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Based on the notes by Iain Gordon, Sections 2.8 - 2.4

1 Abstract Linear Mappings and Matrices

1.1 Generalising Representing Matrices

e What is a representing matrix?

— we found a bijection linking homomorphisms to matrices:
M : Homp(F™,F") — Mat(n x m;F)

M:f —[f]

— the bijection was defined by defining a matrix with column vectors as f(E) C F", where F is the
standard basis of F™

e What is an abstract linear mapping?

— a linear mapping f : V — W, where V, W are (abstract) vector spaces,
and dim(V) = m,dim(W) =n

— we try to relate V, W to F™ F"
e Can we represent abstract linear mappings as matrices?
— we know that if dimV = n, then there exists an isomorphism between F" and V', namely:
O:F" >V

(a1, ... ) = vy + ...+ apv,
where v4,...,v,, are basis vectors of V

— it stands to reason from this isomorphism, that linear mappings V' — W, with ordered bases,
can also be represented via matrices
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1.2 Theorem: Abstract Linear Mappings and Matrices

Let ¥ be a field.
Let V. W be vector spaces over IF, with ordered bases:

A= (vy,...,9,)

B:(wlv"'awn)

respectively.
For each linear mapping:
f: VW

we can associate a representing matrix of the mapping f with re-
spect to the bases A and B, which we denote as g[f]a.

This is the matrix which turns basis elements in A to an element of W,
expressed as a linear combination of basis elements in B.

In particular, the entries a;; are given by:

n

f)=> ayw,  fly)ew

=1

(since a;; represent the coordinates in the space spanned by B).
We again have a bijection (in fact, an isomorphism of vector spaces):

M3 : Homg(V,W) = Mat(n x m;F)

Mg : f = 5lfla
[Theorem 2.3.1]

Proof. Define the isomorphisms:
S :F" >V

(I)BZFn—>W

as at the start of the section. The idea of this proof is summarised in the following diagram:
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I Cbglofo@A I

The idea is that we know how to map homomorphisms F™ — F" to matrices, so if we want a matrix
representation of V' — W, we can first map it to F”* — F", and then get the corresponding matrix. To do
this:

1. map F™ to V (we have an isomorphism for this)
2. map V to W (we have f for this)
3. map W to F™ (we have an inverse isomorphism for this)

It is then easy to see that we have:
Blfla=[25" o fod4]

and the bijection is simply a composition of bijections:
Homp(V,W) — Homy(F™,F") — Mat(n x m;F)

f= @5t ofody— [0l o fody]

e How can we represent mappings from or to the standard bases?

— the standard basis of F" is:

S(n)
— whilst we could explicitly write:
sem)[fls(n)
sm)lfla
Blflsm)
it is more concise to use:

(/]
[f]a
B[f]
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e How can we define the inverse of the bijection F"* — V7
— let ®4 be the bijection:
(a1, ..., 0n) = vy + ...+ apv,
with A = {v,...,v,}

— the inverse is given by:
O, rw = aly]

where 4[v] € F" is a column vector

— we call 4[v] the representation of the vector v with respect to the basis A, since depending
on the basis vectors used by V, the elements of 4[v] will differ

1.3 Theorem: The Representing Matrix of a Composition of Linear Mappings

Let ¥ be a field.
Let U, V, W be finite dimensional vector spaces over F', with ordered bases

A B,C.
If
f:U—->V
G:V->W
are linear mappings, then the representing matrix of the composi-
tion:
gof:U—>W

is the matrixz product of the representing matrices of f and g:

clgo fla=clgls o Blgla
[Theorem 2.3.2]

Proof. The proof just relies on unpacking the notation:

clgo fla=1[®5 o (go f)o®a]

clgls o Blgla
[@61090@3]0[@§1OfO(I)A]
[@Elogo@go@glofo‘@/x]
(@t o (g0 f)o P4l

so both sides are equal.
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1.4 Theorem: Representation of the Image of a Vector

