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Based on the notes by Iain Gordon, Sections 2.3 - 2.4

1 Abstract Linear Mappings and Matrices
1.1 Generalising Representing Matrices

• What is a representing matrix?

– we found a bijection linking homomorphisms to matrices:

M : HomF(Fm,Fn) → Mat(n×m;F)

M : f → [f ]

– the bijection was defined by defining a matrix with column vectors as f(E) ⊂ Fn, where E is the
standard basis of Fm

• What is an abstract linear mapping?

– a linear mapping f : V → W , where V,W are (abstract) vector spaces,
and dim(V ) = m, dim(W ) = n

– we try to relate V,W to Fm,Fn

• Can we represent abstract linear mappings as matrices?

– we know that if dimV = n, then there exists an isomorphism between Fn and V , namely:

Φ : Fn → V

(α1, . . . , αn) → α1v1 + . . .+ αnvn

where v1, . . . , vn are basis vectors of V
– it stands to reason from this isomorphism, that linear mappings V → W , with ordered bases,

can also be represented via matrices

Page 2



1.2 Theorem: Abstract Linear Mappings and Matrices

Let F be a field.
Let V,W be vector spaces over F, with ordered bases:

A = (v1, . . . , vm)

B = (w1, . . . , wn)

respectively.
For each linear mapping:

f : V → W

we can associate a representing matrix of the mapping f with re-
spect to the bases A and B, which we denote as B[f ]A.
This is the matrix which turns basis elements in A to an element of W ,
expressed as a linear combination of basis elements in B.
In particular, the entries aij are given by:

f(vj) =
n∑

i=1

aijwi, f(vj) ∈ W

(since aij represent the coordinates in the space spanned by B).
We again have a bijection (in fact, an isomorphism of vector spaces):

MA
B : HomF(V,W ) → Mat(n×m;F)

MA
B : f → B[f ]A

[Theorem 2.3.1]

Proof. Define the isomorphisms:
ΦA : Fm → V

ΦB : Fn → W

as at the start of the section. The idea of this proof is summarised in the following diagram:
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V W

Fm Fn

f

Φ−1
B ◦ f ◦ ΦA

ΦA Φ−1
A ΦBΦ−1

B

The idea is that we know how to map homomorphisms Fm → Fn to matrices, so if we want a matrix
representation of V → W , we can first map it to Fm → Fn, and then get the corresponding matrix. To do
this:

1. map Fm to V (we have an isomorphism for this)

2. map V to W (we have f for this)

3. map W to Fn (we have an inverse isomorphism for this)

It is then easy to see that we have:
B [f ]A = [Φ−1

B ◦ f ◦ ΦA]

and the bijection is simply a composition of bijections:

HomF(V,W ) → HomF(Fm,Fn) → Mat(n×m;F)

f → Φ−1
B ◦ f ◦ ΦA → [Φ−1

B ◦ f ◦ ΦA]

• How can we represent mappings from or to the standard bases?

– the standard basis of Fn is:
S(n)

– whilst we could explicitly write:
S(m)[f ]S(n)

S(m)[f ]A

B [f ]S(n)

it is more concise to use:
[f ]

[f ]A

B [f ]
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• How can we define the inverse of the bijection Fn → V ?

– let ΦA be the bijection:
(α1, . . . , αn) → α1v1 + . . .+ αnvn

with A = {v1, . . . , vn}
– the inverse is given by:

Φ−1
A : v → A[v]

where A[v] ∈ Fn is a column vector
– we call A[v] the representation of the vector v with respect to the basis A, since depending

on the basis vectors used by V , the elements of A[v] will differ

1.3 Theorem: The Representing Matrix of a Composition of Linear Mappings

Let F be a field.
Let U, V,W be finite dimensional vector spaces over F , with ordered bases
A,B,C.
If

f : U → V

G : V → W

are linear mappings, then the representing matrix of the composi-
tion:

g ◦ f : U → W

is the matrix product of the representing matrices of f and g:

C [g ◦ f ]A = C [g]B ◦ B[g]A

[Theorem 2.3.2]

Proof. The proof just relies on unpacking the notation:

C [g ◦ f ]A = [Φ−1
C ◦ (g ◦ f) ◦ ΦA]

C [g]B ◦ B [g]A

=[Φ−1
C ◦ g ◦ ΦB ] ◦ [Φ−1

B ◦ f ◦ ΦA]

=[Φ−1
C ◦ g ◦ ΦB ◦ Φ−1

B ◦ f ◦ ΦA]

