the properties of a ring homomorphism, alongside the test for a subring.

1

For the second part, if z € R*, by definition z is a unit, so ™" exists. Hence:

fl@)f(a™h) = f(1r) = 15

Similarly,
fl@™)f(z) = f(1r) = 1s

In other words, f(z) must be a unit, with inverse f(z~!), and so, f(z) € S*
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9.4 Remark: Intersection of Subrings

Unlike with ideals, the intersection of subrings doesn’t result in a sub-
ring. [Remark 3.4.29]

Proof. We can show by counterexample. Let:

R = 0 a 0

R = 0 ¢

0 0 c

with a,b,¢,d, e, f € Q. Clearly, R', R" are subrings of Mat(3;Q), but their intersection can’t be a subring,
since it doesn’t contain the identity.
O

10 Workshop

1. True or False. The group of units (Z,,)* is cyclic.

Beyond intuition about this being false, I can’t think of a “smart” way of
proving this, other than finding a counterezample by trial and error.

Field | Group of Units | Cyclic?
Za {1} yes
Zs 1) yes
Zs {1,2} yes
Zy {1,3} yes
Zs {1,2,3,4} yes
Zg {1,5} yes
Zoy {1,2,3,4,5,6} yes
Zg {1,3,5,7} no

(Zsg)™ is not cyclic, since each element is its own inverse, so they can’t generate the whole group.
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As tips when filling the table:

o the units of Z,, are precisely all of Z,, since Z,, is a field, and so all of
its elements are invertible

o ifn is even, then the units of Z,, will have to be odd. This is because a
s a unit in Z, if it can be written as:

kn+1, keN

Since n is even, kn + 1 will be odd

2. True or False. The ring of integers Z is a field, because every nonzero element has a

multiplicative inverse. For example, the inverse of 6 is %.

This is false, because é ¢ 7. That is, all the elements of Z have inverses in Q, but not necessarily in Z.

3. Let F be a field, and R = F[X], the ring of polynomials over F. Show that R* = F'*, the
set of non-zero constant polynomials.

Since F'is a field, each of its elements has an inverse, so F'’* = F. This means that:
F>< g RX

since F' C R.

Now, consider P € R, such that P € R*. Say that deg(P) = n. Since P is a unit, 3Q € R such that
PQ = 1p, where deg(Q) = m.

By Lemma 3.3.3 of the notes, part i), since F' has no zero-divisors (since it is a field) it follows that:
deg(PQ) = deg(P) +deg(Q) — O0=m+n

since deg(1p) = 0. But now, since m,n > 0, this is only possible if m = n = 0. In other words, any unit
of R must be a constant polynomial, so P € F'*. Hence we have that:

RXQFX

and so:
F* =R~

4. We now consider how to construct fields from rings.

(a) By using the test for a subring, plus something, or otherwise, show that the following
subset of Mat(2;R) is a field:

b
R = a,beR

Recall the test for a subring:
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A subset R’ of a ring R is a subring if and only if
1. R’ has a multiplicative identity
2. R’ is closed under substraction

3. R is closed under multiplication

[Proposition 3.4.26]

and the definition of a field:

A field is a non-zero, commutative ring in which every non-zero ele-
ment has a multiplicative inverse. [Definition 3.1.8]

Hence, we just “follow our nose”, verifying the properties of a subring, and then showing that R is
non-zero, commutative, and that each element has an inverse.

@ Existence of Multiplicative Identity

Using a = 1,b = 0 we get that I, € R, so the identity is in R.
@ Closure Under Subtraction

Let a,b,c,d € R:

a b c d a—c b-—d
-b a —d d —b+d a—c
soifr=a—ceRy=b—-deR:

a b c d r oy
— = €R
—b a —d d -y T
so we have closure under subtraction.
@ Closure Under Multiplication
Let a,b,¢c,d € R:
a b c d [ ac— bd ad+ be
-b a —d d —ad —bc ac—bd
soifx =ac—bd € R,y =ad+ bceR:
a b c d T
= Y €ER
—-b a —d d -y T

so we have closure under multiplication.
Now, we check for the requirements of a field:
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@ Commutativity

We have already computed

b a —d d
so we just need to check if:
c d a b
o)
gives the same result:
c d a b B ac—bd ad+ bc
~d d) \=b a) \-ad—bc ac—bd

so commutativity is satisfied.
@ Inverse for Non-Zero Element

Consider a non-zero:

SO:

e 1 a —b
Ca?+b? b a

(b) Construct a ring homomorphism from R[X] to C that is surjective. Calculate its kernel.

which is clearly in R.
Thus, R is a field.

Here I had the right intuition, but missed the crucial step. We want a ho-
momorphism, which maps a polynomial to a complex number. This indi-

cates that we want to somehow create a representation of a polynomial in
the form a + < b so that we can map:

a+@b—a+v-1b

On top of this, we should pick such a representation so that if allows a
function as an homomorphism (so it should be somewhat linear).
This immediately indicates factorising a polynomial via:

A=PQ+ R
If we pick Q) to be of second degree, then R will have the form aX + b.
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We can decompose any polynomial A € R[X] as:
A=PQ+R
where deg(Q) = 2 and deg(R) < 2. In particular, let:
Q=X*+1 R=a+bX

Define a ring homomorphism:
by:

That is, we evaluate P at /—1.
This is clearly an homomorphism, since if A, B € R[X] then:

f(A+B) = (A+ B)(V-1) = AW=1) + B(V-1) = f(A) + f(B)
f(AB) = (AB)(V-1) = A(V=1)B(V-1) = f(A)f(B)
But notice, v/—1 is a root of Q so:
f(P)=f(R)=a++V-1beC

Hence, f must be surjective.

If A € ker(f) then that means that a = b = 0 so in particular A must have X2 + 1 as a factor. In
particular, ker(f) must be the ideal generated by the polynomial X2 + 1.

(¢) What do the constructions above have in common?

This links to the work which will be done next week, in which quotient rings will be introduced.
The above tells us that the quotient ring R[X]/ker(f) is isomorphic to C.
In fact, it can be shown that the ring R introduced above is also isomorphic to C via:

a b
-b a

—a++v—1b

Thus, we have found 2 ways of defining the field C from 2 very different rings!

5. Define the quaternions:

w
H= z,weC

(a) Show that H is a subring of Mat(2;C)

A subset R’ of a ring R is a subring if and only if
1. R has a multiplicative identity
2. R’ is closed under subtraction

3. R’ is closed under multiplication

[Proposition 3.4.26]
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@ Existence of Multiplicative Identity

Picking z = 1,w = 0 we see that I, € H, so it contains the multiplicative identity.
@ Closure Under Subtraction

Let z,w,a,b € C. Then:

z w a b z—a w-—2>b z—a w—>b
- _ = _ = | en
—w Z -b a —w+b zZ—a —(w—-0) z—a
@ Closure Under Multiplication
Let z,w,a,b € C. Then:
z w a b za—bw  zb—aw za — bw zb — aw
B = B B = . | eH
—w  Z -b a —aw+2zb ZzZa—bw —(zb—aw) za—bw

Show that H is a division ring (i.e every non-zero element is a unit), and that it is not
a field

We can easily define the inverse, since the determinant is non-zero:
det(A) = 2z +ww = |z|> + |w]* > 0

(provided that z # 0 or w # 0)

Then:

A1 1 zZ —w
2P +lwP \ g 2

However, it is not a field, since it isn’t commutative. Indeed:

1 4 1 1 1—7 1+3
v 1 -1 1 —1+4 1414
1 1 1 4 1+7 143
-1 1 i1 —1+7 1—1
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