Let T be a field.
Let V. W be finite dimensional vector spaces over F, with ordered bases
A B.
Let
f V=W

be a linear mapping.
ForveV:

Blf(v)] = B[f]la o aly]

In other words, to get the image of s[v] in the basis B of W, we just need
to apply the representing matriz with respect to A and B. [Theorem 2.5.4]

Proof. As above, we show that both sides are equal:

slf(W)] =95 (f(v), flw)ew

B[flao al]
:[CI)BI ofo (I)A} o @Zl(y)
=03 (f(v)

This can be shown more explicitly. Define:
A= (vyy..-,0,,)

B = (w,,ldots,w,,)

Define g[f]a as the n x m matrix, given by the elements a;; satisfying:

ACHES Z @ijW;
i=1

Since A is a basis of V, we can write any v € V as:

m
v= E T,
j=1

where (z1,...,2,) € F™.
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Then:

E : AijTj | Wy

Notice, we are expressing f(v) using the basis elements of W, having started with v, defined using the basis
elements of V. If we define: .
Yi = Z Qi T
j=1

then the whole transformation can be summarised via:

Yn LTm

1.4.1 Examples

o recall, in the previous week we define the linear mapping:
f:R? 5 R?

such that it reflected on the straight line which makes an angle o with the x-axis. If we define
A = (vy,v5) with:

v, = (cosa,sina)?
vy = (—sina, cosa)”
then:
1 0
alfla=
0 -1

To see why, it is easier to argue geometrically:
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v, is in the direction of the reflection line (just use the right-angled triangle), so when reflected it won’t
change. v, is perpendicular to this line, so when reflected, it goes diametrically opposite. In other
words:

fuy) =y f(vy) = vy

from which the matrix follows (bear in mind v; = (1,0),v, = (0,1)7 in the space which they span).

consider the following vector spaces:

V:FS3['T]7 A:{Ql:1722:$723:x2’y4:x3}
W = F<olz], B={w, =1l,wy,=1+zwy=1+2%}
and define the linear mapping:
D:V->W
dv
D:v— —
Y dx

We want to find the matrix g[D]4 which performs the mapping D, from an element written via the
basis A, to an element in W written via the basis B. For example, if:

eV

= o o o
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Then:
-3
D(z®)=32> =3w; — 3w, = | 0 | €W
3

(Technically, the column vector is not part of V, but rather of F4, but it is more useful to think as a
column vector, particularly when thinking about D as a matrix) In other words, we want:

- o O O

‘We know that:
B[D]A = [‘1)51 oDo (I)A]

Which is nothing but the matrix with column vectors:
B[D(v;)]

(this is because g[D(v;)] = ®5'(D(v;)), and as column vectors we want to consider the basis elements)
Hence:

B[D(v)] =D(1)=0= |0

B[D(vs)] = D(a%) =2z = | 2

3
Hence, we have that:
01 -2 -3
pDla=]0 0 2 0
00 0 3
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2

Hence, if we consider any v = (o, 8, ,w)T € V (again, technically not in V'), we can convert it to an
element of W with basis B using:

01 -2 =3 ° B —2u — 3w
sDWI_sDlasl) — sD@-|0 0 2 o ||7[=]
0 0 O 3 a 3w

We can easily verify that if v = 23, this gives the right answer we obtained before. If we then actually
want to convert it to an element in W (currently we just have a vector in F?), we just have to use:

B —2u — 3w
(D) = (w w, wy) | 2| = (B2 Bw)wy + 2y + Bwwy
3w
Notice, if we put this back in terms of the basis A, we get:
(B —2u —3w)(1) + 2u(1 + 2) + 3w(l + %) = B + 2ux + 3wa?

which is precisely the derivative of:
a+ Bz + pz? 4+ wa?

as expected.

Changing Bases Using Matrices

2.1 Theorem: Change of Basis

¢ What is the change of basis matrix?