=[Φ−1
C ◦ (g ◦ f) ◦ ΦA]

so both sides are equal.
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1.4 Theorem: Representation of the Image of a Vector

Let F be a field.
Let V,W be finite dimensional vector spaces over F, with ordered bases
A,B.
Let

f : V → W

be a linear mapping.
For v ∈ V :

B[f(v)] = B[f ]A ◦ A[v]

In other words, to get the image of A[v] in the basis B of W , we just need
to apply the representing matrix with respect to A and B. [Theorem 2.3.4]

Proof. As above, we show that both sides are equal:

B [f(v)] = Φ−1
B (f(v)), f(v) ∈ W

B [f ]A ◦ A[v]

=[Φ−1
B ◦ f ◦ ΦA] ◦ Φ−1

A (v)

=Φ−1
B (f(v))

This can be shown more explicitly. Define:

A = (v1, . . . , vm)

B = (w1, ldots, wn)

Define B [f ]A as the n×m matrix, given by the elements aij satisfying:

f(vj) =

n∑
i=1

aijwi

Since A is a basis of V , we can write any v ∈ V as:

v =

m∑
j=1

xjvj

where (x1, . . . , xm) ∈ Fm.
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Then:

f(v) =
m∑
j=1

xjf(vj)

=

m∑
j=1

xj

(
n∑

i=1

aijwi

)

=

n∑
i=1

 m∑
j=1

aijxj

wi

Notice, we are expressing f(v) using the basis elements of W , having started with v, defined using the basis
elements of V . If we define:

yi =

m∑
j=1

aijxj

then the whole transformation can be summarised via:
y1
...

yn

 = B [f ]A


x1

...

xm



1.4.1 Examples

• recall, in the previous week we define the linear mapping:

f : R2 → R2

such that it reflected on the straight line which makes an angle α with the x-axis. If we define
A = (v1, v2) with:

v1 = (cosα, sinα)T

v2 = (− sinα, cosα)T

then:

A[f ]A =

1 0

0 −1


To see why, it is easier to argue geometrically:
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v1 is in the direction of the reflection line (just use the right-angled triangle), so when reflected it won’t
change. v2 is perpendicular to this line, so when reflected, it goes diametrically opposite. In other
words:

f(v1) = v1 f(v2) = −v2

from which the matrix follows (bear in mind v1 = (1, 0)T , v2 = (0, 1)T in the space which they span).

• consider the following vector spaces:

V = F≤3[x], A = {v1 = 1, v2 = x, v3 = x2, v4 = x3}

W = F≤2[x], B = {w1 = 1, w2 = 1 + x,w3 = 1 + x2}

and define the linear mapping:
D : V → W

D : v → dv

dx

We want to find the matrix B [D]A which performs the mapping D, from an element written via the
basis A, to an element in W written via the basis B. For example, if:

v = x3 =


0

0

0

1

 ∈ V
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Then:

D(x3) = 3x2 = 3w3 − 3w1 =


−3

0

3

 ∈ W

(Technically, the column vector is not part of V , but rather of F4, but it is more useful to think as a
column vector, particularly when thinking about D as a matrix) In other words, we want:

B [D]A


0

0

0

1

 =


−3

0

3


We know that:

B [D]A = [Φ−1
B ◦D ◦ ΦA]

Which is nothing but the matrix with column vectors:

B [D(vi)]

(this is because B [D(vi)] = Φ−1
B (D(vi)), and as column vectors we want to consider the basis elements)

Hence:

B [D(v1)] = D(1) = 0 =


0

0

0



B [D(v2)] = D(x) = 1 =


1

0

0



B [D(v3)] = D(x2) = 2x =


−2

2

0



B [D(v4)] = D(x3) = 3x2 =


−3

0

3


Hence, we have that:

B [D]A =


0 1 −2 −3

0 0 2 0

0 0 0 3


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Hence, if we consider any v = (α, β, µ, ω)T ∈ V (again, technically not in V ), we can convert it to an
element of W with basis B using:

B [D(v)]=B [D]AA[v] =⇒ B [D(v)]=


0 1 −2 −3

0 0 2 0

0 0 0 3



α

β

µ

ω

 =


β − 2µ− 3ω

2µ

3ω


We can easily verify that if v = x3, this gives the right answer we obtained before. If we then actually
want to convert it to an element in W (currently we just have a vector in F3), we just have to use:

ΦB(B [D(v)]) =⇒
(
w1 w2 w3

)
β − 2µ− 3ω

2µ

3ω

 = (β − 2µ− 3ω)w1 + 2µw2 + 3ωw3

Notice, if we put this back in terms of the basis A, we get:

(β − 2µ− 3ω)(1) + 2µ(1 + x) + 3ω(1 + x2) = β + 2µx+ 3ωx2

which is precisely the derivative of:
α+ βx+ µx2 + ωx3

as expected.