— let V, W be vector spaces with respective bases A, B

— the change of basis matrix is the representing matrix (with respect to A, B) defined by the
identity mapping:
Blidv]a

— the entries are given by the a;; satisfying:

n
v; = E ajjw;, v, €Aw, €B
=1
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Let ¥ be a field.
Let V. W be finite dimensional vector spaces over F.
Let:

fV-w

be a linear mapping.
Suppose that V' has ordered bases A, A'.
Similarly, suppose that W has ordered bases B, B'.
Then:
p'lfla = plidw]p o B[f]a o alidv]a
In other words, we can convert the representing matrix with respect to dif-
ferent bases, by applying the change of basis matriz.[Theorem 2.4.3]

Proof. From (1.3) we know that:
clgo fla=clglpoBlgla

We also know that:
f=1idw o foidy

(since:

idw (f (idy (v)) = idw (f(v))f(v)
) Hence:
B [fla
=p[idw o f oidy]ar
=p/idw o (f oidy)]ar
=plidw]p o B[f oidv]a
=p lidw]p © B[f]a 0 alidy]as

2.1.1 Examples

As above, define the linear mapping;:
f:R?* - R?
such that it reflected on the straight line which makes an angle o with the x-axis. Define B = (v, v,) with:
v, = (cosa, sin )T

vy = (—sina, cosa)’

and use A = (e, €,) as the standard basis. The change of basis matrix has entries satisfying:
1 cos & —sina
= a1 + a2
0 sin o cos &
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0 cos —sin«

= a2 + az2
sin « cos o
In other words:
1 0 cosa —sina a1 a2
0 1 sina  cos« asy @92
Thus:
-1
a1 a2 cosa —sina
as1 @92 sina  cosa

since we are just multiplying by the identity matrix. We know that (yeah, I used the determinant):

-1

cosa —sina cosa  Sina
sina cosa —sina  cosa
So then:
a1 a2 cosa  Sina
as;  a99 —sina  cos«

We can then define the change of basis matrix:

cosa  sina
Blfla=

—sina  cosa

What this gives us is a form of converting a vector in A to its corresponding vector in B. For example, if

we consider:
Alvy] = (cosa,sina)”

we know that in terms of the basis B, glv;] = (1,0)T. Indeed:

slflaalv] = (1,0)"

2.2 Corollary: Change of Basis for Endomorphisms

This is a special case of the Theorem above, whereby instead of using different bases in a different vector
space, we consider endomorphisms.

Let 'V be a finite dimensional vector space.
Define the endomorphism:
f: V-V

Suppose that A, A" are ordered bases of V.
Then:

wlflar = alidy]y) o alfla o alidv]a
[Corollary 2.4.4]
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Proof. Tt is easy to see that:
alidy]a =1,

since, if v; € A:
U= agy = ay =0
i=1
Using (1.3), we know that:
alidv]a =1, <= alidv]a o alidy]a =1,

Hence, it follows that:
A[idv]z/l = A [’idv]A

Thus, if we apply the Theorem above - (2.1) - using A’ = B’ and A = B, we get:

Ar[flar = arfidv]a o a[fla o alidy]ar = alidy] 4 o a[f]a o alidy]a

¢ What are similar matrices?

— consider:
N =5[fls
M = A[fla
e we say that N and M are similar matrices if:
N=T"'MT

where:
T = Alidv]s

2.2.1 Examples
Consider V = 2, and the following bases:

A={(1,27,2,3)7} = {v;}

B={(1,57,03,2)7} = {w;}

We want to construct the change of basis matrix:

Blidv]a
This matrix has coefficients a;; given by:

1 1 3
=an + az;

2 5 2

2 1 3
= a1 + a2

3 5 2
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In matrix form:

1 2 1 3 ail ai2
2 3 5 2 as1 Q92
Notice:
1 2 ‘
= s(2)lidy]a
2 3
1 3 _
= s2)lidy]B
5

To find the change of basis matrix, we just need to invert

So it follows that:
1 2 -3 1 2 1 (4 5

Bl\s 1)\23) 13\3 7

2.2.2 Exercises (TODO)

1. Check that Corollary 2.4.4 agrees with the calculations made in the examples above, where
we consider the map f : R? — R? to be the reflection on the line through the origin making
an angle of a with the x-axis.