2 Changing Bases Using Matrices
2.1 Theorem: Change of Basis

• What is the change of basis matrix?

– let V,W be vector spaces with respective bases A,B

– the change of basis matrix is the representing matrix (with respect to A,B) defined by the
identity mapping:

B [idV ]A

– the entries are given by the aij satisfying:

vj =

n∑
i=1

aijwi, vj ∈ A,wi ∈ B
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Let F be a field.
Let V,W be finite dimensional vector spaces over F.
Let:

f : V → W

be a linear mapping.
Suppose that V has ordered bases A,A′.
Similarly, suppose that W has ordered bases B,B′.
Then:

B′ [f ]A′ = B′ [idW ]B ◦ B[f ]A ◦ A[idV ]A′

In other words, we can convert the representing matrix with respect to dif-
ferent bases, by applying the change of basis matrix.[Theorem 2.4.3]

Proof. From (1.3) we know that:
C [g ◦ f ]A = C [g]B ◦ B [g]A

We also know that:
f = idW ◦ f ◦ idV

(since:
idW (f(idV (v)) = idW (f(v))f(v)

) Hence:

B′ [f ]A′

=B′ [idW ◦ f ◦ idV ]A′

=B′ [idW ◦ (f ◦ idV )]A′

=B′ [idW ]B ◦ B [f ◦ idV ]A′

=B′ [idW ]B ◦ B [f ]A ◦ A[idV ]A′

2.1.1 Examples

As above, define the linear mapping:
f : R2 → R2

such that it reflected on the straight line which makes an angle α with the x-axis. Define B = (v1, v2) with:

v1 = (cosα, sinα)T

v2 = (− sinα, cosα)T

and use A = (e1, e2) as the standard basis. The change of basis matrix has entries satisfying:1

0

 = a11

cosα

sinα

+ a21

− sinα

cosα


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0

1

 = a12

cosα

sinα

+ a22

− sinα

cosα


In other words: 1 0

0 1

 =

cosα − sinα

sinα cosα

a11 a12

a21 a22


Thus: a11 a12

a21 a22

 =

cosα − sinα

sinα cosα

−1

since we are just multiplying by the identity matrix. We know that (yeah, I used the determinant):cosα − sinα

sinα cosα

−1

=

 cosα sinα

− sinα cosα


So then: a11 a12

a21 a22

 =

 cosα sinα

− sinα cosα


We can then define the change of basis matrix:

B [f ]A =

 cosα sinα

− sinα cosα


What this gives us is a form of converting a vector in A to its corresponding vector in B. For example, if
we consider:

A[v1] = (cosα, sinα)T

we know that in terms of the basis B, B [v1] = (1, 0)T . Indeed:

B [f ]AA[v1] = (1, 0)T

2.2 Corollary: Change of Basis for Endomorphisms
This is a special case of the Theorem above, whereby instead of using different bases in a different vector
space, we consider endomorphisms.

Let V be a finite dimensional vector space.
Define the endomorphism:

f : V → V

Suppose that A,A′ are ordered bases of V .
Then:

A′ [f ]A′ = A[idV ]
−1
A′ ◦ A[f ]A ◦ A[idV ]A′

[Corollary 2.4.4]
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Proof. It is easy to see that:
A[idV ]A = In

since, if vi ∈ A:

vi =

n∑
i=1

aijvi ⇐⇒ aij = δij

Using (1.3), we know that:

A[idV ]A = In ⇐⇒ A[idV ]A′ ◦ A′ [idV ]A = In

Hence, it follows that:
A[idV ]

−1
A′ = A′ [idV ]A

Thus, if we apply the Theorem above - (2.1) - using A′ = B′ and A = B, we get:

A′ [f ]A′ = A′ [idV ]A ◦ A[f ]A ◦ A[idV ]A′ = A[idV ]
−1
A′ ◦ A[f ]A ◦ A[idV ]A′

• What are similar matrices?