2. Let V be an F-vector space with ordered basis A = (v;,...,v,). Show that the change of
basis matrices lead to a bijection:

{ordered bases of V} — GL(n;F)

B — B[idv]A
where GL(n;F) is the group of n x n invertible matrices.

To show this is a bijection, it is sufficient to show that it has an inverse, and the inverse is a bijection.
In other words, we want a bijection of the form:

GL(n;F) — {ordered bases of V'}
g— B
We claim that this can be done by using;:
B={g""vy,....g7 v}
If we show that:
e Bisa basis of V

e g=plidv]a
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then we will have shown that the mapping g — B is indeed a bijection, and furthermore, an inverse of
the original map. To see why this is, its because it allows us to do the following set of mappings:

B—)B[’idv]A Zzg—>B

so clearly they are inverses.
We first show that {g='v;,...,¢g7 v, } is a basis. This is relatively straightforward.

To show linear independence, we can employ the linearity of g. Suppose that:
n
> XilgT'w) =0
i=1

Applying g, and knowing that as a linear map, ¢g(0) = 0:

g (Z )‘i(glvi)> =g(0) = Z)\zﬂi =0

Since A is a basis, we know that Z?:l Aiv; = 0 only when \; = 0, so it follows that the set B is linearly
independent.

Moreover, notice that V' is such that dim(V) = n. Moreover, B has n elements, so it spans an n-
dimensional subspace of V. Hence, it follows that B spans V. Hence, B must be a basis.

Now, if we compose the mappings, we’d get:
g — B — B[idV]A

We have an inverse (and so a bijection) if we have g = glidy]4. Now, recall what glidy]a “means”: it
is a matrix constructed by being able to write A = {v,,...,v,} in terms of B = {g7v;,...,¢ v, } (i.e
for each basis element v;, we can write it as a linear combination of elements in B).

If we consider the inverse mapping:
lidv] ;" = alidv]p

this is the matrix containing the coefficients which allow us to write elements in B = {g"v;,...,¢9 v, }
in terms of a linear combination of elements in A = {v;,...,v,,}. But clearly, applying ¢~! to v, takes
us to g~ 'v;. In other words, we must have:

Blidv];' = alidv]p =g~

Hence, it must be the case that, as required:
g = Blidy]a

. We want to calculate the order of the finite group GL(n;F) (recall, the order of a group is
the number of elements in the group).

(a) Show that GL(n;F,) acts transitively on F \ {0}}. Recall, a group acts transitively on
a set if for each pair of elements z,y in the set, there is a group element such that

gz =y.
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(b) Determine the stabilizer of the vector ¢, € F, and establish that:
|Stabar, e, = p" GL(n — 1;F

Recall, the stabiliser of an element x of a set is a subgroup of the group acting on a
set. It contains all elements of the group which act on x, and do so by mapping it to
itself.

(c) Using the Orbit Stabilizer Theorem, determine |GL(n,F,)|. Recall, the orbit of an
element z is the set of all elements to which the group maps x. The orbit stabiliser
theorem says that:

|G| = [Stabg(z)| x |Orba(z)|

2.3 The Trace

e What is the trace of a matrix?

— the trace of a square matrix is the sum of its diagonal entries

— it is denoted using:
tr(A)

— in terms of formulae:
tr(A) = Z Naj;
i=1
e Are traces defined for infinite rank matrices?
— only if the sum converges
¢ What is the trace of an endomorphism?