– consider:
N = B [f ]B

M = A[f ]A

• we say that N and M are similar matrices if:

N = T−1MT

where:
T = A[idV ]B

2.2.1 Examples

Consider V = F2, and the following bases:

A = {(1, 2)T , (2, 3)T } = {vi}

B = {(1, 5)T , (3, 2)T } = {wi}

We want to construct the change of basis matrix:

B [idV ]A

This matrix has coefficients aij given by:1

2

 = a11

1

5

+ a21

3

2


2

3

 = a11

1

5

+ a22

3

2


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In matrix form: 1 2

2 3

 =

1 3

5 2

a11 a12

a21 a22


Notice: 1 2

2 3

 = S(2)[idv]A

1 3

5 2

 = S(2)[idv]B

To find the change of basis matrix, we just need to invert

1 3

5 2

:

1 3

5 2

−1

= − 1

13

 2 −3

−5 1


So it follows that:

B [idV ]A = − 1

13

 2 −3

−5 1

1 2

2 3

 =
1

13

4 5

3 7


2.2.2 Exercises (TODO)

1. Check that Corollary 2.4.4 agrees with the calculations made in the examples above, where
we consider the map f : R2 → R2 to be the reflection on the line through the origin making
an angle of α with the x-axis.

2. Let V be an F -vector space with ordered basis A = (v1, . . . , vn). Show that the change of
basis matrices lead to a bijection:

{ordered bases of V } → GL(n;F)

B → B [idV ]A

where GL(n;F) is the group of n× n invertible matrices.
To show this is a bijection, it is sufficient to show that it has an inverse, and the inverse is a bijection.
In other words, we want a bijection of the form:

GL(n;F) → {ordered bases of V }

g → B

We claim that this can be done by using:

B = {g−1v1, . . . , g
−1vn}

If we show that:

• B is a basis of V
• g = B [idV ]A
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then we will have shown that the mapping g → B is indeed a bijection, and furthermore, an inverse of
the original map. To see why this is, its because it allows us to do the following set of mappings:

B → B [idV ]A := g → B

so clearly they are inverses.

We first show that {g−1v1, . . . , g
−1vn} is a basis. This is relatively straightforward.

To show linear independence, we can employ the linearity of g. Suppose that:
n∑

i=1

λi(g
−1vi) = 0

Applying g, and knowing that as a linear map, g(0) = 0:

g

(
n∑

i=1

λi(g
−1vi)

)
= g(0) =⇒

n∑
i=1

λivi = 0

Since A is a basis, we know that
∑n

i=1 λivi = 0 only when λi = 0, so it follows that the set B is linearly
independent.

Moreover, notice that V is such that dim(V ) = n. Moreover, B has n elements, so it spans an n-
dimensional subspace of V . Hence, it follows that B spans V . Hence, B must be a basis.

Now, if we compose the mappings, we’d get:

g → B → B [idV ]A

We have an inverse (and so a bijection) if we have g = B [idV ]A. Now, recall what B [idV ]A “means”: it
is a matrix constructed by being able to write A = {v1, . . . , vn} in terms of B = {g−1v1, . . . , g

−1vn} (i.e
for each basis element vi, we can write it as a linear combination of elements in B).

If we consider the inverse mapping:
B [idV ]

−1
A = A[idV ]B

this is the matrix containing the coefficients which allow us to write elements in B = {g−1v1, . . . , g
−1vn}

in terms of a linear combination of elements in A = {v1, . . . , vn}. But clearly, applying g−1 to vi takes
us to g−1vi. In other words, we must have:

B [idV ]
−1
A = A[idV ]B = g−1

Hence, it must be the case that, as required:

g = B [idV ]A

3. We want to calculate the order of the finite group GL(n;F) (recall, the order of a group is
the number of elements in the group).
(a) Show that GL(n;Fp) acts transitively on Fn

p \ {0}}. Recall, a group acts transitively on
a set if for each pair of elements x, y in the set, there is a group element such that
g · x = y.
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(b) Determine the stabilizer of the vector e1 ∈ Fn
p , and establish that:

|StabGL e1| = pn−1|GL(n− 1;F|

Recall, the stabiliser of an element x of a set is a subgroup of the group acting on a
set. It contains all elements of the group which act on x, and do so by mapping it to
itself.

(c) Using the Orbit Stabilizer Theorem, determine |GL(n,Fp)|. Recall, the orbit of an
element x is the set of all elements to which the group maps x. The orbit stabiliser
theorem says that:

|G| = |StabG(x)| × |OrbG(x)|

2.3 The Trace
• What is the trace of a matrix?

– the trace of a square matrix is the sum of its diagonal entries
– it is denoted using:

tr(A)

– in terms of formulae:
tr(A) =

∑
i=1

naii

• Are traces defined for infinite rank matrices?