— we can define the trace of an endomorphism:
f: V=V

as:

tr(f) =tr(fIV) = tre(f|V)

— to compute it, we consider an ordered basis A of V, and define:

tr(f) = tr(alfla)

— turns out, this definition is independent of the basis chosen (reason: f(AB) = f(BA) and
tr(T~'MT) = tr(M); this is proven below)
2.3.1 Exercises (TODO)
1. Let:

¢ A be an n x m matrix

e B be an m x n matrix

Show that:
tr(AB) = tr(BA)

This is known as the cyclicity of the trace.
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The above exercise has a very nice implication. In particular, if we pick:
A=T"'M
B=T

then:
tr(T*MT) = tr(M)

Hence, 2 matrices are similar if and only if they have the same trace.

2. Let A, B € Mat(n,F) and X € F.
(a) Show that:
1. Tr(AA) = XTr(A)
2. Tr(A+ B)=Tr(A)+Tr(B)
3. Tr(AB) =Tr(BA)
(b) Prove that, if:
f: Mat(n;F) > F
and:
o fis linear (for f(AA+ B) = Af(A)+ f(B)
+ f(AB) = f(BA)
then:
f(A) =aTr(A), acl
Moreover, show that if f(I,) = n # 0, then:

f(A) = tr(4)

The first part is given by dull calculations, so just check this link with proofs to all the properties
(and the exercise above).

3. Let f:V - W and g: W — V be 2 linear mappings (V,W are finite dimensional). Show
that:

tr(fg) =tr(gf)
4. Let V be finite dimensional, and let f : V — V be idempotent (f? = f). Show that:
tr(f) = dim(im(f))
Last week, in an exercise, we showed that:
ker(¢ o @) = ker(¢) <= V = ker(¢) ® im(9)
Since f is idempotent, it must then be the case that:
V =ker(f) @im(f)
Let {kq,...,k,} be a basis of ker(f), and let {l;,...,1;} be a basis of im(f). Then, a basis of V is given

by:
B = {Ely’”aksvllv"'vlt}

Page 17


https://www.statlect.com/matrix-algebra/trace-of-a-matrix

(This next part I don’t understand why) Hence, the representing matrix, written in block form, will be:

Thus:
tr(f) = tr(slflp) = dim(im(f))

5. Let V be a finite dimensional F-vector space, and f:V — V a linear mapping. Show that:

tr((fo)|Endp(V)) = (dimpV)tr(f|V)

2.4 Mastering Calculations

1. Define a linear map:
f:R*? > R?

Let A be the following basis of R?:

Determine:

-1
f =
1 -1
-3 -9
f =
-1 -3
As we have seen before, the matrix 4[f]4 must satisfy:
-1 -9 2 -3
= alf]a
-1 -3 1 -1

(that is, we can express the basis vectors in f(A) using a linear combination of elements in A) We

compute:
-1
2 -3 -1 3
1 -1 1 -1
So:
-1 3 -1 -9 -2 0
alfla= =
1 -1 -1 -3 -1 3
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Notice, if we go back to the theorems, we have done nothing else but apply (2.1) (technically Corollary
2.4.4 after):

Alfla = alidgz]s(2) © s2)[f]s(2) © alidr2]s(2)

where:

] 10 =21
s@lls@) =
27152 4 _9

(the matrix corresponding to the linear transformation f : R? — R?)

s)lidgr2]a =
1 -1

(the matrix of the basis elements A, in terms of the standard basis)

-1 3

alidr2]s(2) = Lo

(the inverse transformation, defining the standard basis in terms of A) Then the computation is auto-
matic:

-1 3 10 -21 2 -3 -2 0
alfla= =
-1 2 4 -9 1 -1 -1 3
The other method follows the more intuitive view.
. Let A and B be the following bases of R? and R3 respectively:
(=2,1)",(=3,2)"
(-2,2,0)",(-2,1,0)", (4, —2,2)"
The matrix g[f]4 representing the linear mapping:
f:R* 5 R®
with respect to the bases A and B is the following:
-2 =2
-1 1
1 2

Find the matrix which represents the mapping f with respect to the standard bases of R?
and R3.

We seek g(3y[f]s(2). By (2.1), we have:

s@3)[fls@) = s@)lidrs]p o B[fla o alidr2]s(2)
Moreover, we have:
-2 -2 4
s@lidslp=12 1 =2
0o 0 2
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s(2)lidp2]a = = lidp2]s(2) = =

Thus:

s@)[fls@) = s@)lidrs]s o B[fla o alidrz]s(2)

-2 -2 4 -2 =2

-2 -3

= s)fls@) = | 2 1 -2 -1 1 ) )
0 0 2 1 2

= so)lflse=|2 1 2|3 5

—-10 -10
= se)lflsey=| 7 7
0 2

3 Workshop

1. True or False. Let ¢ : V — V be an endomorphism of a finite dimensional vector space V.

Then, ker(¢ o ¢) = ker(¢)

This is intuitively false. The key is to look for a counterexample by using matrices; in particular, if we
can find a nilpotent matrix, such that ¢2 is the zero matrix, then it is likely that we can find a vector v
such that ¢2(v) = 0 but ¢(v) # 0.

This is what is done in the solutions:
0 1 )
[¢] = = [¢7] =
0 0

so for example e, € ker(¢?) but ey & ker(¢).

To do this, I began with a general matrix:
a b

0 c

and then computed its square, alongside the result of applying them to a vector.

For the following exercise, I derived the following relation to compute representing matrices for different
bases.
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Say we have a mapping f : V — W, with V having a basis A = {v;,...,v,,} and W having a basis
B={w,,...,w,,}. We know that the representing matrix g[f] 4 has entries a;; such that:

flu;) = Z @ijW;
i=1

In terms of matrices, this is equivalent to having:

w11 w21 ... Wml a1 a2 ... Qin
w12 w22 . Wm2 a21 as2 e aon

= (flw) | flwa) [ - [ flun)
Wip W2n ... Wmn aml Am2 ... (mn

In other words, if:

w11 w21 e Wm1
w12 w22 e Wm2

X = . . . . =(wy |wy | - [w,,)
Wip W2n ... Wmyn

and
Y= (f(uy) [ flwa) | - | fln))
Then we have that:
Xp[fla=Y = plfla=X"Y

Notice here that we can think of:
X =[idy = X '=glid]
(since X is expressing f(w;) = w; using a linear combination of the standard basis vectors) and:
Y =[fla
(since it expresses f(v,) in terms of a linear combination of standard basis vectors) So indeed:

XY = lid][f]a = [f]a

. The linear mapping f : R?> = R? is defined by:
f(w1,20,03) = (1 — 22 + 23,21 — 73))

In R?, A is the basis:

and in R3, B is the basis

—_ =
= O
_ o

Obtain:
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(a)

The matrix of f with respect to the standard bases of R? and R?

For this, we don’t even need to use the formula: this is just the standard representing matrix
obtained by applying f to the basis vectors of R?, and using the resulting vectors as our columns.

Computing:
Hence:
1 -1 2
[f] =
1 0 -1
The matrix of f with respect to the standard basis of R? and the basis A of R?

We need to use the basis .A. We construct a matrix using its vectors:

1 1
X =[id|a=
1 -1
which has inverse:
1(1 1
X1 = alid] = 5
1 -1
Then, we know that:
1 1 1 -1 2 1(2 -1 1

1
Alfls@) = = ==
@72y 4 \1 0 1 210 -1 3

The matrix of f with respect to the basis B of R? and the standard basis of R?2

We need to compute the value of f at the basis vectors B:

f(1,1,0) = (0,1) f(0,1,1) = (1,-1) f(1,0,1) = (3,0)

so we have that:

[f1s =
1 -1 0

This is precisely what we need.