– only if the sum converges

• What is the trace of an endomorphism?

– we can define the trace of an endomorphism:

f : V → V

as:
tr(f) = tr(f |V ) = trF(f |V )

– to compute it, we consider an ordered basis A of V , and define:

tr(f) = tr(A[f ]A)

– turns out, this definition is independent of the basis chosen (reason: f(AB) = f(BA) and
tr(T−1MT ) = tr(M); this is proven below)

2.3.1 Exercises (TODO)

1. Let:

• A be an n×m matrix
• B be an m× n matrix

Show that:
tr(AB) = tr(BA)

This is known as the cyclicity of the trace.
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The above exercise has a very nice implication. In particular, if we pick:

A = T−1M

B = T

then:
tr(T−1MT ) = tr(M)

Hence, 2 matrices are similar if and only if they have the same trace.

2. Let A,B ∈ Mat(n,F) and λ ∈ F .
(a) Show that:

1. Tr(λA) = λTr(A)

2. Tr(A+B) = Tr(A) + Tr(B)

3. Tr(AB) = Tr(BA)

(b) Prove that, if:
f : Mat(n;F) → F

and:
• f is linear (for f(λA+B) = λf(A) + f(B)

• f(AB) = f(BA)

then:
f(A) = αTr(A), α ∈ F

Moreover, show that if f(In) = n 6= 0, then:

f(A) = tr(A)

The first part is given by dull calculations, so just check this link with proofs to all the properties
(and the exercise above).

3. Let f : V → W and g : W → V be 2 linear mappings (V,W are finite dimensional). Show
that:

tr(fg) = tr(gf)

4. Let V be finite dimensional, and let f : V → V be idempotent (f2 = f). Show that:

tr(f) = dim(im(f))

Last week, in an exercise, we showed that:

ker(φ ◦ φ) = ker(φ) ⇐⇒ V = ker(φ)⊕ im(φ)

Since f is idempotent, it must then be the case that:

V = ker(f)⊕ im(f)

Let {k1, . . . , ks} be a basis of ker(f), and let {l1, . . . , lt} be a basis of im(f). Then, a basis of V is given
by:

B = {k1, . . . , ks, l1, . . . , lt}
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(This next part I don’t understand why) Hence, the representing matrix, written in block form, will be:

B [f ]B =

0 0

0 I


Thus:

tr(f) = tr(B [f ]B) = dim(im(f))

5. Let V be a finite dimensional F-vector space, and f : V → V a linear mapping. Show that:

tr((f◦)|EndF (V )) = (dimFV )tr(f |V )

2.4 Mastering Calculations
1. Define a linear map:

f : R2 → R2

f(x, y) = (10x− 21y, 4x− 9y)

Let A be the following basis of R2: 2

1

 ,

−3

−1


Determine:

A[f ]A

We first need to determine where the basis vectors get mapped to under the transformation f :

f

2

1

 =

−1

−1



f

−3

−1

 =

−9

−3


As we have seen before, the matrix A[f ]A must satisfy:−1 −9

−1 −3

 =

2 −3

1 −1


A[f ]A

(that is, we can express the basis vectors in f(A) using a linear combination of elements in A) We
compute: 2 −3

1 −1

−1

=

−1 3

1 −1


So:

A[f ]A =

−1 3

1 −1

−1 −9

−1 −3

 =

−2 0

−1 3


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Notice, if we go back to the theorems, we have done nothing else but apply (2.1) (technically Corollary
2.4.4 after):

A[f ]A = A[idR2 ]S(2) ◦ S(2)[f ]S(2) ◦ A[idR2 ]S(2)

where:

S(2)[f ]S(2) =

10 −21

4 −9


(the matrix corresponding to the linear transformation f : R2 → R2)

S(2)[idR2 ]A =

2 −3

1 −1


(the matrix of the basis elements A, in terms of the standard basis)

A[idR2 ]S(2) =

−1 3

−1 2


(the inverse transformation, defining the standard basis in terms of A) Then the computation is auto-
matic:

A[f ]A =

−1 3

−1 2

10 −21

4 −9

2 −3

1 −1

 =

−2 0

−1 3


The other method follows the more intuitive view.