The matrix of f with respect to the basis B of R? and the basis A of R?
We already have all the ingredients:

. 1 (1 1 0 1 3
A[ﬂB:A[ZdHf]BZE Y A P =

1 0 3
-1 2 3

DO | =
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Show that if the axis of rotation is the x-axis and you rotate by 0 degrees, the matrix
representing this linear transformation in standard coordinates is:

1 0 0

0 cosf —sinf

0 sinf cosf

Intuitively, since we rotate about the x axis, this is equivalent to just having a 6° rotation on the
yz plane, which the lower right matrix represents.

Computing, it is sufficient to show that the matrix has the desired result on the basis vectors:

1 0 0 1 1
0 cosf) —sinf 0l=10
0 sinfé cosd 0 0

As expected, the x-axis remains fixed under rotation.

1 0 0 0 0

0 cosf —sind 1] =]cosd

0 sinf coséd 0 sin §
1 0 0 0 0
0 cosf —siné 0| =] —sinf
0 sinf cosé 1 cos

which is as expected.

Now prove, by a suitable change of basis, that there is a rotation in R? with axis of
rotation given by the line connecting 0 and (1,1, 1), which is represented by:

1+v3  1-/3 1
3 3 3
1 1+v3 1-v3
3 3 3
1-vV3 1 1+v3
3 3 3

What is the corresponding angle of rotation? It might help to consider the orthonormal
basis for R? given by:

We try to compute g[f]s. We have that:

1+v3  1-V3 1
3 3 3
N=] 3 5 158
3 3 3
1-v3 1 1+v3
3 3 3




Thus, we require g[id] and [id]g.
To construct, [id]g, we use the basis vectors as column vector for the matrix:

1 1 1
V3 V6 V2
; — 1 1 1
is=\% % ~v
1 2 0
V3 V6

Then (using our future knowledge of the fact that the inverse of an orthogonal matrix - such as the
one above, constructed via an orthonormal basis - is its transpose):

1 1 1
V3 V3 V3
idl = hdl=z! = 1 1 2
olid = lidg' = | = L 2
I 0
V2 V2
And so we can compute:
1 1 1 1+v3  1-3 1 1 1 1 1 0 0
V3 VB V3 3 3 3 V3 V6 V2
B[f]B: 1 1 _ 2 1 1+v3  1-V3 1 1 1L ]1=10 V3 1
V6 VB NG 3 3 3 V3 Ve V2 2 2
1 L 1-v3 1 3| \L _2 0 _1 V3
7z T/ 3 3 3 Vi V6 22

Thus, with respect to the basis B, we have a rotation with axis
rotation we must have:

—~

1,1,1). In particular, for this

3
C089=7 sin@:—§

which corresponds to a rotation by 6 = & clockwise

Work out the matrix g[f]4 for the linear map:
f:C =

f(x,y,2) = (w2 —y + 22,22 + 2y — 32)

where:
A=1((0,3,2),(1,1,1),(1,2,2))

is a basis of C? and B is the standard basis of C2.

Since B is just the standard basis, we just need to compute [f]4, the matrix produced by using as
columns the result of applying f to the basis vectors of A.

We thus compute:
£(0,3,2) = (1,0)

f(la 1, 1) = (07 1)
f(1,2,2) = (1,0)

Hence:
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(b) Write down a basis for the kernel of f.

This can be done in 2 ways.
From the solutions, notice that:

£(0,3,2) = f(1,2,2) = (1,0)

which means that:
(0’37 2) - (17 27 2) = (717 713 O) € kBT(f)

Notice, the rank of the representing matrix is 0 (2 linearly independent rows), so by Rank-Nullity,
we expect a kernel of dimension 1, so {(—1,—1,0)} is a basis for ker(f)

My approach, involving direct computation. If v = (z,y, z) € ker(f) then:
—r—y+22=0 20 +2y—32=0
Multiplying the first equation by 2, and adding it to the second one results in:
z=0

So that we have:
—zrz—y=0 = zxz=y

so (1,1,0) is a basis for ker(f).