2. Let A and B be the following bases of R2 and R3 respectively:

(−2, 1)T , (−3, 2)T

(−2, 2, 0)T , (−2, 1, 0)T , (4,−2, 2)T

The matrix B [f ]A representing the linear mapping:

f : R2 → R3

with respect to the bases A and B is the following:
−2 −2

−1 1

1 2


Find the matrix which represents the mapping f with respect to the standard bases of R2

and R3.

We seek S(3)[f ]S(2). By (2.1), we have:

S(3)[f ]S(2) = S(3)[idR3 ]B ◦ B [f ]A ◦ A[idR2 ]S(2)

Moreover, we have:

S(3)[idR3 ]B =


−2 −2 4

2 1 −2

0 0 2


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S(2)[idR2 ]A =

−2 −3

1 2

 =⇒ A[idR2 ]S(2) =

−2 −3

1 2

−1

=

−2 −3

1 2


Thus:

S(3)[f ]S(2) = S(3)[idR3 ]B ◦ B [f ]A ◦ A[idR2 ]S(2)

=⇒ S(3)[f ]S(2) =


−2 −2 4

2 1 −2

0 0 2



−2 −2

−1 1

1 2


−2 −3

1 2



=⇒ S(3)[f ]S(2) =


−2 −2 4

2 1 −2

0 0 2



2 2

3 5

0 1



=⇒ S(3)[f ]S(2) =


−10 −10

7 7

0 2



3 Workshop
1. True or False. Let φ : V → V be an endomorphism of a finite dimensional vector space V .

Then, ker(φ ◦ φ) = ker(φ)

This is intuitively false. The key is to look for a counterexample by using matrices; in particular, if we
can find a nilpotent matrix, such that φ2 is the zero matrix, then it is likely that we can find a vector v
such that φ2(v) = 0 but φ(v) 6= 0.
This is what is done in the solutions:

[φ] =

0 1

0 0

 =⇒ [φ2] =

0 0

0 0


so for example e2 ∈ ker(φ2) but e2 6∈ ker(φ).
To do this, I began with a general matrix: a b

0 c


and then computed its square, alongside the result of applying them to a vector.

For the following exercise, I derived the following relation to compute representing matrices for different
bases.
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Say we have a mapping f : V → W , with V having a basis A = {v1, . . . , vn} and W having a basis
B = {w1, . . . , wm}. We know that the representing matrix B[f ]A has entries aij such that:

f(vj) =

m∑
i=1

aijwi

In terms of matrices, this is equivalent to having:
w11 w21 . . . wm1

w12 w22 . . . wm2

...
...

. . .
...

w1n w2n . . . wmn




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 = (f(v1) | f(v2) | . . . | f(vn))

In other words, if:

X =


w11 w21 . . . wm1

w12 w22 . . . wm2

...
...

. . .
...

w1n w2n . . . wmn

 = (w1 | w2 | . . . | wm)

and
Y = (f(v1) | f(v2) | . . . | f(vn))

Then we have that:
XB[f ]A = Y =⇒ B[f ]A = X−1Y

Notice here that we can think of:

X = [id]B =⇒ X−1 = B[id]

(since X is expressing f(wi) = wi using a linear combination of the standard basis vectors) and:

Y = [f ]A

(since it expresses f(vi) in terms of a linear combination of standard basis vectors) So indeed:

X−1Y = B[id] [f ]A = B[f ]A

2. The linear mapping f : R3 → R2 is defined by:

f(x1, x2, x3) = (x1 − x2 + 2x3, x1 − x3))

In R2, A is the basis: 
1

1

 ,

 1

−1


and in R3, B is the basis 


1

1

0

 ,


0

1

1

 ,


1

0

1




Obtain:
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(a) The matrix of f with respect to the standard bases of R3 and R2

For this, we don’t even need to use the formula: this is just the standard representing matrix
obtained by applying f to the basis vectors of R3, and using the resulting vectors as our columns.
Computing:

f(1, 0, 0) = (1, 1) f(0, 1, 0) = (−1, 0) f(0, 0, 1) = (2,−1)

Hence:

[f ] =

1 −1 2

1 0 −1


(b) The matrix of f with respect to the standard basis of R3 and the basis A of R2

We need to use the basis A. We construct a matrix using its vectors:

X = [id]A =

1 1

1 −1


which has inverse:

X−1 = A[id] =
1

2

1 1

1 −1


Then, we know that:

A[f ]S(3) =
1

2

1 1

1 −1

1 −1 2

1 0 −1

 =
1

2

2 −1 1

0 −1 3


(c) The matrix of f with respect to the basis B of R3 and the standard basis of R2

We need to compute the value of f at the basis vectors B:

f(1, 1, 0) = (0, 1) f(0, 1, 1) = (1,−1) f(1, 0, 1) = (3, 0)

so we have that:

[f ]B =

0 1 3

1 −1 0


This is precisely what we need.

(d) The matrix of f with respect to the basis B of R3 and the basis A of R2

We already have all the ingredients:

A[f ]B = A[id] [f ]B =
1

2

1 1

1 −1

0 1 3

1 −1 0

 =
1

2

 1 0 3

−1 2 3


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(e) Show that if the axis of rotation is the x-axis and you rotate by θ degrees, the matrix
representing this linear transformation in standard coordinates is:

1 0 0

0 cos θ − sin θ

0 sin θ cos θ


Intuitively, since we rotate about the x axis, this is equivalent to just having a θº rotation on the
yz plane, which the lower right matrix represents.
Computing, it is sufficient to show that the matrix has the desired result on the basis vectors:

1 0 0

0 cos θ − sin θ

0 sin θ cos θ



1

0

0

 =


1

0

0


As expected, the x-axis remains fixed under rotation.

1 0 0

0 cos θ − sin θ

0 sin θ cos θ



0

1

0

 =


0

cos θ

sin θ



1 0 0

0 cos θ − sin θ

0 sin θ cos θ



0

0

1

 =


0

− sin θ

cos θ


which is as expected.

(f) Now prove, by a suitable change of basis, that there is a rotation in R3 with axis of
rotation given by the line connecting 0 and (1, 1, 1), which is represented by:

1+
√
3

3
1−

√
3

3
1
3

1
3

1+
√
3

3
1−

√
3

3

1−
√
3

3
1
3

1+
√
3

3


What is the corresponding angle of rotation? It might help to consider the orthonormal
basis for R3 given by: 

1√
3


1

1

1

 ,
1√
6


1

1

−2

 ,
1√
2


1

−1

0




We try to compute B[f ]B. We have that:

[f ] =


1+

√
3

3
1−

√
3

3
1
3

1
3

1+
√
3

3
1−

√
3

3

1−
√
3

3
1
3

1+
√
3

3


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Thus, we require B[id] and [id]B.
To construct, [id]B, we use the basis vectors as column vector for the matrix:

[id]B =


1√
3

1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

− 2√
6

0


Then (using our future knowledge of the fact that the inverse of an orthogonal matrix - such as the
one above, constructed via an orthonormal basis - is its transpose):

B[id] = [id]−1
B =


1√
3

1√
3

1√
3

1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0


And so we can compute:

B[f ]B =


1√
3

1√
3

1√
3

1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0




1+
√
3

3
1−

√
3

3
1
3

1
3

1+
√
3

3
1−

√
3

3

1−
√
3

3
1
3

1+
√
3

3




1√
3

1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

− 2√
6

0

 =


1 0 0

0
√
3
2

1
2

0 − 1
2

√
3
2


Thus, with respect to the basis B, we have a rotation with axis (1, 1, 1). In particular, for this
rotation we must have:

cos θ =

√
3

2
sin θ = −1

2

which corresponds to a rotation by θ = π
6 clockwise

3. (a) Work out the matrix B[f ]A for the linear map:

f : C3 → C2

f(x, y, z) = (−x− y + 2z, 2x+ 2y − 3z)

where:
A = ((0, 3, 2), (1, 1, 1), (1, 2, 2))

is a basis of C2 and B is the standard basis of C2.

Since B is just the standard basis, we just need to compute [f ]A, the matrix produced by using as
columns the result of applying f to the basis vectors of A.
We thus compute:

f(0, 3, 2) = (1, 0)

f(1, 1, 1) = (0, 1)

f(1, 2, 2) = (1, 0)

Hence:

B[f ]A =

1 0 1

0 1 0


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(b) Write down a basis for the kernel of f .

This can be done in 2 ways.
From the solutions, notice that:

f(0, 3, 2) = f(1, 2, 2) = (1, 0)

which means that:
(0, 3, 2)− (1, 2, 2) = (−1,−1, 0) ∈ ker(f)

Notice, the rank of the representing matrix is 0 (2 linearly independent rows), so by Rank-Nullity,
we expect a kernel of dimension 1, so {(−1,−1, 0)} is a basis for ker(f)

My approach, involving direct computation. If v = (x, y, z) ∈ ker(f) then:

−x− y + 2z = 0 2x+ 2y − 3z = 0

Multiplying the first equation by 2, and adding it to the second one results in:

z = 0

So that we have:
−x− y = 0 =⇒ x = y

so (1, 1, 0) is a basis for ker(f).