4. Let 8(2) = (eq,¢e,) be the standard basis of T = R? and let:

-3 2
B= ;
2 -1

Show that B is a basis of T. Now, suppose that a linear mapping f : T — T is represented
with respect to S(2) by the matrix:

Find the matrix B that represents f with respect to B

It is clear that the vectors of B are linearly independent (can be verified by either using row reduction,
or explicitly computing the linear combination of the vectors which leads to 0). Moreover, B contains 2
elements, and the dimension of T" is 2, so B must be a basis.

We now need to compute g[f]s. There are 2 methods.
The first one from the solution involves computing the value of f when applied to the basis vectors of B:
A(-3,2) = (0,0) A(2,-1) = (-3,2)

The elements of the matrix are the coeflicients required to write (0,0) and (—3,2) by using the basis B,
so it is easy to see that:



Alternatively, we use the fact that:

slfls = slid][f][id]s

‘We have that:

-3 2
2 -1

lid]s =

(the coefficients are the ones used to write the basis elements of B in terms of the standard basis) It’s
inverse is:

So:

1 2
2 3

slid] =

5. Consider the vector space V = Mat(m x n; F).

(a)

What is the dimension of Mat(m x n; F)?

It is a mn dimensional space.

Find a basis of this vector space.

Let E;; be the matrix with a 1 in entry (¢, j) and Os elsewhere. Then, a basis for V' will be:
B:{Eij | 1§z§m,1§j§n}
It is clear that B spans the space. If A € Mat(m x n, F') has entries a;; € F, then:
A=) aiiBy
i=1j=1

Moreover, it is clear that B is linearly independent (each matrix has a 1 where the other mn — 1
have a 0). Thus, B is a basis.

Let p(z) € F[z] be a polynomial whose coefficients belong to F. Given A € Mat(n; F),
let p(A) € Mat(n; F) be the matrix you get by replacing each power of 2z in p(z) by the
corresponding power of A. Show that there exists a non-zero polynomial p(z) such that
p(A) is the zero matrix.

Take a matrix A € Mat(n; F'). Consider the set:

A0 AL A
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this is a set of n? + 1 elements, each of which is in Mat(n; F). But this space is n? dimensional, so
this must be a linearly dependent set. In other words, 3)\;, not all of which are non-zero, such that:

712
D> XAt =0
=0

Hence, the non-zero polynomial:

=0
evaluates to the 0-matrix when given A.
Let:
1 00
A=10 2 0
0 0 3

Find an explicit non-zero polynomial p(z) for which p(A) is the zero matrix.

(With future knowledge at hand, the Cayley-Hamilton Theorem tells us that a matrix always
satisfies its characteristic polynomial, so:

p(z) = (2= 1)(z=2)(z - 3)

is a good answer)

Here is a fact, which you don’t need to check. There is an invertible matrix @ such
that:

32 —12 8
1
B=5116 12 -8 =Q 'AQ
13 —15 28

Find a non-zero polynomial p(z) for which p(B) is the zero matrix.

(Again, future knowledge can tell us that the characteristic polynomial of similar matrices is iden-
tical, and so the p(z) above works; however, it is nice to work without future knowledge)

Notice:
B"=(Q'AQ)" = (QT'AQ)(QTTAQ) ... (QT1AQ) = Q7'A"Q

From work above, we know that there is a polynomial p(z) such that p(B) is the 0 matrix, so (for
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some t):
¢
B) = ZAiBi
= ZA QTAQ)
= Z)\iQflAiQ
_ ZQ )\ Az

t
-1 (Z )\iAi> Q (by applying distributivity)

=0

=Q 'p(A)Q

Thus, any polynomial p(z) which evaluates to the 0 matrix under A will evaluate to the 0 matrix
under B. Hence, we can pick p(z) = (z — 1)(z — 2)(z — 3) from above.
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