4. Let S(2) = (e1, e2) be the standard basis of T = R2 and let:

B =


−3

2

 ,

 2

−1


Show that B is a basis of T . Now, suppose that a linear mapping f : T → T is represented
with respect to S(2) by the matrix:

A =

−6 −9

4 6


Find the matrix B that represents f with respect to B

It is clear that the vectors of B are linearly independent (can be verified by either using row reduction,
or explicitly computing the linear combination of the vectors which leads to 0). Moreover, B contains 2
elements, and the dimension of T is 2, so B must be a basis.

We now need to compute B[f ]B. There are 2 methods.
The first one from the solution involves computing the value of f when applied to the basis vectors of B:

A(−3, 2) = (0, 0) A(2,−1) = (−3, 2)

The elements of the matrix are the coefficients required to write (0, 0) and (−3, 2) by using the basis B,
so it is easy to see that:

B[f ]B =

0 1

0 0


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Alternatively, we use the fact that:
B[f ]B = B[id][f ][id]B

We have that:

[id]B =

−3 2

2 −1


(the coefficients are the ones used to write the basis elements of B in terms of the standard basis) It’s
inverse is:

B[id] =

1 2

2 3


So:

B[f ]B =

1 2

2 3

−6 −9

4 6

−3 2

2 −1


=

2 3

0 0

−3 2

2 −1


=

0 1

0 0


5. Consider the vector space V = Mat(m× n;F ).

(a) What is the dimension of Mat(m× n;F )?

It is a mn dimensional space.

(b) Find a basis of this vector space.

Let Eij be the matrix with a 1 in entry (i, j) and 0s elsewhere. Then, a basis for V will be:

B = {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

It is clear that B spans the space. If A ∈ Mat(m× n, F ) has entries aij ∈ F , then:

A =

m∑
i=1

n∑
j=1

aijEij

Moreover, it is clear that B is linearly independent (each matrix has a 1 where the other mn − 1
have a 0). Thus, B is a basis.

(c) Let p(z) ∈ F [z] be a polynomial whose coefficients belong to F . Given A ∈ Mat(n;F ),
let p(A) ∈ Mat(n;F ) be the matrix you get by replacing each power of z in p(z) by the
corresponding power of A. Show that there exists a non-zero polynomial p(z) such that
p(A) is the zero matrix.

Take a matrix A ∈ Mat(n;F ). Consider the set:

A0, A1, . . . , An2
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this is a set of n2 + 1 elements, each of which is in Mat(n;F ). But this space is n2 dimensional, so
this must be a linearly dependent set. In other words, ∃λi, not all of which are non-zero, such that:

n2∑
i=0

λiA
i = 0

Hence, the non-zero polynomial:

p(z) =

n2∑
i=0

λiz
i

evaluates to the 0-matrix when given A.

(d) Let:

A =


1 0 0

0 2 0

0 0 3


Find an explicit non-zero polynomial p(z) for which p(A) is the zero matrix.

(With future knowledge at hand, the Cayley-Hamilton Theorem tells us that a matrix always
satisfies its characteristic polynomial, so:

p(z) = (z − 1)(z − 2)(z − 3)

is a good answer)

(e) Here is a fact, which you don’t need to check. There is an invertible matrix Q such
that:

B =
1

2


32 −12 8

16 12 −8

13 −15 28

 = Q−1AQ

Find a non-zero polynomial p(z) for which p(B) is the zero matrix.

(Again, future knowledge can tell us that the characteristic polynomial of similar matrices is iden-
tical, and so the p(z) above works; however, it is nice to work without future knowledge)
Notice:

Bn = (Q−1AQ)n = (Q−1AQ)(Q−1AQ) . . . (Q−1AQ) = Q−1AnQ

From work above, we know that there is a polynomial p(z) such that p(B) is the 0 matrix, so (for
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some t):

p(B) =

t∑
i=0

λiB
i

=

t∑
i=0

λi(Q
−1AQ)i

=

t∑
i=0

λiQ
−1AiQ

=

t∑
i=0

Q−1(λiA
i)Q

= Q−1

(
t∑

i=0

λiA
i

)
Q (by applying distributivity)

= Q−1p(A)Q

Thus, any polynomial p(z) which evaluates to the 0 matrix under A will evaluate to the 0 matrix
under B. Hence, we can pick p(z) = (z − 1)(z − 2)(z − 3) from above.
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